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Abstract

The flow and heat transfer of Casson fluid from a permeable isothermal
sphere in the presence of slip condition in a non-Darcy porous medium
is analyzed. The sphere surface is maintained at a constant temperature.
The boundary layer conservation equations, which are parabolic in nature,
are normalized into non-similar form and then solved numerically with the
well-tested, efficient, implicit, stable Keller-box finite-difference scheme.
Increasing the velocity slip parameter is found to decrease the velocity and
boundary layer thickness and increases the temperature and the boundary
layer thickness. The velocity decreases with the increase the non-Darcy
parameter and is found to increase the temperature. The velocity increases
with the increase the Casson fluid parameter and is found to decrease the
temperature. The Skin-friction coefficient and the local Nusselt number is
found to decrease with the increase in velocity and thermal slip parameters
respectively.
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Nomenclature

a - radius of the sphere

Cf - skin friction coefficient

Sf - non-dimensional velocity slip param-
eter

ST - non-dimensional thermal slip param-
eter

f - non-dimensional steam function

g - acceleration due to gravity

Gr - Grashof number

Da - Darcian parameter

r(x) - radial distance from symmetrical
axis to surface of the sphere

N0 - velocity slip factor

K0 - thermal slip factor

Nu - Local Nusselt number

Pr - Prandtl number

V - the linear (translational) fluid veloc-
ity vector

T - temperature

u, v - non-dimensional velocity compo-
nents along the x- and y-
directions, respectively

x - stream wise coordinate

y - transverse coordinate

Greek symbols

α - thermal diffusivity

β - the non-Newtonian Casson parame-
ter

Λ - the local inertial drag coefficient
(Forchheimer parameter)

Ω - the coefficient of thermal expansion

Φ - the azimuthal coordinate

η - the dimensionless radial coordinate

µ - dynamic viscosity

ν - kinematic viscosity

θ - non-dimensional temperature

ρ - density

σ - the electrical conductivity

ξ - the dimensionless tangential coordi-
nate

ψ - dimensionless stream function

Subscripts

w conditions on the wall ∞ free stream conditions

1 Introduction

Non-Newtonian transport phenomena arise in many branches of chemical and
materials processing engineering. Such fluids exhibit shear-stress-strain rela-
tionships which diverge significantly from the Newtonian (Navier-Stokes) model.
Most non-Newtonian models involve some form of modification to the mo-
mentum conservation equations. These include power- law, thixotropic and
viscoelastic fluids [1]. Such rheological models however cannot simulate the
microstructural characteristics of many important liquids including polymer
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suspensions, liquid crystal melts, physiological fluids, contaminated lubricants,
etc.

The flow of non-Newtonian fluids in the presence of heat transfer is an
important research area due to its wide use in food processing, power engineer-
ing, petroleum production and in many industries for example polymers melt
and polymer solutions employed in the plastic processing. Several fluids in
chemical engineering, multiphase mixtures, pharmaceutical formulations, china
clay and coal in water, paints, synthetic lubricants, salvia, synovial fluid, jams,
soups, jellies, marmalades, sewage sludge etc. are non-Newtonian. The consti-
tutive relations for these kinds of fluids give rise to more complex and higher
order equations than the Navier-Stokes equations. Considerable progress even
through has been made on the topic by using different models of non-Newtonian
fluids [2-11].

Transport processes in porous media can involve fluid, heat and mass trans-
fer in single or multi-phase scenarios. Such flows with and without buoyancy
effects arise frequently in many branches of chemical engineering and owing
to their viscous-dominated nature are generally simulated using the Darcy
model. Applications of such flows include chip-based microfluidic chromato-
graphic separation devices [12], dissolution of masses buried in a packed bed
[13], heat transfer in radon saturating permeable regimes [14], flows in ceramic
filter components of integrated gasification combined cycles (IGCC) [15], sep-
aration of carbon dioxide from the gas phase with aqueous adsorbents (water
and diethanolamine solution) in micro porous hollow fibre membrane modules
[16], and monolithic adsorbent flows consisting of micro-porous zeolite particles
embedded in a polyamide matrix [17]. Porous media flow simulations are also
critical in convective processes in hygroscopic materials [18], electro remedia-
tion in soil decontamination technique wherein an electric field applied to a
porous medium generates the migration of ionic species in solution [19], reac-
tive transport in tubular porous media reactors [20], perfusive bed flows [21],
gelation of biopolymers in porous media which arise in petroleum recovery and
in subsurface heavy metal stabilization [22].

Previous studies indicate that not much has been presented yet regarding
Casson fluid. This model [23-25] in fact is a plastic fluid that exhibits shear
thinning characteristics and that quantifies yield stress and high shear viscos-
ity. Casson fluid model is reduced to a Newtonian fluid at very high wall shear
stresses, when wall stress is much greater than yield stress. This fluid has good
approximations for many substances such as biological materials, foams, molten
chocolate, cosmetics, nail polish, some particulate suspensions etc. The bound-
ary layer behavior of viscoelastic fluid has technical applications in engineering



472 V.Ramachandra Prasad, A.Subba Rao, N.Bhaskar Reddy, Anwar Bég

such as glass fiber, paper production, manufacture of foods, the aerodynamic
extrusion of plastic sheets, the polymer extrusion in a melt spinning process
and many others.

The objective of the present paper is to investigate the flow and heat trans-
fer of Casson fluid past an isothermal sphere. Mathematical modeling through
equations of continuity and motion leads to a nonlinear differential equation
even after employing the boundary layer assumptions. The velocity and ther-
mal slip conditions along with conservation law of mass, momentum and energy
completes the problems formulation for velocity components and temperature.
The considered slip conditions especially are important in the non-Newtonian
fluids such as polymer melts which often exhibit wall slip. It has been experi-
mentally verified that fluid possesses non-continuum features such as slip flow
when the molecular mean free path length of fluid is comparable to the distance
between the plates as in Nano channels/micro channels [26].

2 Mathematical analysis

A steady, laminar, two-dimensional, viscous, incompressible, electrically - con-
ducting, buoyancy-driven convection heat transfer flow from a permeable isother-
mal sphere embedded in an isotropic, homogenous, fully-saturated porous medium
is considered. Figure 1 illustrates the physical model and coordinate system.
Here x is measured along the surface of the sphere, y is measured normal to
the surface, respectively and r is the radial distance from symmetric axes to
the surface. R = asin(x/a), a is the radius of the sphere. The gravitational
acceleration, g acts downwards. Both the sphere and the fluid are maintained
initially at the same temperature. Instantaneously they are raised to a temper-
ature Tw > T∞, the ambient temperature of the fluid which remains unchanged.
The fluid properties are assumed to be constant except the density variation in
the buoyancy force term.

The porous medium is simulated using the well tested and validated non-
Darcian drag force model. This incorporates a linear Darcian drag for low
velocity effects (bulk impedance of the porous matrix at low Reynolds num-
bers) and a quadratic (second order) resistance, the Forchheimer drag, for high
velocity flows, as may be encountered in chemical engineering systems operat-
ing at higher velocities. The appropriate non-Darcian model, following Nield
and Bejan [27] is therefore:

∇p = − µ

K
V − ρb

K
V 2 (1)
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Figure 1: Physical model and coordinate system

where ∇p is the pressure drop across the porous medium µ is the dynamic
viscosity of the fluid, b is the Forchheimer (geometric) inertial drag parameter,
K is the permeability of the porous medium (hydraulic conductivity) and V is
the general velocity.

We also assume the rheological equation of Casson fluid, reported by Mustafa
et al. [41] is:

τ1/n = τ
1/n
0 + µγ̇1/n (2)

or

τij =

[
µB +

(
Py√
2π

)1/n
]n

2eij (3)

where µ is the dynamic viscosity, µB the plastic dynamic viscosity of non-
Newtonian fluid , π = eijeij and eij is the (i, j)th component of deformation
rate, π denotes the product of the component of deformation rate with itself, πc
shows a critical value of this product based on the non-Newtonian model, and py
the yield stress of fluid. We consider a steady state flow. An anonymous referee
has suggested considering the value of n = 1. However, in many applications
this value is n ≫ 1
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Under the usual Boussinesq and boundary layer approximations, the equa-
tions for mass continuity, momentum and energy, can be written as follows:

∂(ru)

∂x
+
∂(rv)

∂y
= 0 (4)

u
∂u

∂x
+ v

∂u

∂y
= ν

(
1 +

1

β

)
∂2u

∂y2
+ gΩ(T − T∞) sin

(x
a

)
− ν

k
u− Γu2 (5)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
(6)

where u and v are the velocity components in the x - and y- directions re-
spectively, ν - the kinematic viscosity of the conducting fluid, β - is the non-
Newtonian Casson parameter, α - the thermal diffusivity, Ω is the coefficients
of thermal expansion,T - the temperature respectively.

The boundary conditions are prescribed at the sphere surface and the edge
of the boundary layer regime, respectively as follows:

at y = 0, u = N0

(
1 + 1

β

) ∂u
∂y
, v = −Vw, T = Tw +K0

∂T
∂y ;

as y → ∞, u→ 0, T → T∞,
(7)

where N0 is the velocity slip factor and K0 is the thermal slip factor. For
N0 = 0 = K0, one can recover the no-slip case.

The stream function ψ is defined by ru = ∂ (rψ)/∂y and rv = ∂ (rψ)/∂x,
and therefore, the continuity equation is automatically satisfied. In order to
write the governing equations and the boundary conditions in dimensionless
form, the following non-dimensional quantities are introduced.

ξ = x
a , η = y

a
4
√
Gr, f(ξ, η) = ψ

νξ 4√Gr
, Pr = ν

α ,

θ(ξ, η) = T−T∞
Tw−T∞ , Gr = gΩ(Tw−T∞)a3

ν2
, β = µB

√
2πc
py

,

Λ = Γa, Da = K
a2
, fw = − Vwa

ν 4√Gr
,

(8)

where ρ- the density, T∞- the free stream temperature, Vw - the uniform blow-
ing/suction velocity. In view of Equation (8), Equations (4)-(6) reduce to the
following coupled, nonlinear, dimensionless partial differential equations for mo-
mentum and energy for the regime(

1 +
1

β

)
f ′′′ + (1 + ξ cot ξ) ff ′′ − (1 + ξΛ) f ′

2
,

− 1

DaGr1/2
f ′ +

sin ξ

ξ
θ = ξ

(
f ′
∂f ′

∂ξ
− f ′′

∂f

∂ξ

)
, (9)
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θ′′

Pr
+ (1 + ξ cot ξ) fθ′ = ξ

(
f ′
∂θ

∂ξ
− θ′

∂f

∂ξ

)
. (10)

The transformed dimensionless boundary conditions are:

at η = 0, fw = S, f ′ =
(
1 + 1

β

)
Sff

′′(0), θ = 1 + ST θ
′(0),

As η → ∞, f ′ → 0, θ → 0.
(11)

In the above equations, the primes denote the differentiation with respect to
η, the dimensionless radial coordinate, and ξ is the dimensionless tangential
coordinate, Pr = ν/α the Prandtl number, Sf = (N0/a)Gr

1/4 and ST =
(K0/a)Gr

1/4 are the non-dimensional velocity and thermal slip parameters re-
spectively and fw = S = −Vw(a/ν)Gr−1/4 is the blowing/suction parameter.
Here fw < 0 for Vw > 0 (the case of blowing), and fw > 0 for Vw < 0 (the case
of suction). Of course, the special case of a solid sphere surface corresponds to
fw = 0.

The engineering design quantities of physical interest include the skin-friction
coefficient and Nusselt number, which are given by:

1

2
CfGr

−3/4 =

(
1 +

1

β

)
ξf ′′(0), (12)

Nu
4
√
Gr

= −θ′(0). (13)

3 Numerical solution

In this study the efficient Keller-Box implicit difference method has been em-
ployed to solve the general flow model defined by equations (9)-(10) with bound-
ary conditions (11). Therefore a more detailed exposition is presented here.
This method, originally developed for low speed aerodynamic boundary layers
by Keller [28], and has been employed in a diverse range of coupled heat transfer
problems. These include Ramachandra Prasad et al.[29-30] and Bég et al.[31].

Essentially 4 phases are central to the Keller Box Scheme. These are

a. Reduction of the N th order partial differential equation system to N first
order equations

b. Finite Difference Discretization

c. Quasilinearization of Non-Linear Keller Algebraic Equations
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(a) Grid meshing.

(b) Net “Keller-Box” for difference approximations.

Figure 2: The ”Keller Box” computational cell.

d. Block-tridiagonal Elimination of Linear Keller Algebraic Equations

A two-dimensional computational grid is imposed on the ξ − η plane as
sketched below. The stepping process is defined by:

ξo = 0; ξn = ξn−1 + kn, n = 1, 2 . . . , N (14)

η0 = 0; ηj = ηj−1 + hj , j = 1, 2 . . . , J (15)

where kn and hj denote the step distances in the ξ and η directions respectively.
Denoting Σ as the value of any variable at station (ξn, ηj), and the following
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central difference approximations are substituted for each reduced variable and
their first order derivatives, viz:

(Σ)
n−1/2
j1/2 = [Σnj +Σnj−1 +Σn−1

j +Σn−1
j−1 ]/4, (16)

(∂Σ/∂ξ)
n−1/2
j1/2 = [Σnj +Σnj−1 − Σn−1

j − Σn−1
j−1 ]/4kn, (17)

(∂Σ/∂η)
n−1/2
j1/2 = [Σnj +Σnj−1 − Σn−1

j − Σn−1
j−1 ]/4hj , (18)

where kn = stream wise stepping distance (ξ-mesh spacing) and hj = span wise
stepping distance (η-mesh spacing) defined as follows:

ηj−1/2 = [ηj + ηj−1]/2, (19)

ξn−1/2 = [ξn + ξn−1]/2. (20)

Phase a: Reduction of the N th order partial differential equation system
to N first order equations

Equations (9)-(10) subject to the boundary conditions (11) are first written
as a system of first-order equations. For this purpose, we reset Eqns.(9)-(10)
as a set of simultaneous equations by introducing the new variables u, v and t:

f ′ = u, (21)

f” = v, (22)

θ′ = t, (23)(
1 +

1

β

)
v′ + fv − u2 +

sin ξ

ξ
θ = ξ

(
u
∂u

∂ξ
− v

∂f

∂ξ

)
, (24)

1

Pr
t
′
+ ft = ξ

(
u
∂s

∂ξ
− t

∂f

∂ξ

)
, (25)

where primes denote differentiation with respect to η.
In terms of the dependent variables, the boundary conditions become:

At η = 0 : u =
(
1 + 1

β

)
f ′′(0), f = fw , s = 1,

As η → ∞ : u→ 0, s→ 0.
(26)

Phase b: Finite difference discretization
The net rectangle considered in the ξ − η plane is shown in Fig.2(b), and

the net points are denoted by:

ξ0 = 0, ξn = ξn−1 + kn, n = 1, 2, ..., N, (27)
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η0 = 0, ηj = ηj−1 + hj , j = 1, 2, ..., J, ηJ ≡ η∞, (28)

where kn is the ∆ξ- spacing and hj is the ∆η- spacing. Here n and j are just
sequence numbers that indicate the coordinate location. We approximate the
quantities (f, u, v, s, t) at points (ξn, ηj) of the net by (fnj , u

n
j , v

n
j , s

n
j , t

n
j ),

which we denote as net functions. We also employ the notion ( )nj for points
and quantities midway between net points and for any net function:

ξn−1/2 ≡ 1

2

(
ξn + ξn−1

)
, ηj−1/2 ≡ 1

2
(ηj + ηj−1) , (29)

()
n−1/2
j =

1

2

[
()nj + ()n−1

j

]
and ()nj−1/2 =

1

2

[
()nj + ()nj−1

]
. (30)

The derivatives in the x - direction are replaced by finite difference approxima-
tions. For any net function ( ), generally we have:

∂ ()

∂ξ
=

()n − ()n−1

kn
. (31)

We write the difference equations that are to approximate equations (21)-
(25) by considering one mesh rectangle as shown in Fig.2(b). We start by writ-
ing the finite-difference approximations of the ordinary differential equations
(21)-(23) for the midpoint (ξn, ηj−1/2) of the process called “centering about
(ξn, ηj−1/2)”. This gives: segment P1 P2, using centered-difference derivatives.(

fnj − fnj−1

)
hj

=
1

2

(
unj + unj−1

)
= unj−1/2, (32)

(
unj − unj−1

)
hj

=
1

2

(
vnj + vnj−1

)
= vnj−1/2, (33)

(
snj − snj−1

)
hj

=
1

2

(
tnj + tnj−1

)
= tnj−1/2. (34)

The finite-difference forms of the partial differential equations (24)-(25) are
approximated by centering about the midpoint

(
ξn−1/2, ηj−1/2

)
of the rectangle

P1P2P3P4. This can be done in two steps. In the first step, we center equations
(24)-(25) about the point

(
ξn−1/2, η

)
without specifying y. The differenced
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version of equations (24)-(25) at ξn−1/2 then take the form:(
1 +

1

β

)(
v′
)n

+ (1 + α+ ξCotξ) (fv)n − (1 + α+ ξΛ)
(
u2
)n

+ αvn−1fn − αfn−1vn +Bsn =

[
−
(
1 +

1

β

)(
v′
)

(35)

− (1− α+ ξCotξ) (fv) + (1− α+ ξΛ)
(
u2
)
−B (s)

]n−1
,

1

Pr

(
t′
)n

+ (1 + α+ ξCotξ) (ft)n − α (us)n + αsn−1un

− αun−1sn − αfn−1tn + αtn−1fn (36)

=

[
− 1

Pr

(
t′
)
+ (α− 1− ξCotξ) (ft)− α (us)

]n−1

.

Here we have used the abbreviations

α =
ξn−1/2

kn
, (37)

B =
sin
(
ξn−1/2

)
ξn−1/2

(38)

and where the notation [ ]n−1 corresponds to quantities in the square bracket
evaluated at ξ = ξn−1.

Next, we center equations (35)-(36) about the point
(
ξn−1/2, ηj−1/2

)
by

using equations (29) & (30) yielding:(
1 +

1

β

)(
vnj − vnj−1

hj

)
+ (1 + α+ ξCotξ)

(
fnj−1/2v

n
j−1/2

)
− (1 + α+ ξΛ)

(
unj−1/2

)2
+ αvn−1

j−1/2f
n
j−1/2 − αfn−1

j−1/2v
n
j−1/2

+B
(
snj−1/2

)
−
(

1

DaGr1/2

) (
unj−1/2

)
(39)

= −

[(
1 +

1

β

)(
vn−1
j − vn−1

j−1

hj

)
+(1− α)

(
fn−1
j−1/2v

n−1
j−1/2

)
+(α− 1)

(
un−1
j−1/2

)2
+B

(
sn−1
j−1/2

)]
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1

Pr

(
tnj − tnj−1

hj

)
+ (1 + α+ ξCotξ)

(
fnj−1/2t

n
j−1/2

)
− α

(
unj−1/2s

n
j−1/2

)
+ αsn−1

j−1/2u
n
j−1/2 − αun−1

j−1/2s
n
j−1/2

− αfn−1
j−1/2t

n
j−1/2 + αtn−1

j−1/2f
n
j−1/2 (40)

= −

[
1

Pr

(
tn−1
j − tn−1

j−1

hj

)
+ α

(
un−1
j−1/2s

n−1
j−1/2

)
+(1− α+ ξCotξ)

(
fn−1
j−1/2t

n−1
j−1/2

)]
Equations (32)-(34) and (39)-(40) are imposed for j = 1, 2 . . . , J at given n,
and the transformed boundary layer thickness, ηJ is to be sufficiently large so
that it is beyond the edge of the boundary layer. At ξ = ξn, the boundary
conditions (26) become

fn0 = un0 = 0, θn0 = 1, unj = 0, θn0 = 0 (41)

Phase c: Quasilinearization of Non-Linear Keller Algebraic Equations
If we assume fn−1

j , un−1
j , vn−1

j , sn−1
j , tn−1

j to be known for 0 ≤ j ≤ J ,
Equations (32)-(36) are a system of 5J + 5 equations for the solution of 5J +
5 unknowns fnj , u

n
j , v

n
j , s

n
j , t

n
j , j = 0, 1, 2 . . . , J . This non-linear system of

algebraic equations is linearized by means of Newton’s method as explained by
Ramachandra Prasad et.al (2011).

Newton’s Method is then employed to quasilinearize the equations (39)-(40).
If we assume fn−1

j , un−1
j , vn−1

j , sn−1
j , tn−1

j to be known for 0 ≤ j ≤ J , then
Equations (32-34) and (39-40) are a system of equations for the solution of the
unknowns (fnj , u

n
j , v

n
j , s

n
j , t

n
j ), j = 0, 1, 2, . . . , J .

For simplicity of notation we shall write the unknowns at ξ = ξn as:

(fnj , u
n
j , v

n
j , s

n
j , t

n
j ) ≡ (fj , uj , vj , sj , tj). (42)

Then the system of equations (32)-(34) and (39)-(40) can be written as
(after multiplying with hj)

fj − fj−1 −
hj
2

(uj + uj−1) = 0, (43)

uj − uj−1 −
hj
2

(vj + vj−1) = 0, (44)

sj − sj−1 −
hj
2

(tj + tj−1) = 0, (45)



Modelling laminar transport phenomena in a Casson... 481

(
1 + 1

β

)
(vj − vj−1) +

(1+α+ξCotξ)hj
4 [(fj + fj−1) (vj + vj−1)]

−hj
4 (1 + α+ ξΛ) (uj + uj−1)

2 +
αhj
2 vn−1

j−1/2 (fj + fj−1)

−αhj
2 fn−1

j−1/2 (vj + vj−1) +
Bhj
2 [sj + sj−1]

− hj
2DaGr1/2

[uj + uj−1] = [R1]
n−1
j−1/2 ,

(46)

1
Pr (tj − tj−1) +

(1+α+ξCotξ)hj
4 [(fj + fj−1) (tj + tj−1)]

−αhj
4 [(uj + uj−1) (sj + sj−1)] +

αhj
2 sn−1

j−1/2 (uj + uj−1)

−αhj
2 un−1

j−1/2 (sj + sj−1)− αhj
2 fn−1

j−1/2 (tj + tj−1)

+
αhj
2 tn−1

j−1/2 (fj + fj−1) = [R2]
n−1
j−1/2 ,

(47)

where

[R1]
n−1
j−1/2 = −hj

[(
1 +

1

β

)(
vj − vj−1

hj

)
+ (1− α+ ξ cot ξ)

(
fvj−1/2j−1/2

)
(1− α+ ξΛ)

(
uj−1/2

)2
− 1

DaGr1/2
uj−1/2 +B

(
sj−1/2

)]
, (48)

[R2]
n−1
j−1/2 = −hj

[
1

Pr

(
tj − tj−1

hj

)
+ α

(
usj−1/2j−1/2

)
+(1− α+ ξ cot ξ)

(
f tj−1/2j−1/2

)
.
]

(49)

Here [R1]
n−1
j−1/2 and [R2]

n−1
j−1/2 involve only known quantities if we assume that

solution is known on ξ = ξn−1.
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To linearize the nonlinear system of equations (43-47) using Newton’s method,
we introduce the following iterates:

f
(i+1)
j = f

(i)
j + δf

(i)
j , u

(i+1)
j = u

(i)
j + δu

(i)
j , v

(i+1)
j = v

(i)
j + δv

(i)
j ,

s
(i+1)
j = s

(i)
j + δs

(i)
j , t

(i+1)
j = t

(i)
j + δt

(i)
j .

(50)

Then we substitute these expressions into Equations (43)-(47) except for
the term ξn−1, and this yields:

(
f
(i)
j + δf

(i)
j

)
−
(
f
(i)
j−1 + δf

(i)
j−1

)
− hj

2

(
u
(i)
j + δu

(i)
j + u

(i)
j−1 + δu

(i)
j−1

)
= 0, (51)

(
u
(i)
j + δu

(i)
j

)
−
(
u
(i)
j−1 + δu

(i)
j−1

)
− hj

2

(
v
(i)
j + δv

(i)
j + v

(i)
j−1 + δv

(i)
j−1

)
= 0, (52)

(
s
(i)
j + δs

(i)
j

)
−
(
s
(i)
j−1 + δs

(i)
j−1

)
− hj

2

(
t
(i)
j + δt

(i)
j + t

(i)
j−1 + δt

(i)
j−1

)
= 0, (53)

[R1]
n−1
j−1/2 =

(
1 +

1

β

)[(
v
(i)
j + δv

(i)
j

)
−
(
v
(i)
j−1 + δv

(i)
j−1

)]
− hj

4
(1 + α+ ξΛ)

(
u
(i)
j + δu

(i)
j + u

(i)
j−1 + δu

(i)
j−1

)2
+ (1 + α+ ξCotξ) (hj/4)

[(
f
(i)
j + δf

(i)
j + f

(i)
j−1

+ δf
(i)
j−1

)(
v
(i)
j + δv

(i)
j + v

(i)
j−1 + δv

(i)
j−1

)]
(54)
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+
αhj
2
vn−1
j−1/2

(
f
(i)
j + δf

(i)
j + f

(i)
j−1 + δf

(i)
j−1

)
− αhj

2
fn−1
j−1/2

(
v
(i)
j + δv

(i)
j + v

(i)
j−1 + δv

(i)
j−1

)
(54−contd)

− hj

2DaGr1/2

(
u
(i)
j + δu

(i)
j + u

(i)
j−1 + δu

(i)
j−1

)
+
Bhj
2

(
s
(i)
j + δs

(i)
j + s

(i)
j−1 + δs

(i)
j−1

)
,

[R2]
n−1
j−1/2 =

1

Pr

[(
t
(i)
j + δt

(i)
j

)
−
(
t
(i)
j−1 + δt

(i)
j−1

)]
+ (1 + α+ ξCotξ) (hj/4)

[(
f
(i)
j + δf

(i)
j + f

(i)
j−1

+ δf
(i)
j−1

) (
t
(i)
j + δt

(i)
j + t

(i)
j−1 + δt

(i)
j−1

)]
− αhj

4

[(
u
(i)
j + δu

(i)
j + u

(i)
j−1 + δu

(i)
j−1

)(
s
(i)
j

+ δs
(i)
j + s

(i)
j−1 + δs

(i)
j−1

)]
+
αhj
2
sn−1
j−1/2

(
u
(i)
j + δu

(i)
j + u

(i)
j−1 + δu

(i)
j−1

)
− αhj

2
un−1
j−1/2

(
s
(i)
j + δs

(i)
j + s

(i)
j−1 + δs

(i)
j−1

)
(55)

− αhj
2
fn−1
j−1/2

(
t
(i)
j + δt

(i)
j + t

(i)
j−1 + δt

(i)
j−1

)
+
αhj
2
tn−1
j−1/2

(
f
(i)
j + δf

(i)
j + f

(i)
j−1 + δf

(i)
j−1

)
,

Next we drop the terms that are quadratic in the following
(
δf

(i)
j , δu

(i)
j , δv

(i)
j , δs

(i)
j , δt

(i)
j

)
.

We also drop the superscript i for simplicity. After some algebraic manipula-
tions, the following linear tridiagonal system of equations is obtained:

δfj − δfj−1 −
hj
2

(δuj + δuj−1) = (r1)j−1/2, (56)

δuj − δuj−1 −
hj
2

(δvj + δvj−1) = (r2)j−1/2, (57)
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δsj − δsj−1 −
hj
2

(δtj + δtj−1) = (r3)j−1/2, (58)

(r4)j−1/2 = (a1)jδvj + (a2)jδvj−1 + (a3)jδfj + (a4)jδfj−1 (59)

+ (a5)jδuj + (a6)jδuj−1 + (a7)jδsj + (a8)jδsj−1,

(r5)j−1/2 = (b1)jδtj + (b2)jδtj−1 + (b3)jδfj + (b4)jδfj−1 (60)

+ (b5)jδuj + (b6)jδuj−1 + (b7)jδsj + (b8)jδsj−1,

where

(a1)j =

(
1 +

1

β

)
+ hj

[
(1 + α+ ξCotξ)

2
fj−1/2 −

α

2
fn−1
j−1/2

]
(a2)j = (a2)j − 2

(
1 +

1

β

)
,

(a3)j = hj

[
(1 + α+ ξCotξ)

2
vj−1/2 +

α

2
vn−1
j−1/2

]
(a4)j = (a3)j , (61)

(a5)j = − (1 + α+ ξΛ)hjuj−1/2 −
hj

2DaGr1/2
,

(a6)j = (a5)j , (a7)j =
B

2
hj , (a8)j = (a7)j

(b1)j =
1

Pr
+ hj

[
(1 + α+ ξCotξ)

2
fj−1/2 −

α

2
fn−1
j−1/2

]
,

(b2)j = (b1)j −
2

Pr

(b3)j = hj

[
(1 + α+ ξCotξ)

2
tj−1/2 +

α

2
tn−1
j−1/2

]
, (b4)j = (b3)j ,

(b5)j = hj

[
−α
2
sj−1/2 +

α

2
sn−1
j−1/2

]
, (b6)j = (b5)j , (62)

(b7)j = hj

[
−α
2
uj−1/2 −

α

2
un−1
j−1/2

]
, (b8)j = (b7)j
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(r1)j−1/2 = fj−1 − fj + hjuj−1/2, (r2)j−1/2 = uj−1 − uj + hjvj−1/2,

(r3)j−1/2 = sj−1 − sj + hjtj−1/2,

(r4)j−1/2 =

(
1 +

1

β

)
(vj−1 − vj)− (1 + α+ ξCotξ)hjfj−1/2vj−1/2 (63)

+ hj (1 + α+ ξΛ)u2j−1/2 − αhjv
n−1
j−1/2fj−1/2 + αhjf

n−1
j−1/2vj−1/2

−Bhjsj−1/2 +
hj

DaGr1/2
(R1)

n−1
j−1/2 ,

To complete the system (56)-(60), we recall the boundary conditions (41), which
can be satisfied exactly with no iteration. Therefore to maintain these correct
values in all the iterates, we take:

δf=0 0, δu=0 0, δs=0 0, δu=J 0, δs=J 0 (64)

Phase d: Block-tridiagonal Elimination of Linear Keller Algebraic Equa-
tions

The linear system (56)-(60) can now be solved by the block-elimination
method. The linearized difference equations of the system (56)-(60) have a
block-tridiagonal structure. Commonly, the block-tridiagonal structure consists
of variables or constants, but here, an interesting feature can be observed that
is, for the Keller-box method, it consists of block matrices. Before we can
proceed further with the block-elimination method, we will show how to get the
elements of the block matrices from the linear system (56)-(60). We consider
three cases, namely when j = 1, J − 1 and J . When j = 1, the linear system
(56)-(60) becomes:

δf1 − δf0 −
h1
2

(δu1 + δu0) = (r1)1−1/2, (65)

δu1 − δu0 −
hj
2

(δv1 + δv0) = (r2)1−1/2, (66)

δs1 − δs0 −
hj
2

(δt1 + δt0) = (r3)1−1/2, (67)

(r4)1−1/2 = (a1)1δv1 + (a2)1δv0 + (a3)1δf1 + (a4)1δf0 (68)

+ (a5)1δu1 + (a6)1δu0 + (a7)1δs1 + (a8)1δs0,
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(r6)1−1/2 = (b1)1δt1 + (b2)1δt0 + (b3)1δf1 + (b4)1δf0 (69)

+ (b5)1δu1 + (b6)1δu0 + (b7)1δs1 + (b8)1δs0,

Designating d1 = −1
2h1, and δf0 = 0, δu0 = 0, δs0 = 0 the correspond-

ing matrix form assumes:
0 0 1 0 0
d1 0 0 d1 0
0 d1 0 0 d1
a2 0 a3 a1 0
0 b2 b3 0 b1



δv0
δt0
δf1
δv1
δt1

 +


d1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
a5 a7 0 0 0
b5 b7 0 0 0



δu1
δs1
δf2
δv2
δt2



=


(r1)1−(1/2)

(r2)1−(1/2)

(r3)1−(1/2)

(r4)1−(1/2)

(r5)1−(1/2)

 (70)

For j = 1, we have [A1] [δ1] + [C1] [δ2] = [r1].

Similar procedures are followed at the different stations. Effectively the five
linearized finite difference equations have the matrix-vector form:

Λδj = ζj (71)

where Λ = Keller coefficient matrix of order 5 x 5, δj = fifth order vector for
error (perturbation) quantities and ζj= fifth order vector for Keller residuals.
This system is then recast as an expanded matrix-vector system, viz:

ς jδj − ωjδj = ζj (72)

Where now ς j= coefficient matrix of order 5 x 5, ωj = coefficient matrix
of order 5 x 5 and ζj= fifth order vector of errors (iterates) at previous station
on grid. Finally the complete linearized system is formulated as a block matrix
system where each element in the coefficient matrix is a matrix itself.

Then, this system is solved using the efficient Keller-box method as devel-
oped by Cebeci and Bradshaw [32]. The numerical results are affected by the
number of mesh points in both directions. Accurate results are produced by
performing a mesh sensitivity analysis. After some trials in the η-direction a
larger number of mesh points are selected whereas in the ξ direction signifi-
cantly less mesh points are utilized. ηmax has been set at 16 and this defines
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an adequately large value at which the prescribed boundary conditions are sat-
isfied. ξmax is set at 3.0 for this flow domain. These calculations are repeated
until some convergence criterion is satisfied. Mesh independence is therefore
achieved in the present computations. The computer program of the algorithm
is executed in MATLAB running on a PC. The method demonstrates excellent
stability, convergence and consistency, as elaborated by Keller [33].

4 Results and discussions

In order to verify the accuracy of our present method, we have compared our
results with those of Merkin [35] and Yih [34]. Table 1 shows these compar-
isons. Comprehensive solutions have been obtained and are presented in Figs.

Table 1: The Local Heat Transfer Coefficient (Nu) for various values of
ξwithβ → ∞, fw = 0, N0 = 0,K0 = 0.

ξ
−θ′ (ξ, 0)

Merkin[35] Yin[34] Present results

0.0 0.4212 0.4214 0.4211

0.2 0.4204 0.4207 0.4205

0.4 0.4182 0.4184 0.4186

0.6 0.4145 0.4147 0.4148

0.8 0.4093 0.4096 0.4094

1.0 0.4025 0.4030 0.4033

1.2 0.3942 0.3950 0.3949

1.4 0.3843 0.3854 0.3855

1.6 0.3727 0.3740 0.3738

1.8 0.3594 0.3608 0.3600

2.0 0.3443 0.3457 0.3454

2.2 0.3270 0.3283 0.3278

2.4 0.3073 0.3086 0.3081

2.6 0.2847 0.2860 0.2855

2.8 0.2581 0.2595 0.2587

3.0 0.2252 0.2267 0.2265

π 0.1963 0.1963 0.1960

3-24. The numerical problem comprises two independent variables (ξ,η), two
dependent fluid dynamic variables (f, θ) and eight thermophysical and body
force control parametersPr, Sf , ST , β, fw, ξ,Da and Λ. In the present computa-
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tions, the following default parameters are prescribed (unless otherwise stated):
Pr = 0.71, Sf = 0.5, ST = 1.0, β = 1.0, Da = 0.1, Λ = 0.1, fw = 0.5, ξ = 1.0.
In addition we also consider the effect of stream wise (transverse) coordinate
location on flow dynamics.

Figure 3: Influence of Sf on velocity profiles

Figure 4: Influence of Sf on temperature profiles
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Figure 5: Influence of ST on velocity profiles

Figure 6: Influence of ST on temperature profiles

The value of the parameter ξ is extremely important. For ξ ∼ 0, the location
is in the vicinity of the lower stagnation point on the sphere. The governing
dimensionless equations (8) to (9) in this case reduce to the following ordinary



490 V.Ramachandra Prasad, A.Subba Rao, N.Bhaskar Reddy, Anwar Bég

Figure 7: Influence of β on velocity profiles

Figure 8: Influence of β on temperature profiles

differential equations:(
1 +

1

β

)
f ′′′ + 2ff ′′ − f ′

2 − 1

DaGr1/2
f ′ + θ = 0, (73)

θ′′

Pr
+ 2fθ′ = 0, (74)
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Figure 9: Influence of Pr on velocity profiles

Figure 10: Influence of Pr on temperature profiles

since sin ς
ς → 0/0 i.e. 1, so that sin ς

ς θ → θ. Another special case arises
at ξ ∼ π, which physically corresponds to the upper stagnation point on the
sphere surface (diametrically opposite to the lower stagnation point). We note
that since the Grashof free convection parameter, Gr, is absorbed into the
definitions for radial coordinate (η) and dimensionless stream function (f),
it is not considered explicitly in the graphs. In Figs.3-4, the influence of
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velocity slip parameter on velocity and temperature distributions is illustrated.
Dimensionless velocity component (fig.3) at the wall is strongly reduced with
an increase in slip parameter, Sf . There will be a corresponding decrease in
the momentum (velocity) boundary layer thickness. The influence of Sf is
evidently more pronounced closer to the sphere surface (η = 0). Further from
the surface, there is a transition in velocity slip effect, and the flow is found to be
accelerated markedly. Smooth decays of the velocity profiles are observed into
the free stream demonstrating excellent convergence of the numerical solution.
Furthermore the acceleration near the wall with increasing velocity slip effect
has been computed by Crane and McVeigh [36] using asymptotic methods, as
has the retardation in flow further from the wall. The switch in velocity slip
effect on velocity evolution has also been observed for the case of a power-law
rheological fluid by Ojadi et al. [37]. Fig.4 indicates that an increase in velocity
slip parameter significantly enhances temperature in the flow field and thereby
increases thermal boundary layer thickness enhances. Temperature profiles
consistently decay monotonically from a maximum at the sphere surface to the
free stream. All profiles converge at large value of radial coordinate, again
showing that convergence has been achieved in the numerical computations. A
similar pattern of thermal response to that computed in fig 4. for a wide range
of velocity slip parameters has been noted by Aziz [38] who has indicated also
that temperature is enhanced since increasing velocity slip parameter decreases
shear stresses and this permits a more effective transfer of heat from the wall
to the fluid regime.

In Figs.5-6, the variation of velocity and temperature with the transverse
coordinate (η), with increasing thermal slip parameter ST is depicted. The
response of velocity is much more consistent than for the case of changing
velocity slip parameter (fig.3) it is strongly decreased for all locations in the
radial direction. The peak velocity accompanies the case of no thermal slip
(ST = 0). The maximum deceleration corresponds to the case of strongest
thermal slip (ST = 5). Temperatures (fig.6) are also strongly depressed with
increasing thermal slip. The maximum effect is observed at the wall. Further
into the free stream, all temperature profiles converge smoothly to the vanishing
value. The numerical computations correlate well with the results of Larrode
et al. [39] who also found that temperature is strongly lowered with increasing
thermal slip and that this is attributable to the decrease in heat transfer from
the wall to the fluid regime, although they considered only a Newtonian fluid.

In Figs.7-8, depict the influence Casson fluid parameter, β on velocity and
temperature profiles. This parameter features in the shear term in the momen-
tum boundary layer equation (5), and also in the velocity boundary condition



Modelling laminar transport phenomena in a Casson... 493

(7). For Newtonian flow, yield stress py is zero and β = µB
√
πc/py → ∞

i.e. the appropriate term in eqn. (7) reduces from (1 +1/β)f /// → 1. Sim-
ilarly the velocity boundary condition in (11) reduces from (1 + 1/β) S ff

//

(0)→ S ff
//(0). An increase in β implies a decrease therefore in yield stress

of the Casson fluid. This effectively facilitates flow of the fluid i.e. accelerates
the boundary layer flow close to the sphere surface, as demonstrated by fig.
7. Since the Casson parameter is also present in the wall boundary condition,
the acceleration effect is only confined to the region close to the sphere surface.
Further from this zone, the velocity slip factor, Sf will exert a progressively
reduced effect and an increase in Casson parameter,β, will manifest with a de-
celeration in the flow. Overall however the dominant influence of β, is near
the wall and is found to be assistive to momentum development (with larger β
values the fluid is closer in behaviour to a Newtonian fluid and further departs
from plastic flow) Only a very small decrease in temperature is observed with
a large enhancement in Casson fluid parameter, as shown in fig. 8. The Casson
parameter does not arise in the thermal boundary layer equation (10), nor does
it feature in the thermal boundary conditions. The influence on temperature
field is therefore experienced indirectly via coupling of the thermal eqn. (10)
with the momentum eqn. (9). Similar behaviour to the computations shown in
Figs. 7 and 8, has been observed by Attia and Sayed-Ahmed [40] who also ob-
served acceleration in Casson fluid flow near a curved surface, and additionally
by Mustafa et al. [41] who also observed an elevation in velocities near the wall
and a slight reduction in temperatures throughout the boundary layer regime.

Figs.9-10, present the effect of Prandtl number (Pr) on the velocity and
temperature profiles along the radial direction, normal to the sphere surface.
Prandtl number embodies the ratio of viscous diffusion to thermal diffusion in
the boundary layer regime. It also expresses the ratio of the product of specific
heat capacity and dynamic viscosity, to the fluid thermal conductivity. When
Pr is high, viscous diffusion rate exceeds thermal diffusion rate. An increase in
Pr from 0.7 through 1.0, 2.0, 4.0, 5.4 to 7.0, is found to significantly depress
velocities (Fig.9) and this trend is sustained throughout the regime i.e. for
all values of the radial coordinate,η . For Pr ¡1, thermal diffusivity exceeds
momentum diffusivity i.e. heat will diffuse faster than momentum. Therefore
for lower Pr fluids (e.g. Pr = 0.01 which physically correspond to liquid metals),
the flow will be accelerates whereas for greater Pr fluids (e.g. Pr = 1 ) it will
be strongly decelerated, as observed in fig. For Pr =1.0, both the viscous and
energy diffusion rates will be the same as will the thermal and velocity boundary
layer thicknesses. This case can be representative of food stuffs e.g. low-density
polymorphic forms of chocolate suspensions, as noted by Steffe [42] and Debaste
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et al. [43]. Temperature is found to be strongly reduced with increasing Prandtl
number. For the case of Pr = 0.7, the decay is almost exactly linear. For
larger Pr values, the decay is found to be increasingly monotonic. Therefore
for lower thermal conductivity fluids (as typified by liquid chocolate and other
foodstuffs), lower temperatures are observed throughout the boundary layer
regime.

Figs.11-12, illustrate the influence of wall transpiration on the velocity and
temperature functions with radial distance, η. With an increase in suction
(fw > 0) the velocity is clearly decreased i.e. the flow is decelerated. Increasing
suction causes the boundary layer to adhere closer to the flow and destroys
momentum transfer; it is therefore an excellent control mechanism for stabiliz-
ing the external boundary layer flow on the sphere. Conversely with increased
blowing i.e. injection of fluid via the sphere surface in to the porous medium
regime, (fw < 0), the flow is strongly accelerated i.e. velocities are increased.
As anticipated the case of a solid sphere (fw = 0) falls between the weak suction
and weak blowing cases. Peak velocity is located, as in the figures described
earlier, at close proximity to sphere surface. With a decrease in blowing and
an increase in suction the peaks progressively displace closer to the sphere sur-
face, a distinct effect described in detail in several studies of non-Newtonian
boundary layers [41,48,52,53]. Temperature, θ, is also elevated considerably
with increased blowing at the sphere surface and depressed with increased suc-
tion. The temperature profiles, once again assume a continuous decay from the
sphere surface to the free stream, whereas the velocity field initially ascends,
peaks and then decays in to the free stream. The strong influence of wall
transpiration (i.e. suction or injection) on boundary layer variables is clearly
highlighted. Such a mechanism is greatly beneficial in achieving flow control
and regulation of heat and mass transfer characteristics in food processing from
a spherical geometry.

Figs.13-14, the variation of velocity and temperature fields with different
transverse coordinate, ς, is shown. In the vicinity of the sphere surface, velocity
f ′ is found to be maximized closer to the lower stagnation point and minimized
with progressive distance away from it i.e. the flow is decelerated with increasing
ς.

However further from the wall, this trend is reversed and a slight acceleration
in the flow is generated with greater distance from the lower stagnation point
i.e. velocity values are higher for greater values of ς, as we approach the upper
stagnation point Temperature θ, is found to noticeably increase through the
boundary layer with increasing ς values. Evidently the fluid regime is cooled
most efficiently at the lower stagnation point and heated more effectively as we
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progress around the sphere periphery upwards towards the upper stagnation
point. These patterns computed for temperature and velocity evolution around
the sphere surface are corroborated with many other studies including work on
non-Newtonian Casson fluid convection by Kandasamy et al. [44].

In Figs.15-16, depicts the velocity response to a change in Darcy number,
Da. This parameter is directly proportional to the permeability of the regime
and arises in the linear Darcian drag force term in the momentum equation
(9), viz ,− f ′

DaGr1/2
. As such increasing Da will serve to reduce the Darcian

impedance since progressively less fibers will be present adjacent to the sphere
in the porous regime to inhibit the flow. The boundary layer flow will therefore
be accelerated and indeed this is verified in Fig.15 where we observe a dramatic
rise in flow velocity (f ′), with an increase in Da from 0.001 through 0.01,
0.1, and 0.2 to 0.5. In close proximity to the sphere surface a velocity shoot
is generated; with increasing Darcy number this peak migrates slightly away
from the wall into the boundary layer. Evidently lower permeability materials
serve to decelerate the flow and this can be exploited in materials processing
operation where the momentum transfer may require regulation

In Fig.17 depicts the velocity (f ′) response for different values of Forch-
heimer inertial drag parameter (Λ), with radial coordinate (η). The Forch-
heimer drag force term,

(
−ξΛf ′2

)
in the dimensionless momentum conservation

equation (9) is quadratic and with an increase in Λ (which is in fact related to
the geometry of the porous medium) this drag force will increase correspond-
ingly. As such the impedance offered by the fibers of the porous medium will
increase and this will effectively decelerate the flow in the regime, as testified to
by the evident decrease in velocities shown in Fig. (17). The Forchheimer effect
serves to super seed the Darcian body force effect at higher velocities, the latter
is dominant for lower velocity regimes and is a linear body force. The former is
dominated at lower velocities (the square of a low velocity yields an even lower
velocity) but becomes increasingly dominant with increasing momentum in the
flow i.e. when inertial effects override the viscous effects (Fig.17).

Fig.18 shows that temperature θ is increased continuously through the
boundary layer with distance from the sphere surface, with an increase in Λ,
since with flow deceleration, heat will be diffused more effectively via ther-
mal conduction and convection. The boundary layer regime will therefore be
warmed with increasing Λ and boundary layer thickness will be correspond-
ingly increased, compared with velocity boundary layer thickness, the latter
being reduced.

Figs.19-20, show the effect of velocity slip parameter Sf on sphere surface
shear stress (f”) and local Nusselt number (-θ′) variation. In consistency with
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the earlier graphs described for velocity evolution, with an increase in Sf , wall
shear stress is consistently reduced i.e. the flow is decelerated along the sphere
surface. Again this trend has been observed by Wang and Ang [45] and Wang
[46] using asymptotic methods. There is also a progressive migration in the
peak shear stress locations further from the lower stagnation point, as wall slip
parameter is increased. The impact of wall slip is therefore significant on the
boundary layer characteristics of Casson flow from a sphere. With an increasing
Sf , the local Nusselt number is also considerably decreased and profiles are
generally monotonic decays. Maximum local Nusselt number always arises at
the sphere surface and is minimized with proximity to the lower stagnation
point i.e. greater distance from the upper stagnation point. This pattern of
behaviour has also been observed and emphasized by Yih [34] for Newtonian
flow. In both figures 19 and 20, skin friction coefficient and local Nusselt number
are maximized for the case of no-slip i.e. Sf = 0, this result concurring with
the analyses of Chang [47] and also Hayat et al. [48].

Figs.21-22, show the effect of thermal slip parameter ST on dimensionless
wall shear stress function i.e. skin friction coefficient and local Nusselt number,
respectively. Increasing ST is found to decrease both skin friction coefficient
and local Nusselt number. A similar set of profiles is computed as in figure
21 for velocity distributions, and we observe that with increasing thermal slip,
peak velocities are displaced closer to the lower stagnation point. For lower
values of thermal slip, the plots are also similar to those in figure 22, and have
a parabolic nature; however with ST values greater than 1, the profiles lose their
curvature and become increasingly linear in nature. This trend is maximized
for the highest value of ST (= 5.0) for which local Nusselt number is found to
be almost invariant with transverse coordinate, ξ.

Figs.23-24, illustrate the effect of Casson fluid parameter, β, on skin friction
coefficient and local Nusselt number, respectively. With an increase in β the
skin friction coefficient increases, since as computed earlier, the flow velocity is
enhanced with higher values of β. Larger β values correspond to a progressive
decrease in yield stress of the Casson fluid i.e. a reduction in rheological charac-
teristics. With higher β the flow approaches closer to Newtonian behaviour and
the fluid is able to shear faster along the sphere surface. Local Nusselt number
is conversely found to decrease slightly as Casson fluid parameter is increased.
This concurs with the earlier computation (fig.8) on temperature distribution.
With increasing β values, less heat is transferred from the sphere surface to
the fluid regime, resulting in lower temperatures in the regime external to the
sphere and lower local Nusselt numbers, as observed in fig.24.
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Figure 11: Influence of fw on velocity profiles

Figure 12: Influence of fw on temperature profiles
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Figure 13: Influence of ξ on velocity profiles

Figure 14: Influence of ξ on temperature profiles
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Figure 15: Influence of Da on velocity profiles

Figure 16: Influence of Da on temperature profiles
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Figure 17: Influence of Λ on velocity profiles

Figure 18: Influence of Λ on temperature profiles
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Figure 19: Effect of Sf on the skin-friction coefficient results

Figure 20: Effect of Sf on the local Nusselt number results
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Figure 21: Effect of ST on the skin-friction coefficient results

Figure 22: Effect of ST on the local Nusselt number results
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Figure 23: Effect of β on the skin-friction coefficient results

Figure 24: Effect of β on the local Nusselt number results
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5 Conclusions

Numerical solutions have been presented for the transport phenomena i.e. com-
bined heat and flow of Casson rheological fluid external to a isothermal sphere,
with suction/injection effects and velocity/thermal slip. The model has been
developed to simulate foodstuff transport processes in industrial manufacturing
operations. A robust, extensively-validated, implicit finite difference numerical
scheme has been implemented to solve the transformed, dimensionless velocity
and thermal boundary layer equations, subject to physically realistic boundary
conditions. The computations have shown that:

1. Increasing the velocity slip parameter, Sf, reduces the velocity near the
sphere surface and also skin friction coefficient and also increases temper-
ature and decreases local Nusselt number.

2. Increasing the thermal slip parameter, ST , decreases velocity and skin
friction coefficient and also reduces temperature for all values of radial
coordinate i.e. throughout the boundary layer regime, and furthermore
decreases local Nusselt number.

3. Increasing the Casson fluid parameter,β, increases the velocity near the
sphere surface but decreases velocity further from the sphere, and also
fractionally lowers the temperature throughout the boundary layer regime.

4. Increasing the Casson fluid parameter, β, strongly increases the wall shear
stress (skin friction coefficient) and slightly decreases the local Nusselt
number, with the latter more significantly affected at large distances from
the lower stagnation point i.e. higher values of transverse coordinate.

5. Increasing Prandtl number, Pr, decelerates the flow and also strongly
depresses temperatures, throughout the boundary layer regime.

6. Increasing suction at the sphere surface (fw > 0) decelerates the flow
whereas increasing injection (fw < 0, i.e. blowing) induces a strong ac-
celeration.

7. Increasing suction at the sphere surface (fw ¿0) reduces temperature
whereas increasing injection (fw < 0 i.e. blowing) induces the opposite
response and elevates temperature.

8. Increasing transverse coordinate, ξ, depresses velocity near the sphere
surface but enhances velocity further from the sphere, whereas it contin-
uously increases temperature throughout the boundary layer.
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9. The velocity decreases with the increase the non-Darcy parameter and
is found to increase the temperature. The velocity increases with the
increase the Darcian parameter (Da) and is found to decrease the tem-
perature.

The current study has been confined to steady-state flow i.e. ignored tran-
sient effects [49] and also neglected thermal radiation heat transfer effects [50,
51]. These aspects are also of relevance to rheological food processing simula-
tions and will be considered in future investigations.
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Modeliranje pojave laminarnog transporta u Casson-ovom
reološkom fluidu iz neke izotermske sfere sa delimičnim

klizanjem nedarsijevskoj poroznoj sredini

Razmatra se protok i prenos toplote na Casson-tečnosti iz propustljive izotermske
sfere u prisustvu klizanja u nedarsijevskoj poroznoj sredini. Površina sfere
se održava na konstantnoj temperaturi. Granični sloj jednačine konzervacije,
koji je paraboličan u prirodi, je normalizovan u ne-sličnoj formi, a onda rešen
brojčano pomoću dobro testirane efikasne, implicitno stabilne, šeme Keller-boks
konačnih razlika . Nadjeno je da povećanje parametra brzine klizanja dovodi do
smanjenja brzine i debljine graničnog sloja, a do povećanja temperature. Brzina
opada sa porastom nedarsijevskog parametra što povećava temperaturu.Brzina
raste sa povećanjem Casson-ovog parametra tečnosti i to smanjuje temper-
aturu. Koeficijent trenja u sloju i lokalni Nusselt-ov broj se po redu smanjuju
sa povećanjem brzine i parametra termičkog klizanja.
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