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Abstract

A Stroh-like formalism is developed for the heat conduction and the
coupled stretching and bending deformations of a laminated anisotropic
thermoelastic thin plate based on Kirchhoff theory. For the heat con-
duction problem, a Stroh-like quartic formalism is developed. Two-
dimensional generalized temperature and heat flux function vectors are
introduced. The structure of the introduced 4x4 fundamental plate
matrix for heat conduction is the same as that of the 8x8 fundamen-
tal elasticity matrix in the Stroh sextic formalism for generalized plane
strain elasticity. Consequently, the orthogonality and closure relations
for heat conduction in thin plates is established. For the thermoelas-
tic problem, an inhomogeneous particular solution is derived rigorously.
We obtain an octet formalism in which the general solution is com-
posed of the well-known homogeneous solution developed by Cheng
and Reddy (isothermal case) and the inhomogeneous particular solu-
tion arising from the thermal effect.

Keywords: Anisotropic thermoelastic plate; Kirchhoff theory; Quartic
formalism; Octet formalism; Heat conduction; Thermoelasticity

1 Introduction

Laminated composite structures have found extensive engineering applica-
tions (for example, in aerospace, underwater structures and microelectronic
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devices) and have attracted many researchers’ interest (see, for example, [1]).
In terms of classical two-dimensional mathematical models for the deforma-
tion of thin plates, the Kirchhoff model for bending is well-established as are
subsequent refinements of this theory [1-3]. In a laminated plate, however,
the stretching and bending deformations are intrinsically coupled. Recently
Cheng and Reddy [4-7] developed a new Stroh-like octet formalism to ana-
lyze the coupled stretching and bending deformations of Kirchhoff laminated
anisotropic thin plates. Amazingly, this new formalism preserves almost all
of the beautiful properties and identities in the Stroh sextic formalism for
generalized plane strain elasticity [8]. The Stroh octet formalism established
by Cheng and Reddy is confined to the isothermal case.

In this study, we try to incorporate thermal effects in the Kirchhoff model
of laminated anisotropic plates. More specifically, we will extend the Stroh
octet formalism to thermo-anisotropic thin elastic plates. To begin with,
we develop a Stroh-like quartic formalism for the analysis of steady-state
heat conduction of laminated anisotropic plates. Two-dimensional general-
ized temperature and heat flux function vectors are introduced. The heat flux
resultants and flux moments can be determined by differentiation of the intro-
duced two heat flux functions. The structure of the introduced fundamental
plate matrix for heat conduction is the same as that of the fundamental elas-
ticity matrix [8]. Thus the orthogonality and closure relations and several
further identities can be directly derived. Secondly, we extend the Stroh octet
formalism for Kirchhoff anisotropic plates by adding the inhomogeneous par-
ticular solution (due to thermal effects) to the general solution. The present
octet formalism for a thermo-anisotropic elastic thin plate presents a counter-
part of the Stroh sextic formalism for thermo-anisotropic elasticity in which
the thickness of the elastic solid approaches infinity [8]. Finally, similarities
and differences between the two formalisms are discussed.

2 The laminated anisotropic thin plate

Consider an undeformed plate of uniform thickness h in a Cartesian coordi-
nate system (x1, x2, x3) in which the mid-plane of the plate is taken to be
x3=0. The thickness h is much smaller than other typical in-plane dimensions
of the plate. The plate is composed of an anisotropic, linear thermoelastic
material that can be inhomogeneous and laminated in the thickness direc-
tion. As per the convention adopted by Cheng and Reddy [4-7], a repeated
index implies, unless otherwise specified, summation over the range of the
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index with Greek indices ranging from 1 to 2, lowercase Latin indices from 1
to 3, and uppercase Latin indices ranging from 1 to 4.

In the following two sections, we will first develop in Section 3 a Stroh-like
quartic formalism for steady-state heat conduction in a laminated anisotropic
thin plate, then in Section 4, we derive a Stroh octet formalism for a laminated
thermo-anisotropic elastic thin plate.

3 Quartic formalism for heat conduction in anisotropic
plates
The heat conduction in an anisotropic material is given characterized by
hi = —kij T, (1)

where h; and T are respectively the heat fluxes and temperature and k;; are
the heat conduction coefficients. In this study the Onsager’s [9] reciprocal
relations are invoked so that k;; = kj;.

If we assume that h3 = 0 in the thin plate (this assumption is valid when
the top and bottom surfaces of the plate are insulating), we will obtain from
Eq.(1) that

T3=——"Tg. (2)
Substituting the above into Eq.(1), we arrive at
ha = —kagTp, (3)
where l%aﬁ are the reduced heat conduction coefficients and are given by

¥ ka3k3a
kap = kap — T (4)

Since the balance of energy is given by
hii =0, (5)
and hj is ignored in the plate, we will have
Hyo=0, Poo =0, (6)
where H, and P, are the flux resultants and flux moments defined by

H, = Qhou P, = Qx?)hon (7)
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with
h/2

Q= (- )dzs. (8)

—h/2

The temperature field in the thin plate is assumed to take the following

form
T =T+ x3T5, (9)

where T and T5 are independent of x3. Equation (9) can be considered as
the heat conduction version of the Kirchhoff assumption.
We further assume that 77 and T5 take the following forms

T = e1d'(2), Ty = eag'(2), (10)

where g(z) is an arbitrary analytic function of z = z1 + Az2, A and e, are
unknown constants to be determined.
The in-plane heat fluxes can then be calculated from Eq. (3) as

n -

The flux resultants and flux moments can be determined as

H, ] o [ Q(k11 + Mk12)  Qus(kiy + Mk12) ] [ el

k11 + Meio 333(/;711 + )\2712) ] [ el

- - - - (). 11
kig + Aka2  x3(k12 + Aka2) ]g () (11)

€2

] g'(z),  (12)

Hy QK12 + Neaz)  Qz(k12 + Meaz) €2
P Qus(kin + Mk1o)  Qa3(kiy + Mkpo) e1 ") (13)
= - - - - - 2).
Py Quy(Frs + MNeza)  Qu(hro + Nea) | | e2 |9

The balance of energy in terms of flux resultants and flux moments can
now be expressed into

Q(k11 + 2Xk1a + A2kao) Q3 (k11 + 2 k12 + A2ka2) e1 0
ng(iﬂl + 2)\]~€12 + )\2/;22) Qx%(iﬂn + 2)\/~€1z + A2]~€22) es | | 0|’
(14
which comprises two equations for the determination of the unknowns A\ and

T
eq. For a non-trivial solution of { er ez } we must have

q [ QK11 + 2X\k12 + A2kg) Qus(k11 4 2\k12 + A2kg0)
(&3

. : . . . 20, (15
Qus(k11 + 2Mk12 + N2ko2) Qa3 (k11 + 2Mk12 + A%kao) ] (15)
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which is a polynomial of degree 4 in A and gives four roots for the eigenvalue
T
A. The associated eigenvector [ €1 €2 ] is determined from Eq.(14). It

can be proved that Eq.(15) provides two pairs of complex conjugates of A
(see the appendix for a rigorous proof).

Equation (14) will be automatically satisfied by introducing &; and &
such that

—AG | Q(k11 + Nk12)  Qas(k1r + Mk12) el (16)
&1 B Q(];‘m + Al;:22) Qil‘s(lzflz + )\12522) ex |’

—AL | Qrz(ki1 + Mer2)  Qrd(kiy + ki) el (17)
&2 T | Quz(kig + M) Qad(kig + ko) ez |
Using Eqs.(16) and (17), we can rewrite Egs.(12) and (13) as
H A " P, A "
FAE SN F B e Et

If we introduce heat flux functions
O1 = &19/(2), ©2 = &29'(2), (19)
Eq.(18) is equivalent to
H, =€,3 013, Py =€0p 023, (20)

where €,3 are the components of the two-dimensional permutation tensor.
Equations (10) and (19) can then be written as

T = [ Ty Th }T =eg(z), ©® = [ ©1 O }T =£¢4/'(2), (21)

where

e:[el 62]T,§:[§1 §2}T. (22)

T and © are, respectively, the generalized temperature and heat flux

function vectors.
Equations (16) and (17) can be rewritten as
. (23)
é— )

—QO e R I
R 1 lle| M oo
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where Q, R and T are three 2x2 symmetric matrices defined by
q - [ Qki1 Qusk | A Qkiz  Quskio
I Quskin Qziky |’ Quskiz Qzikiz

F [ Quskoy Quzka
B | Quskay Qu3kas

] o (24)

In addition Q and T are positive definite (see the appendix for proof).
Equation (23) can be further transformed into the following standard eigen-

relation:
NS N (25)
& 17
where
N =YX, (26)
with . .
x—| 2 0 y_ B 927
|l wr 1" Y % ool (27)

Here we call N the fundamental plate matrix for heat conduction. Since

. T -Q 0 - 01
XIy = 0 0 with I = I o is symmetric, we can conclude that

iN = (IN)? = N7, (28)

which implies that INis symmetric. Consequently N must take the following
form - -
Ko | DR 29
- NS N—’{' ’ ( )

where Nl, Ng = NQT and Ng = N3T are three 2x2 matrices. It is found
that the standard eigenrelation (25) together with (29) is symbolically the
same as that of the Stroh sextic formalism for generalized plane strain [8] and
that of the Stroh octet formalism for a Kirchhoff anisotropic thin plate [4].
Equations (23)-(29) are presented to show a connection between the present
quartic formalism for heat conduction in a laminated anisotropic thin plate
and the octet formalism for the coupled stretching and bending deformations
of a laminated anisotropic thin plate under the isothermal assumption (Cheng
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and Reddy, 2002). In fact a simple algebraic manipulation of Eq. (23) leads
to
Ny = —F1RT, N, = 7!, Ny = RTRT — Q. (30)
Thus the structure of the fundamental plate matrix for heat conduction
is exactly the same as that of the fundamental elasticity matrix [8].
Equation (15) provides two pairs of complex conjugates of A\. The associ-
ated eigenvectors are also two pairs of complex conjugates. Thus the general
solution of the generalized temperature and heat flux function vectors are

given by ~ _

T = Eg'(z) + Eg/(2), ©® = Eg'(2) + Eg/(2), (31)
where

E:[el 62},52{& 52},

T

g(z) = | h(Z) h(%) | (32)

Zo =21+ Aaz2, Im{A} >0, (a=1,2),
with

Ni Nz [ [ea] | fea (@=1,2) (33)
< < = A\ , (@ =1, .
N3 N? goz ga

The obtained general solution (31) is valid when A; # Ag. Following [4],

[8], the following orthogonality relations establish, in view of the structure of
N in Eq. (29) or more specifically in Eq. (30):

[ETETE][IO
“lo1

ET ET || E
Consequently, three 2x2 real matrices S, H and L can be introduced:

S=i(2EE" —1), H = 2iEE", L = —2i=5", (35)

[ =

. (34)

which is a result of the closure relations. More identities can be easily derived
[4], 8].

4 Octet formalism for thermo-anisotropic elastic
plates

The constitutive law for an anisotropic material incorporating the thermal
effect can be written into:

oij = Cijrier — Vi T, (36)
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where 0;; and ¢;; = %(ﬂi,j + ;) are the stresses and strains with @; the dis-
placements, Cjjr; and ;5 are, respectively, the elastic stiffnesses and thermal
moduli.

The following fundamental assumptions that the transverse shear defor-
mation and transverse normal stress component are neglected are fundamen-

tal in Kirchhoff thin plate theory
Eal3 = 0, 033 = 0. (37)

By utilizing the assumptions in Eq.(37), we can obtain £33 from Eq.(36)

as follows

C33up V33
Ewp T
wp
C3333 C3333

Substituting the above expression of €33 and the assumption that the
temperature field is of the form T'= T} + 2375 into Eq.(36) will yield

€33 = — T. (38)

Oap = Caﬁwpgwﬂ - ’?aﬁTl - x3r~)/045T27 (39)

where C’a,@wp and 7,p are, respectively, the reduced elastic stiffnesses and
reduced thermal moduli, given by

CaBup = Capup — Cap33C33up/ C3333, Yap = Vap — Cap33¥33/Cazzz.  (40)

In the absence of external loads on the upper and lower faces of the plate,
the equilibrium equations are given by

Nagp =0, Rgp =0, (41)

where the membrane stress resultants N,g, bending moments M,z and trans-
verse shearing forces Rg are defined by

Naﬁ = an,ﬁv Ma,b’ = Qx30—aﬁu R,B = Maﬁ,a- (42>

The modified Kirchhoff transverse shearing forces applied to free edges
are defined by
Vi=Ri+ M2z, Vo= Ro+ Mo 1. (43)

In Kirchhoff plate theory, the displacements are assumed to take the fol-
lowing forms
U1 = Uy + 3, U = us + x3t, Uz = w, (44)

where the in-plane displacements uq and wug, deflection w and slopes ¥ =
—w,1 and Y9 = —w 2 on the mid-plane are independent of x3.
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The homogeneous solution in the absence of thermal effects, has been de-
rived by [4]. In the following, we focus on the derivation of the inhomogeneous
particular solution arising from the thermal effect.

The displacements on the mid-plane of the plate take the following forms

up = c19(z), ug = cag(2), w= —cs /g(z)dz, (45)

where ¢; are unknown constants to be determined, and z = 1 + Axo with A
the eigenvalue for heat conduction.
The stresses can be calculated from Eqgs.(39) and (45) as

o11 c1
021 I Q—F)\f{ ZL‘3(Q+)\]Z?{) Co ,
012 - RT =+ /\T xg(ﬁT =+ /\T) C3 g <z) (46)
099 i Acg

[ 11 w3711

21 T3Y21 er | ,
- Y2 T3V12 [ 2 ] 92,
| Y22 w32

where the components of the three 2x2 matrices Q, R and T are given by

Qaw = ~oalwh Raw = Lalw2, Taw = La2w2- (47)

In addition Q and T are symmetric and positive definite.
The membrane stress resultants, bending moments and transverse shear-
ing forces can then be obtained as

N1 c1

Noy [ QQQ+2AR)  Qu3(Q+AR) C2 ,

Nio - QRT +AT) Quz3(RT +\T) es |7 () (48)
NQQ i )\03

[ Q11 Qrsyn
QY21 Qrzyn el

| Q2 Qs [

| QY22 Qus¥ar
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My, 1
Mo B Qr3(Q+AR)  Qu3(Q+ AR) C2 (2) (49)
M | = | Qus(RT +AT) Qu3RT+AT) || e |7
Moo )\CS
[ Qs Qi
Qs Qx3yor er | ,
— - 9~ g (Z),
Qr3yi2 Qrgyiz e
| Quzda  Qu3ia
C1
Ri] [ NQus(Q+AR)  N'Qz3(Q+AR) o |,
Ry | = | ATQus(RT +AT) AN QuiRT+AT) | | ez |7 2)
) )\63
r -~ ~ e
— | QzayTXx Qa3yTA } [ 61 ] 9" (2), (50)
i 2
where
- 1 Y1 Y12
A= ,y=~T=|_" 7. 51
A ] 7= [ Y21 22 ] (51)

Consequently, using Egs.(48)-(50), the equilibrium equations (41) can be
expressed as

QG Qu3GA ] “ _[Qwﬂ Q37 ”e1]

- - - c - - - -
M Qr3G AT Qz2GA ? M Qusyh ATQady | | e
(52)
where G is a 2x2 symmetric matrix defined by
G=Q+\R+RT)+ AT, (53)

The first two equilibrium equations of (52) will be automatically satisfied
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_ T
if we introduce d = { dy do } such that

Q711
x| [QQ+AIR) Qus(Q+MR) [[e] | @
d B [ QMRT +AT) Qus(RT 4+ AT) c ]_ Q72

Q722

where e has been defined by Eq.(22), and
_ T T
c:[01 62},02[63 64],

with ¢4 = Acs.

953

Qz3y11
Qr3y21
Qr3y12
Q3722
(54)

(55)

The third equilibrium equation of (52) will be automatically satisfied if

- T
we introduce d = [ d3 dy } such that

—Ad + 1

3.1
210

[ Qusyii Qriyn
Qzszior Q321
Qrsyiz Qr3ye

| Quziar Qa3

0
A'd ] [ Qus(Q+2R)  Qu3(Q+AR)
3Tq ] | Qus(RT +AT) Qa3(RT +)T)

(56)

By making use of Egs.(54) and (56), Eqgs.(48)-(50) can be rewritten as

N1y R
Nay Ad
= — A s
Ni2 d g
Ny
My, =
Ad 4L oo
Mo, 2| ATd ] /o)
= - A s
Mis . g g'(
Moo 210

(57)
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Ry L =ATa |
P T e FAC) (59)
i —\2dy
V| = [ ds ]9"(2)- (60)
If we introduce the stress functions
¢1 = d1g(2), g2 = dag(z), Y1 = d3g(z), Y2 = dsg(2), (61)

then Eqs.(57)-(60) are equivalent to

Naﬁ = — Chw (boz,wy Maﬁ = — Chw wa,w - % Cap ww,(w
Ry = —% €ap ¢w,w57 Vo =— €aw ww,ww~

Equations (45) and (61) can be written as

u:[m ug U ﬂz}T:cg(z),Qz[qbl b2 Y1 %Z)z]T:dg(z),

(63)
where

T T
c=la @ ol d=[d & d 4], (64)
Cq4 = )\03. (65)

Equations (54) and (56) can be written as
—Q %143 C R I- %144 C

[ RT I-g ||d |~ T iLy a| e (6

where

(Is3)kr = 0k30r3, (Isa)xr = Ok3dra, (Iu3)xr = Okxadrs, (laa)xr = OKadra,

(67)
with d g, the Kronecker delta, and
Q- QQ  Qu3Q R QR stl:% T Q'i'~ QH??)'?
| QuQ Q#Q |1 | QuR QuR |7 T | QT QuiT |
(68)

Q11 QY21 Qr3yr Quzyar Q2 QY22 Qr3y12 Qr3y22
Qrsy1 Qrzyor Q23 Qr3¥21 QusYiz QusYee Q232 Qa3ie
(69)

Q' =
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In addition Q and T defined in Eq.(68) are symmetric and positive def-
inite matrices [4]. There are only seven independent relations in Eq.(66) in
view of the fact that the fourth and seventh equations of Eq.(66) are identi-
cal. Adding the relation ¢4 = Ac3 with two arbitrary but unequal multipliers
a and 3, respectively to the fourth and seventh equations of (66) as in [4],
we finally obtain the following standard form

NN el L iy vl 70
N3 N7 a1 =2 M a |~ Yi+Y2)" Qe (70)
where
Ni Ny .
N3 N%" = (Yl + Y2) (Xl + X2)7 (71)
Q o R 1
olyy 13 alys —31u
Xy = 1 , Yo = 1 :
Blas —51s3 Bl 534

In addition, Ng and -N3 are symmetric and positive semi-definite [7].
A comparison of Eq.(72) with Eq.(27) reveals the interesting fact that X;
and X have the same structure, as do Y1 and Y despite the fact that their
dimensions are different.

u and ¢ are the generalized displacement and stress function vectors.
Now the general solution, which is composed of the homogeneous solution
derived by Cheng and Reddy [4] and the inhomogeneous particular solution
derived above, can be finally given by

u= [ up ug Y1 Yo }T = Af(z) + Af(z) + Cg(z) + Cg(z), 73)
o= [ b1 b2 Y1 o }T = Bf(z) + Bf(2) + Dg(z) + Dg(2),
where
A=|a a a3 ay ,B:[b1 by bs b4],
C=|c CQ},D: d; d2],
(74)

£()= [ fia) falea) foles) falz) ]
zg = x1 + prxe, Im{px} >0, (K =1,2,3,4),
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N; Ny ag ag
Ny NT || bg | ~ PX | by

N1 No Co \ Ca
N3 NT d, | "% da

The above general solution is valid when all the eigenvalues are unequal,
ie., A\l # Ay # p1 # p2 # p3 # pys. Even though the standard eigenrelation
(75) is symbolically the same as that of the Stroh sextic formalism as observed

by Cheng and Reddy [4], the second term on the right-hand side of Eq.(76)
is symbolically different from its counterpart in thermo-anisotropic elasticity

[8].

with
, (K =1,2,3,4), (75)

— (Y1 +Y9) 'Qe,, (=1,2). (76)

5 Eigenvalues for heat conduction

The eigenvalues corresponding to the heat conduction can be determined by
solving Eq.(15), which is a quartic equation in A. For some special cases
discussed below, the eigenvalues can be given explicitly.

5.1 Plate symmetric about its mid-plane

If the plate is symmetric about its mid-plane, we have Ql‘gl;?alg = 0. Conse-
quently the eigenvalues can be explicitly determined from Eq.(15) as

A = —Qk12+1V/(Qk11) (Qka22)— (Qk12)?

Qka2
(77)
Ay = —QeikioHy/(Qafkn) (Quika) —(Qufkiz)?
Qzkaa )
5.2 Anti-symmetric angle-ply laminated plate
For an anti-symmetric angle-ply laminated plate [4],
Qk12 =0, Quski1 = Quskas =0, Qu3ki2 = 0. (78)

Consequently the eigenvalues can be determined from Eq.(15) as [10-11],

A1, Ag = (79)
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where

(Q%22)(Qx§%22), 2\/(Qiﬁl)(ngifll)(QINfﬂ)(ngi@Q)
(80)

p1 = \/(le/‘n)(Qw%l}u) 81 (Q%n)(QﬂC%]}ﬂ) + (Q];‘22)(Q9€§];‘11) - 4(Q3337;‘12)2.

5.3 Orthotropic material with three axes of symmetry along
the coordinate axes

In this case, k12 = 0. Consequently the eigenvalues can be similarly deter-
mined from Eq.(15) as

1 1
ivpa([3(s2 +1)]2 £ [3(s2 —1)]2), if s> 1
)\la )\2 = 1 1 1 1 . (81)
VP2(E[5(1 = s2)]2 +i[5(1 +52)]2), if —1<s2<1
where
_ [ (@k11)(Qu3k11) ~(Quski1)?
P2 =\ (Qha2) (Qahaz) —(Quakaz)?
(82)

(Q7~€11)(QI§];22)+(Q’~€22)(Qfl?gffn)*2(Q$3%11)(Q$3]~€22) )
2\/[(Qk2)(Qa3ka2)—(Quska2)?] [(@F11) (Qw3Fnn) — (Quskin)?]

S9 =

5.4 Transversely isotropic material with the axis of symmetry
at the r;-axis

In this case we have 12:11 = 12522 and 12:12 = 0. Consequently Eq.(15) becomes
(142%)° [(Q%n)(Qngl}n) — (Quskn)?| = 0. (83)
Due to the Schwarz integral inequality [4], we have
Al = Ay =1 (84)
In addition there are two independent eigenvectors associated with the

double eigenvalues of i. We conclude that N is semisimple, and the general
solution (31) is still valid.
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6 Conclusions

A Stroh-like formalism has been developed for the decoupled steady-state
thermal conduction and the thermal stress analyses of a laminated anisotropic
thin plate. For the heat conduction problem, a Stroh-like quartic formalism
is derived through the introduction of a pair of two-dimensional generalized
temperature and heat flux function vectors. The structure of the introduced
4x4 fundamental plate matrix for heat conduction is the same as that of the
8x8 fundamental elasticity matrix [8]. Thus the orthogonality and closure
relations and further identities can be similarly derived. For the thermal
stress analysis, a Stroh-like octet formalism is derived. The resulting general
solution (73) consists of the homogeneous solution obtained by Cheng and
Reddy [4]and the inhomogeneous particular solution derived in this work
to account for the thermal effect. It is expected that the derived Stroh-
like formalism for Kirchhoff laminated anisotropic thermoelastic thin plates
can be conveniently used in the analysis of inclusion and crack problems in
these laminated structures under thermomechanical loadings. The solution
procedure can be outlined as: (i) first the two-dimensional complex function
vector g(z) characterizing the temperature field in the laminated anisotropic
thin plate can be derived using Eq. (31) and appropriate boundary conditions
for heat conduction; (ii) the four-dimensional complex function vector f(z)
characterizing the thermoelastic field in the laminated anisotropic thin plate
can then be derived using Eq.(73) and appropriate boundary conditions for
thermoelasticity.
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Appendix

Since k;; is positive definite (Ting, 1996), the following inequality follows

k:agyayg > 0, (Al)

T
where [ Y1 Y2 is any non-zero real vector.

If \ is real, taking y, = (041 + Aa2)e1 into Eq.(A1) yields
(k11 + 20k12 + A2ka2)e? > 0, (A2)

and e is an arbitrary real and non-zero number. Replacing e; by e; + x3es
in Eq.(A2) and integrating it through the plate thickness gives

Q(E11 + 2X\E19 + Akaz) (e + 23e2)% > 0, (A3)
or equivalently

[ o e } Q(iﬂl + 2)\]2312 + )\22;322) Ql’g(l??ll + 2)@’12 + >\2];522) el
1 e - - ~ N i .
Qzs(k11 + 2Xk12 + N2ko2) Qa3 (k11 + 2Mk12 + A%kao) €2
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which violates Eq.(15). Therefore A cannot be real.

Similarly by substituting y, = da1(e1 + x3e2) and y, = da2(e1 + x3e2)
into Eq.(A1) respectively and integrating through the plate thickness, we will
finally arrive at

[ Qkn Quzki | [ e ]

[ e] €9 ] ~ 97 > 0,
| Quskn Quzkn | | e2 |

[ e1 ey ] @ 22 Q$g~22 “l > 0, (A5)
| Quskay Quzk | | €2 |

which implies that Q and T defined by Eq.(24) are positive definite.

Thus the coefficients of A\° and A* of the polynomial of degree four in A
arising from Eq.(15) are positive.

Since the coefficients of \° and A\* arising from Eq.(15) are non-zero, we
will have four non-zero roots of A. Since all the coefficients of the quartic
equation in A are real, we can conclude that Eq.(15) provides two pairs of
complex conjugates of .

Submitted in August 2013.
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Formalizam tipa Stroh-a za Kirchhoff-ove anizotropne
termoelasticne ploce

Formalizam tipa Stroha, baziran na Kirchhoff-ovoj teoriji, je razvijen za
provodjenje toplote i spregnute deformacije zatezanja i savijanja laminatne
anizotropne termoelasti¢ne tanke ploce. Za problem provodjenja toplote,
formalizam tipa Stroha ¢etvrtog stepena je razvijen. Vektori dvodimenzion-
alne generalisane temperature i funkcije toplotnog fluksa su uvedeni. Struk-
tura uvedene 4 x 4 osnovne matrice ploc¢e za provodenja toplote je ista kao
8 x 8 fundamentalna matrica elasti¢nosti u Stroh-ovom formalizmu Sestog
stepena elasti¢nost generalisane ravanske deformacije. Shodno tome, relacije
upravnosti i zatvaranja za provodenje toplote u tankim plo¢ama su uspostavl-
jene. Za problem termoelasti¢nosti, nehomogeno posebno resenje je izvedeno
rigorozno. Dobijamo formalizam osmog stepena u kome je opSte reSenje
sastavljeno od poznatog homogenog resenja razvijenog Cheng-om i Reddy-
jem (izotermni sluc¢aj) kao i nehomogenog posebnog resenja koje dolazi iz
termickog efekta.

doi:10.2298/TAM1304543W Math. Subj. Class.: 74A40, 74E10, 74F05, 74K20.
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