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Abstract

In this study, Variational Iteration Method (VIM) has been applied
to obtain the analytical solutions of fractional order nonlinear partial
differential equations. The iteration procedure is based on a relatively
new approach which is called Jumarie’s fractional derivative. Several
examples have been solved to elucidate effectiveness of the proposed
method and the results are compared with the exact solution, revealing
high accuracy and efficiency of the method.
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1 Introduction

In last two decades, fractional differential equations have gained much inter-
est due to exact description of nonlinear phenomena in fluid flow, seismology,
biology, chemistry, economic, probability and statistics, acoustics, material
science, engineering and other areas of science. However, fractional calculus
is three centuries old as the conventional calculus [1]. Derivatives and inte-
grals of fractional arbitrary orders have found many applications in recent
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study [2,3]. Several analytical methods have been proposed for solving frac-
tional differential equation of complex physical nature, such as Adomian’s
Decomposition Method (ADM)[4], Differential Transform Method (DTM)
[5], Homotopy Perturbation Method (HPM) [6].

Obidat and Momani applied the VIM to fractional differential equations
in fluid mechanics [7]. Inc [8] applied the VIM to solve the space and time
fractional Burger’s equations. Safari et al. [9] used the VIM to obtain an
analytic approximate solution of space-fractional KdV-Burgers- Kuramoto
equations. Abidi and Omrani [10] used the Homotopy Analysis Method
(HAM) for the Fornberg-Whitham equation and Hassan et al. [19] applied
(HAM) for solving Space and Time-fractional KdV Equations. Gupta and
singh [11] applied the Homotopy Perturbation Method (HPM) for the frac-
tional Fornberg-Whitham equation. More recently, Lu [12] has used the
Variational Iteration Method (VIM) to obtain an approximate solution of
Fornberg-Whitham equation. In this paper, we extend the application of the
FVIM with modified Riemann-Liouville derivative in order derive the ana-
lytical approximate solutions to nonlinear time-fractional Fokker-Plank and
Fornberg-Whitham equations.

2 Basic definitions

We give some basic definitions, notations and properties of the fractional
calculus theory which are used further in this paper:

Definition 2.1 Assume f : R → R, x → f (x) , denote a continuous
(but not necessarily differentiable) function and let the partition h > 0
in the interval [0, 1]. Jumarie’s derivative is defined through the fractional
difference:

∆α = (FW − 1)α f (x) (1)

=

∞∑
k=0

(− 1)k
(

α
k

)
f (x + (α − k)) ,

where, FWf (x) = f (x + h) . Then the fractional derivative is defined as
the following limit:

f (α) = lim
h→0

∆α [f (x) − f (0)]

hα
. (2)

This definition is close to the standard definition of derivative, and as a direct
result, the α th derivative of a constant 0 < α < 1; is zero.
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Definition 2.2 The Riemann–Liouville fractional integral operator of order
α ≥ 0 for a function f ∈ Cµ µ ≥ − 1 is defined as

Iαx f (x) =
1

Γ (α)

x∫
0

(x − ξ)α− 1f (ξ) dξ, α > 0, t > 0. (3)

Definition 2.3 The Jumarie’s modified Riemann–Liouville derivative is de-
fined as

Iαx f (x) =
1

Γ (m − α)

dm

d xm

x∫
0

(x − ξ)m−α (f (ξ) − f (0)) dξ, (4)

where, x ∈ [0, 1], m − 1 < α ≤ m, m ≥ 1.
The proposed modified Riemann–Liouville derivative as shown in Eq. (4)

is strictly equivalent to Eq. (2). Meanwhile, we would introduce some prop-
erties of the fractional modified Riemann–Liouville derivative

(a) Fractional Leibnitz product law

Dα
x (u v) = u(α) v + u v(α). (5)

(b) Fractional Leibnitz formulation

Iαx Dα
xf (x) = f (x) − f (0) , 0 < α ≤ 1. (6)

Therefore, the integration by part can be used during the fractional calculus

Iαx u(α) v = (u v)|ba − Iαb u v(α). (7)

Definition 2.4 Fractional derivative of compounded functions is defined as

dαf (x) ∼= Γ (1 + α) df, 0 < α < 1. (8)

Definition 2.5 The integral with respect to (d ξ)α is defined as the solution
of fractional differential equation given by equation

d y ∼= f (x) (d x)α , y (0) = 0, x ≥ 0, 0 < α ≤ 1, (9)

y ∼=
x∫

0

f (ξ) (d ξ)α = α

x∫
0

(x − ξ)α− 1f (ξ) dξ, 0 < α ≤ 1. (10)
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For example f (x) = xβ in Eq. (10), one obtains

x∫
0

ξβ (d ξ)α =
Γ (1 + α) Γ (1 + β)

Γ (1 + α + β)
xα+β, 0 < α ≤ 1 (11)

and for a continuous function f , we have

x∫
0

∂αf (t)

∂ tα
(d ξ)α = Γ (1 + α) (f (x) − f (0)) . (12)

Definition 2.6 Assume that the continuous function f : R → R, x →
f (x) has a fractional derivative of order k α, for any positive integer k and
any α 0 < α ≤ 1, then the following equality holds, which is

f (x + h) =

∞∑
k=0

hαk

αk!
f (αk) (x), 0 < α ≤ 1, (13)

On making the substitution h → x and x → 0, we obtain the fractional
Mc-Laurin series

f (x) =
∞∑

k=0

xαk

αk!
f (αk) (0), 0 < α ≤ 1. (13’)

3 Analysis of Fractional Variational Iteration Method
(FVIM)

In order to elucidate the solution procedure of the VIM, we consider the
following fractional differential equation:

∂α

∂ tα
u (x, t) = K [x] u (x, t) + q (x, t) , t > 0, x ∈ R, (14)

subject to the initial condition

u (x, 0) = f (x) .

Here K [x] is the differential operator,f (x) and q (x, t) are continuous func-
tions. According to VIM introduced by He [13], we can construct a correction
functional for Eq. (14) as follows

un+1 (x, t) = un (x, t) + Iα
[
λ

(
∂α un
∂ tα

− K [x] u (x, t) − q (x, t)

)]
,
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un+1 (x, t) = un (x, t) +
1

Γ (α)

t∫
0

(t− ξ)α−1 λ (ξ)
(
− q (x, ξ)

+
∂αun
∂ξα

(x, ξ)−K [x]u (x, ξ)

)
dξ. (15)

Combining Eq.(10) and (15), we obtained a proposed correction functional

un+1 (x, t) = un (x, t) +
1

Γ (α+ 1)

t∫
0

λ (ξ)

(
∂αun
∂ξα

(x, ξ)

− K [x]u (x, ξ)− q (x, ξ)
)
(dξ)α . (16)

It is obvious that the successive approximation uj , j ≥ 0 can be estab-
lished by determining λ via variational theory. The function ũn is a restricted
variation which means δ ũn = 0. Therefore, we first determine Lagrange’s
multiplier that will be identified optimally via integration by parts. The suc-
cessive approximation of the un+1 (x, t) , n ≥ 0 solution u (x, t) will be
readily obtained upon using the Lagrange’s multiplier and by using any selec-
tive function u0. The initial values are usually used for selecting the zeroth
approximation u0. With λ determined, several approximations uj , j ≥ 0
follow immediately. Consequently, the exact solution may be obtained by
using

u (x, t) = lim
n→∞

un (x, t) . (17)

4 Numerical examples

In this section, we apply the FVIM to find the solutions of nonlinear time-
fractional Fokker-Plank and Fornberg-Whitham equations, and compared
them with those obtained by other methods.

Example 1. Consider the following non-homogeneous space fractional
equation

∂αu

∂ xα
− ∂ u

∂ x
=

∂ u

∂ t
+ (2 − 2 t − 2x) , (t > 0, x ∈ R, 1 < α ≤ 2), (18)

with the conditions

u (0, t) = t2, u (x, 0) = x2, ut (0, t) = 0.
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The correction functional is read as

un+1 (x, t) = un (x, t) +
1

Γ (1 + α)

x∫
0

λ (ξ)

(
∂α un (ξ, t)

∂ ξα
− ∂ un (ξ, t)

∂ ξ

− ∂ un (ξ, t)

∂ t
− (2 − 2 t − 2 ξ)

)
(d ξ)α, (19)

un+1 (x, t) = un (x, t) +
1

Γ (1 + α)

x∫
0

λ (ξ)

(
∂α un (ξ, t)

∂ ξα
− ∂ ũn (ξ, t)

∂ ξ

− ∂ ũn (ξ, t)

∂ t
− (2 − 2 t − 2 ξ)

)
(d ξ)α. (20)

The function ũn is a restricted term which means that δ ũn = 0, via the
variational theory. Taking variation δ to both sides of Eq. (19) and applying
optimal condition δ un+1 = 0, one obtains

0 = δ un +
1

Γ (1 + α)
δ

x∫
0

λ (ξ)
∂α un
∂ ξα

(d ξ)α, (21)

Using Eq. (8), applying integration by parts on second term of right hand
and after equating, we have

∂α λ (ξ)

∂ ξα
= 0, and 1 + λ (ξ) = 0. (22)

The generalized Lagrange multiplier can be identified by the above equations
λ (ξ) = −1. Substituting Eq. (21) into the functional Eq. (19) yields the
iteration formulation as follows

un+1 = un−
1

Γ (1 + α)

x∫
0

(
∂α un
∂ ξα

− ∂ un
∂ ξ

− ∂ un
∂ t

− (2 − 2 t − 2 ξ)

)
(d ξ)α.

(23)
The initial approximation is read as

u0 (x, t) = t2 +
2 − 2 t

Γ (1 + α)
xα − 2

Γ (2 + α)
x1+α.
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The other approximations are

u1 (x, t) = u0 − 1

Γ (1 + α)

x∫
0

{
∂α u0
∂ ξα

− ∂ u0
∂ ξ

− ∂ u0
∂ t

}
(d ξ)α

=
2 − 2 t

Γ (2α)
x2α− 1 − 4

Γ (1 + 2α)
x2 α +

2 t

Γ (1 + α)
xα,

u2 (x, t) = u10 −
1

Γ (1 + α)

x∫
0

(
∂αu0
∂ξα

− ∂u0
∂ξ

− ∂u0
∂t

)
(dξ)α

=
2− 2t

Γ (3α− 1)
x3α−2 − 6

Γ (3α)
x3α +

2t

Γ (2α)
x2α−1 +

2

Γ (2 + α)
x2α,

...

The solution is

u (x, t) = t2 +
2− 2t

Γ (1 + α)
xα − 2

Γ (2 + α)
x1+α +

2− 2t

Γ (2α)
x2α−1

− 4

Γ (1 + 2α)
x2α +

2t

Γ (1 + α)
xα +

2− 2t

Γ (3α− 1)
x3α−2

− 6

Γ (3α)
x3α +

2t

Γ (2α)
x2α−1 +

2

Γ (2 + α)
x2α + ... (24)

which is exactly the same as the one that was obtained in [14] using the
Adomian’s decomposition method. Due to self canceling “noise” terms ap-
pearance, by replacing α = 2 in Eq. (24), yields the exact solution:

u (x, t) = x2 + t2

Example 2. Consider the following nonlinear time-fractional hyperbolic
equation [15, 16]

∂αu

∂ tα
=

∂

∂ x

(
u
∂ u

∂ x

)
, (t > 0, x ∈ R, 1 < α ≤ 2), (25)

with the initial conditions

u (x, 0) = x2, ut (x, 0) = − 2x2.
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The exact solution is u (x, t) =
(

x
t+1

)2
.

The correction functional is read as

un+1 = un +
1

Γ (1 + α)

t∫
0

λ (ξ)

(
∂αun
∂ξα

(26)

− un
∂2un
∂x2

−
(
∂un
∂x

)2
)
(dξ)α

Making the correction functional stationary, the general Lagrange multiplier
can be identified as λ (ξ) = −1. Substituting value of the general Lagrange
multiplier in the Eq. (26), we get the following iteration formula

un+1 = un − 1

Γ (1 + α)

t∫
0

(
∂αun
∂ξα

(27)

− un
∂2un
∂x2

−
(
∂un
∂x

)2
)
(dξ)α .

The initial approximation is given as

u0 (x, t) = x2 (1 − 2 t) ,

The other approximations are

u1 (x, t) = u0 −
1

Γ (1 + α)

t∫
0

(
∂αu0
∂ξα

− u0
∂2u0
∂x2

−
(
∂u0
∂x

)2
)
(dξ)α

=
6x2

Γ (1 + α)

(
tα − 4Γ (1 + α)

Γ (2 + α)
t1+α +

8Γ (1 + α)

Γ (3 + α)
t2+α

)
,

...

Consequently, we have the following solution of Eq. (25) in a series form

u (x, t) = x2 (1− 2t) +
6x2

Γ (1 + α)

(
tα (28)

− 4Γ (1 + α)

Γ (2 + α)
t1+α +

8Γ (1 + α)

Γ (3 + α)
t2+α

)
+ ...



On linear and nonlinear fractional PDEs 519

Example 3. Consider the nonlinear time fractional Fokker - Plank equation

∂αu

∂tα
=

(
− ∂

∂x

(
4u

x
− x

3

)
+

∂2u

∂x2

)
u (x, t) , (t > 0, x ∈ R, 0 < α ≤ 1),

(29)
subject to the initial condition

u (x, 0) = x2.

The correction functional is read as

un+1 = un +
1

Γ (1 + α)

t∫
0

λ (ξ)

(
∂αun
∂ξα

(30)

+
∂

∂x

((
4un
x

− x

3

)
un

)
− un

∂2un
∂x2

)
(dξ)α ,

where, λ (ξ) = −1 can be determined optimally via variational theory. The
iteration formula is

un+1 = un − 1

Γ (1 + α)

t∫
0

(
∂αun
∂ξα

(31)

+
∂

∂x

((
4un
x

− x

3

)
un

)
− un

∂2un
∂x2

)
(dξ)α ,

The initial approximation is given as

u0 (x, t) = x2

u1 = u0 −
1

Γ (1 + α)

t∫
0

(
∂αu0
∂ξα

+
∂

∂x

((
4u0
x

− x

3

)
u0

)
− u0

∂2u0
∂x2

)
(dξ)α

=
x2

Γ (1 + α)
tα,

u2 = u1 −
1

Γ (1 + α)

t∫
0

(
∂αu1
∂ξα

+
∂

∂x

((
4u1
x

− x

3

)
u1

)
− ∂2

∂x2
(
u21
))

(dξ)α

=
x2

Γ (1 + 2α)
t2α,
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u3 = u2 −
1

Γ (1 + α)

t∫
0

(
∂αu2
∂ξα

+
∂

∂x

((
4u2
x

− x

3

)
u2

)
− u2

∂2u2
∂x2

)
(dξ)α

=
x2

Γ (1 + 3α)
t3α,

...

The series solution is given by

u (x, t) = x2
(
1 +

1

Γ (1 + α)
tα +

1

Γ (1 + 2α)
t2α

+
1

Γ (1 + 3α)
t3α...

)
.

=

∞∑
k=0

x2

Γ (1 + kα)
tkα

= x2Eα (t
α) . (32)

which is the exact solution of the nonlinear time fractional PDE obtained by
Odibat and Momani [17].

Example 4. Consider the following nonlinear time-fractional Fornberg-
Whitham equation

∂αu

∂tα
− ∂3u

∂x2∂t
+

∂u

∂x
= u

∂3u

∂x3
− u

∂u

∂x
+ 3

∂u

∂x

∂3u

∂x3
, (t > 0, x ∈ R, 0 < α ≤ 1),

(33)
with initial condition as

u (x, 0) =
4

3
e

1
2
x.

The exact travelling wave solution to the above initial value problem is given
by [18]

u (x, t) =
4

3
e

1
2
x− 2

3
t.

The correction functional is read as

un+1 = un +
1

Γ (1 + α)

t∫
0

λ (ξ)

(
∂αun
∂ξα

− ∂3un
∂x2∂t

+
∂un
∂x

− un
∂3un
∂x3

+ un
∂un
∂x

− 3
∂un
∂x

∂3un
∂x3

)
(dξ)α , (34)
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Making the correction functional stationary, the general Lagrange multiplier
can be identified as λ (ξ) = −1. Substituting value of the general Lagrange
multiplier in the Eq. (34), we get the following iteration formula

un+1 = un − 1

Γ (1 + α)

t∫
0

(
∂αun
∂ξα

− ∂3un
∂x2∂t

+
∂un
∂x

− un
∂3un
∂x3

+ un
∂un
∂x

− 3
∂un
∂x

∂3un
∂x3

)
(dξ)α . (35)

We start with an initial approximation

u0 (x, t) =
4

3
e

1
2
x.

Then, we can obtain the other components by means of

u1 = u0 −
1

Γ (1 + α)

t∫
0

(
∂αu0
∂ξα

− ∂3u0
∂x2∂t

+
∂u0
∂x

− u0
∂3u0
∂x3

+ u0
∂u0
∂x

− 3
∂u0
∂x

∂3u0
∂x3

)
(dξ)α

= − 2

3Γ (1 + α)
e

1
2
xtα,

u2 = u1 −
1

Γ (1 + α)

t∫
0

(
∂αu1
∂ξα

− ∂3u1
∂x2∂t

+
∂u1
∂x

− u1
∂3u1
∂x3

+ u1
∂u1
∂x

− 3
∂u1
∂x

∂3u1
∂x3

)
(dξ)α

=
1

6
e

1
2
x

(
2

Γ (1 + α)
t2α − 1

Γ (2α)
t2α−1

)
,

u3 =
1

72
e

1
2
x

(
12

Γ (3α)
t3α−1 − 3

Γ (3α− 1)
t3α−2

− 12

Γ (3α+ 1)
t3α
)
,

and so on, in the same manner the remaining components can be obtained.
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The series solution is

u (x, t) =
1

72
e

1
2
x

(
96− 48

Γ (1 + α)
tα +

24

Γ (1 + 2α)
t2α

− 12

Γ (2α)
t2α−1 − 12

Γ (3α)
t3α−1 (36)

− 3

Γ (3α− 1)
t3α−2 − 12

Γ (3α+ 1)
t3α . . .

)
.

5 Conclusion

In this study, Variational iteration method with new approach has been suc-
cessfully employed to obtain exact and approximate analytical solutions of
nonlinear fractional Fokker-Plank and Fornberg-Whitham equations. The
method has been used in a direct way without linearization, perturbation or
any restrictive assumption.
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O linearnim i nelinearnim frakcionim parcijalnim
diferencijalnim jednačinama

Varijacioni iteracioni metod (VIM) je primenjen za dobijanje analitičkih
rešenja nelinearnih frakcionih parcijalnih diferencijalnih jednačina. Iteracioni
postupak se zasniva na relativno novom pristupu koji se zove Jumarie-ov
frakcioni izvod. Nekoliko primera su rešeni u cilju razjašnjenja efikasnosti
predloženog metoda i rezultati su uporedjeni sa tačnim rešenjima, otkriva-
juci visoku tačnost i efikasnost metoda.
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