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Abstract

A Stroh-like formalism is developed for the heat conduction and the
coupled stretching and bending deformations of a laminated anisotropic
thermoelastic thin plate based on Kirchhoff theory. For the heat con-
duction problem, a Stroh-like quartic formalism is developed. Two-
dimensional generalized temperature and heat flux function vectors are
introduced. The structure of the introduced 4×4 fundamental plate
matrix for heat conduction is the same as that of the 8×8 fundamen-
tal elasticity matrix in the Stroh sextic formalism for generalized plane
strain elasticity. Consequently, the orthogonality and closure relations
for heat conduction in thin plates is established. For the thermoelas-
tic problem, an inhomogeneous particular solution is derived rigorously.
We obtain an octet formalism in which the general solution is com-
posed of the well-known homogeneous solution developed by Cheng
and Reddy (isothermal case) and the inhomogeneous particular solu-
tion arising from the thermal effect.

Keywords: Anisotropic thermoelastic plate; Kirchhoff theory; Quartic
formalism; Octet formalism; Heat conduction; Thermoelasticity

1 Introduction

Laminated composite structures have found extensive engineering applica-
tions (for example, in aerospace, underwater structures and microelectronic
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devices) and have attracted many researchers’ interest (see, for example, [1]).
In terms of classical two-dimensional mathematical models for the deforma-
tion of thin plates, the Kirchhoff model for bending is well-established as are
subsequent refinements of this theory [1-3]. In a laminated plate, however,
the stretching and bending deformations are intrinsically coupled. Recently
Cheng and Reddy [4-7] developed a new Stroh-like octet formalism to ana-
lyze the coupled stretching and bending deformations of Kirchhoff laminated
anisotropic thin plates. Amazingly, this new formalism preserves almost all
of the beautiful properties and identities in the Stroh sextic formalism for
generalized plane strain elasticity [8]. The Stroh octet formalism established
by Cheng and Reddy is confined to the isothermal case.

In this study, we try to incorporate thermal effects in the Kirchhoff model
of laminated anisotropic plates. More specifically, we will extend the Stroh
octet formalism to thermo-anisotropic thin elastic plates. To begin with,
we develop a Stroh-like quartic formalism for the analysis of steady-state
heat conduction of laminated anisotropic plates. Two-dimensional general-
ized temperature and heat flux function vectors are introduced. The heat flux
resultants and flux moments can be determined by differentiation of the intro-
duced two heat flux functions. The structure of the introduced fundamental
plate matrix for heat conduction is the same as that of the fundamental elas-
ticity matrix [8]. Thus the orthogonality and closure relations and several
further identities can be directly derived. Secondly, we extend the Stroh octet
formalism for Kirchhoff anisotropic plates by adding the inhomogeneous par-
ticular solution (due to thermal effects) to the general solution. The present
octet formalism for a thermo-anisotropic elastic thin plate presents a counter-
part of the Stroh sextic formalism for thermo-anisotropic elasticity in which
the thickness of the elastic solid approaches infinity [8]. Finally, similarities
and differences between the two formalisms are discussed.

2 The laminated anisotropic thin plate

Consider an undeformed plate of uniform thickness h in a Cartesian coordi-
nate system (x1, x2, x3) in which the mid-plane of the plate is taken to be
x3=0. The thickness h is much smaller than other typical in-plane dimensions
of the plate. The plate is composed of an anisotropic, linear thermoelastic
material that can be inhomogeneous and laminated in the thickness direc-
tion. As per the convention adopted by Cheng and Reddy [4-7], a repeated
index implies, unless otherwise specified, summation over the range of the
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index with Greek indices ranging from 1 to 2, lowercase Latin indices from 1
to 3, and uppercase Latin indices ranging from 1 to 4.

In the following two sections, we will first develop in Section 3 a Stroh-like
quartic formalism for steady-state heat conduction in a laminated anisotropic
thin plate, then in Section 4, we derive a Stroh octet formalism for a laminated
thermo-anisotropic elastic thin plate.

3 Quartic formalism for heat conduction in anisotropic
plates

The heat conduction in an anisotropic material is given characterized by

hi = −kijT,j , (1)

where hi and T are respectively the heat fluxes and temperature and kij are
the heat conduction coefficients. In this study the Onsager’s [9] reciprocal
relations are invoked so that kij = kji.

If we assume that h3 = 0 in the thin plate (this assumption is valid when
the top and bottom surfaces of the plate are insulating), we will obtain from
Eq.(1) that

T,3 = −
k3β
k33

T,β . (2)

Substituting the above into Eq.(1), we arrive at

hα = −k̃αβT,β, (3)

where k̃αβ are the reduced heat conduction coefficients and are given by

k̃αβ = kαβ − kα3k3α
k33

. (4)

Since the balance of energy is given by

hi,i = 0, (5)

and h3 is ignored in the plate, we will have

Hα,α = 0, Pα,α = 0, (6)

where Hα and Pα are the flux resultants and flux moments defined by

Hα = Qhα, Pα = Qx3hα, (7)
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with

Q =

∫ h/2

−h/2
(· · ·)dx3. (8)

The temperature field in the thin plate is assumed to take the following
form

T = T1 + x3T2, (9)

where T1 and T2 are independent of x3. Equation (9) can be considered as
the heat conduction version of the Kirchhoff assumption.

We further assume that T1 and T2 take the following forms

T1 = e1g
′(z), T2 = e2g

′(z), (10)

where g(z) is an arbitrary analytic function of z = x1 + λx2, λ and eα are
unknown constants to be determined.

The in-plane heat fluxes can then be calculated from Eq. (3) as[
h1

h2

]
= −

[
k̃11 + λk̃12 x3(k̃11 + λk̃12)

k̃12 + λk̃22 x3(k̃12 + λk̃22)

][
e1

e2

]
g′′(z). (11)

The flux resultants and flux moments can be determined as[
H1

H2

]
= −

[
Q(k̃11 + λk̃12) Qx3(k̃11 + λk̃12)

Q(k̃12 + λk̃22) Qx3(k̃12 + λk̃22)

][
e1

e2

]
g′′(z), (12)

[
P1

P2

]
= −

[
Qx3(k̃11 + λk̃12) Qx23(k̃11 + λk̃12)

Qx3(k̃12 + λk̃22) Qx23(k̃12 + λk̃22)

][
e1

e2

]
g′′(z). (13)

The balance of energy in terms of flux resultants and flux moments can
now be expressed into[
Q(k̃11 + 2λk̃12 + λ2k̃22) Qx3(k̃11 + 2λk̃12 + λ2k̃22)

Qx3(k̃11 + 2λk̃12 + λ2k̃22) Qx23(k̃11 + 2λk̃12 + λ2k̃22)

][
e1

e2

]
=

[
0

0

]
,

(14)
which comprises two equations for the determination of the unknowns λ and

eα. For a non-trivial solution of
[
e1 e2

]T
we must have

det

[
Q(k̃11 + 2λk̃12 + λ2k̃22) Qx3(k̃11 + 2λk̃12 + λ2k̃22)

Qx3(k̃11 + 2λk̃12 + λ2k̃22) Qx23(k̃11 + 2λk̃12 + λ2k̃22)

]
= 0, (15)
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which is a polynomial of degree 4 in λ and gives four roots for the eigenvalue

λ. The associated eigenvector
[
e1 e2

]T
is determined from Eq.(14). It

can be proved that Eq.(15) provides two pairs of complex conjugates of λ
(see the appendix for a rigorous proof).

Equation (14) will be automatically satisfied by introducing ξ1 and ξ2
such that[

−λξ1
ξ1

]
=

[
Q(k̃11 + λk̃12) Qx3(k̃11 + λk̃12)

Q(k̃12 + λk̃22) Qx3(k̃12 + λk̃22)

][
e1

e2

]
, (16)

[
−λξ2
ξ2

]
=

[
Qx3(k̃11 + λk̃12) Qx23(k̃11 + λk̃12)

Qx3(k̃12 + λk̃22) Qx23(k̃12 + λk̃22)

][
e1

e2

]
. (17)

Using Eqs.(16) and (17), we can rewrite Eqs.(12) and (13) as[
H1

H2

]
=

[
λξ1

−ξ1

]
g′′(z),

[
P1

P2

]
=

[
λξ2

−ξ2

]
g′′(z). (18)

If we introduce heat flux functions

Θ1 = ξ1g
′(z), Θ2 = ξ2g

′(z), (19)

Eq.(18) is equivalent to

Hα =∈αβ Θ1,β , Pα =∈αβ Θ2,β, (20)

where ∈αβ are the components of the two-dimensional permutation tensor.
Equations (10) and (19) can then be written as

T =
[
T1 T2

]T
= eg′(z), Θ =

[
Θ1 Θ2

]T
= ξg′(z), (21)

where

e =
[
e1 e2

]T
, ξ =

[
ξ1 ξ2

]T
. (22)

T and Θ are, respectively, the generalized temperature and heat flux
function vectors.

Equations (16) and (17) can be rewritten as[
−Q̂ 0

−R̂T I

][
e

ξ

]
= λ

[
R̂ I

T̂ 0

][
e

ξ

]
, (23)
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where Q̂, R̂ and T̂ are three 2×2 symmetric matrices defined by

Q̂ =

[
Qk̃11 Qx3k̃11

Qx3k̃11 Qx23k̃11

]
, R̂ =

[
Qk̃12 Qx3k̃12

Qx3k̃12 Qx23k̃12

]
, (24)

T̂ =

[
Qx3k̃22 Qx3k̃22

Qx3k̃22 Qx23k̃22

]
.

In addition Q̂ and T̂ are positive definite (see the appendix for proof).
Equation (23) can be further transformed into the following standard eigen-
relation:

N̂

[
e

ξ

]
= λ

[
e

ξ

]
, (25)

where
N̂ = Y−1X, (26)

with

X =

[
−Q̂ 0

−R̂T I

]
, Y =

[
R̂ I

T̂ 0

]
. (27)

Here we call N̂ the fundamental plate matrix for heat conduction. Since

XÎY
T
=

[
−Q̂ 0

0 T̂

]
with Î =

[
0 I

I 0

]
is symmetric, we can conclude that

ÎN̂ = (̂IN̂)T = N̂T Î, (28)

which implies that ÎN̂ is symmetric. Consequently N̂ must take the following
form

N̂ =

[
N̂1 N̂2

N̂3 N̂T
1

]
, (29)

where N̂1, N̂2 = N̂T
2 and N̂3 = N̂T

3 are three 2×2 matrices. It is found
that the standard eigenrelation (25) together with (29) is symbolically the
same as that of the Stroh sextic formalism for generalized plane strain [8] and
that of the Stroh octet formalism for a Kirchhoff anisotropic thin plate [4].
Equations (23)-(29) are presented to show a connection between the present
quartic formalism for heat conduction in a laminated anisotropic thin plate
and the octet formalism for the coupled stretching and bending deformations
of a laminated anisotropic thin plate under the isothermal assumption (Cheng
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and Reddy, 2002). In fact a simple algebraic manipulation of Eq. (23) leads
to

N̂1 = −T̂−1R̂T , N̂2 = T̂−1, N̂3 = R̂T̂
−1

R̂T − Q̂. (30)

Thus the structure of the fundamental plate matrix for heat conduction
is exactly the same as that of the fundamental elasticity matrix [8].

Equation (15) provides two pairs of complex conjugates of λ. The associ-
ated eigenvectors are also two pairs of complex conjugates. Thus the general
solution of the generalized temperature and heat flux function vectors are
given by

T = Eg′(z) + Ēg′(z), Θ = Ξg′(z) + Ξ̄g′(z), (31)

where
E =

[
e1 e2

]
, Ξ =

[
ξ1 ξ2

]
,

g′(z) =
[
g′1(Z1) g′2(Z2)

]T
,

Zα = x1 + λαx2, Im {λα} > 0, (α = 1, 2),

(32)

with [
N̂1 N̂2

N̂3 N̂T
1

][
eα

ξα

]
= λα

[
eα

ξα

]
, (α = 1, 2). (33)

The obtained general solution (31) is valid when λ1 ̸= λ2. Following [4],
[8], the following orthogonality relations establish, in view of the structure of
N̂ in Eq. (29) or more specifically in Eq. (30):[

ΞT ET

Ξ̄T ĒT

][
E Ē

Ξ Ξ̄

]
=

[
I 0

0 I

]
. (34)

Consequently, three 2×2 real matrices Ŝ, Ĥ and L̂ can be introduced:

Ŝ = i(2EΞT − I), Ĥ = 2iEET , L̂ = −2iΞΞT , (35)

which is a result of the closure relations. More identities can be easily derived
[4], [8].

4 Octet formalism for thermo-anisotropic elastic
plates

The constitutive law for an anisotropic material incorporating the thermal
effect can be written into:

σij = Cijklεkl − γijT, (36)
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where σij and εij =
1
2(ũi,j + ũj,i) are the stresses and strains with ũi the dis-

placements, Cijkl and γij are, respectively, the elastic stiffnesses and thermal
moduli.

The following fundamental assumptions that the transverse shear defor-
mation and transverse normal stress component are neglected are fundamen-
tal in Kirchhoff thin plate theory

εα3 = 0, σ33 = 0. (37)

By utilizing the assumptions in Eq.(37), we can obtain ε33 from Eq.(36)
as follows

ε33 = −C33ωρ

C3333
εωρ +

γ33
C3333

T. (38)

Substituting the above expression of ε33 and the assumption that the
temperature field is of the form T = T1 + x3T2 into Eq.(36) will yield

σαβ = C̃αβωρεωρ − γ̃αβT1 − x3γ̃αβT2, (39)

where C̃αβωρ and γ̃αβ are, respectively, the reduced elastic stiffnesses and
reduced thermal moduli, given by

C̃αβωρ = Cαβωρ − Cαβ33C33ωρ/C3333, γ̃αβ = γαβ − Cαβ33γ33/C3333. (40)

In the absence of external loads on the upper and lower faces of the plate,
the equilibrium equations are given by

Nαβ,β = 0, Rβ,β = 0, (41)

where the membrane stress resultants Nαβ , bending momentsMαβ and trans-
verse shearing forces Rβ are defined by

Nαβ = Qσαβ , Mαβ = Qx3σαβ , Rβ =Mαβ,α. (42)

The modified Kirchhoff transverse shearing forces applied to free edges
are defined by

V1 = R1 +M12,2, V2 = R2 +M21,1. (43)

In Kirchhoff plate theory, the displacements are assumed to take the fol-
lowing forms

ũ1 = u1 + x3ϑ1, ũ2 = u2 + x3ϑ2, ũ3 = w, (44)

where the in-plane displacements u1 and u2, deflection w and slopes ϑ1 =
−w,1 and ϑ2 = −w,2 on the mid-plane are independent of x3.
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The homogeneous solution in the absence of thermal effects, has been de-
rived by [4]. In the following, we focus on the derivation of the inhomogeneous
particular solution arising from the thermal effect.

The displacements on the mid-plane of the plate take the following forms

u1 = c1g(z), u2 = c2g(z), w = −c3
∫
g(z)dz, (45)

where ci are unknown constants to be determined, and z = x1 + λx2 with λ
the eigenvalue for heat conduction.

The stresses can be calculated from Eqs.(39) and (45) as
σ11

σ21

σ12

σ22

 =

[
Q̃+ λR̃ x3(Q̃+ λR̃)

R̃T + λT̃ x3(R̃
T + λT̃)

]
c1

c2

c3

λc3

 g′(z) (46)

−


γ̃11 x3γ̃11

γ̃21 x3γ̃21

γ̃12 x3γ̃12

γ̃22 x3γ̃22


[
e1

e2

]
g′(z),

where the components of the three 2×2 matrices Q̃, R̃ and T̃ are given by

Q̃αω = C̃α1ω1, R̃αω = C̃α1ω2, T̃αω = C̃α2ω2. (47)

In addition Q̃ and T̃ are symmetric and positive definite.
The membrane stress resultants, bending moments and transverse shear-

ing forces can then be obtained as
N11

N21

N12

N22

 =

[
Q(Q̃+ λR̃) Qx3(Q̃+ λR̃)

Q(R̃T + λT̃) Qx3(R̃
T + λT̃)

]
c1

c2

c3

λc3

 g′(z) (48)

−


Qγ̃11 Qx3γ̃11

Qγ̃21 Qx3γ̃21

Qγ̃12 Qx3γ̃12

Qγ̃22 Qx3γ̃22


[
e1

e2

]
g′(z),
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
M11

M21

M12

M22

 =

[
Qx3(Q̃+ λR̃) Qx23(Q̃+ λR̃)

Qx3(R̃
T + λT̃) Qx23(R̃

T + λT̃)

]
c1

c2

c3

λc3

 g′(z) (49)

−


Qx3γ̃11 Qx23γ̃11

Qx3γ̃21 Qx23γ̃21

Qx3γ̃12 Qx23γ̃12

Qx3γ̃22 Qx23γ̃22


[
e1

e2

]
g′(z),

[
R1

R2

]
=

[
λ̃TQx3(Q̃+ λR̃) λ̃TQx23(Q̃+ λR̃)

λ̃TQx3(R̃
T + λT̃) λ̃TQx23(R̃

T + λT̃)

]
c1

c2

c3

λc3

 g′′(z)

−
[
Qx3γ

T λ̃ Qx23γ
T λ̃

] [ e1

e2

]
g′′(z), (50)

where

λ̃ =

[
1

λ

]
, γ = γT =

[
γ̃11 γ̃12

γ̃21 γ̃22

]
. (51)

Consequently, using Eqs.(48)-(50), the equilibrium equations (41) can be
expressed as

[
QG Qx3Gλ̃

λ̃TQx3G λ̃TQx23Gλ̃

] c1

c2

c3

 =

[
Qγλ̃ Qx3γλ̃

λ̃TQx3γλ̃ λ̃TQx23γλ̃

][
e1

e2

]
,

(52)
where G is a 2×2 symmetric matrix defined by

G = Q̃+ λ(R̃+ R̃T ) + λ2T̃. (53)

The first two equilibrium equations of (52) will be automatically satisfied
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if we introduce
⌢

d =
[
d1 d2

]T
such that

 −λ
⌢

d
⌢

d

 =

[
Q(Q̃+ λR̃) Qx3(Q̃+ λR̃)

Q(R̃T + λT̃) Qx3(R̃
T + λT̃)

][
⌢
c
⌣
c

]
−


Qγ̃11 Qx3γ̃11

Qγ̃21 Qx3γ̃21

Qγ̃12 Qx3γ̃12

Qγ̃22 Qx3γ̃22

 e,

(54)
where e has been defined by Eq.(22), and

⌢
c =

[
c1 c2

]T
,

⌣
c =

[
c3 c4

]T
, (55)

with c4 = λc3.
The third equilibrium equation of (52) will be automatically satisfied if

we introduce
⌣

d =
[
d3 d4

]T
such that


−λ

⌣

d + 1
2

[
0

λ̃T
⌣

d

]
⌣

d − 1
2

[
λ̃T

⌣

d

0

]
 =

[
Qx3(Q̃+ λR̃) Qx23(Q̃+ λR̃)

Qx3(R̃
T + λT̃) Qx23(R̃

T + λT̃)

][
⌢
c
⌣
c

]

−


Qx3γ̃11 Qx23γ̃11

Qx3γ̃21 Qx23γ̃21

Qx3γ̃12 Qx23γ̃12

Qx3γ̃22 Qx23γ̃22

 e. (56)

By making use of Eqs.(54) and (56), Eqs.(48)-(50) can be rewritten as
N11

N21

N12

N22

 =

 −λ
⌢

d
⌢

d

 g′(z), (57)


M11

M21

M12

M22

 =


−λ

⌣

d + 1
2

[
0

λ̃T
⌣

d

]
⌣

d − 1
2

[
λ̃T

⌣

d

0

]
 g′(z), (58)
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[
R1

R2

]
= 1

2

 −λλ̃T
⌣

d

λ̃T
⌣

d

 g′′(z), (59)

[
V1

V2

]
=

[
−λ2d4
d3

]
g′′(z). (60)

If we introduce the stress functions

ϕ1 = d1g(z), ϕ2 = d2g(z), ψ1 = d3g(z), ψ2 = d4g(z), (61)

then Eqs.(57)-(60) are equivalent to

Nαβ = − ∈βω ϕα,ω, Mαβ = − ∈βω ψα,ω − 1
2 ∈αβ ψω,ω,

Rα = −1
2 ∈αβ ψω,ωβ, Vα = − ∈αω ψω,ωω.

(62)

Equations (45) and (61) can be written as

u =
[
u1 u2 ϑ1 ϑ2

]T
= cg(z), Φ =

[
ϕ1 ϕ2 ψ1 ψ2

]T
= dg(z),

(63)
where

c =
[
c1 c2 c3 c4

]T
, d =

[
d1 d2 d3 d4

]T
, (64)

c4 = λc3. (65)

Equations (54) and (56) can be written as[
−Q 1

2I43

−RT I− 1
2I33

][
c

d

]
= λ

[
R I− 1

2I44

T 1
2I34

][
c

d

]
−Ωe, (66)

where

(I33)KL = δK3δL3, (I34)KL = δK3δL4, (I43)KL = δK4δL3, (I44)KL = δK4δL4,
(67)

with δKL the Kronecker delta, and

Q =

[
QQ̃ Qx3Q̃

Qx3Q̃ Qx23Q̃

]
, R =

[
QR̃ Qx3R̃

Qx3R̃ Qx23R̃

]
, T =

[
QT̃ Qx3T̃

Qx3T̃ Qx23T̃

]
,

(68)

ΩT =

[
Qγ̃11 Qγ̃21 Qx3γ̃11 Qx3γ̃21 Qγ̃12 Qγ̃22 Qx3γ̃12 Qx3γ̃22

Qx3γ̃11 Qx3γ̃21 Qx23γ̃11 Qx23γ̃21 Qx3γ̃12 Qx3γ̃22 Qx23γ̃12 Qx23γ̃22

]
.

(69)
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In addition Q and T defined in Eq.(68) are symmetric and positive def-
inite matrices [4]. There are only seven independent relations in Eq.(66) in
view of the fact that the fourth and seventh equations of Eq.(66) are identi-
cal. Adding the relation c4 = λc3 with two arbitrary but unequal multipliers
α and β, respectively to the fourth and seventh equations of (66) as in [4],
we finally obtain the following standard form[

N1 N2

N3 NT
1

][
c

d

]
= λ

[
c

d

]
− (Y1 +Y2)

−1Ωe, (70)

where [
N1 N2

N3 NT
1

]
= (Y1 +Y2)

−1(X1 +X2), (71)

X1 =

[
−Q 0

−RT I

]
, Y1 =

[
R I

T 0

]
, (72)

X2 =

[
αI44

1
2I43

βI34 −1
2I33

]
, Y2 =

[
αI43 −1

2I44

βI33
1
2I34

]
.

In addition, N2 and -N3 are symmetric and positive semi-definite [7].
A comparison of Eq.(72) with Eq.(27) reveals the interesting fact that X1

and X have the same structure, as do Y1 and Y despite the fact that their
dimensions are different.

u and Φ are the generalized displacement and stress function vectors.
Now the general solution, which is composed of the homogeneous solution
derived by Cheng and Reddy [4] and the inhomogeneous particular solution
derived above, can be finally given by

u =
[
u1 u2 ϑ1 ϑ2

]T
= Af(z) + Āf(z) +Cg(z) + C̄g(z),

Φ =
[
ϕ1 ϕ2 ψ1 ψ2

]T
= Bf(z) + B̄f(z) +Dg(z) + D̄g(z),

(73)

where
A =

[
a1 a2 a3 a4

]
, B =

[
b1 b2 b3 b4

]
,

C =
[
c1 c2

]
, D =

[
d1 d2

]
,

f(z) =
[
f1(z1) f2(z2) f3(z3) f4(z4)

]T
,

zK = x1 + pKx2, Im {pK} > 0, (K = 1, 2, 3, 4),

(74)
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with [
N1 N2

N3 NT
1

][
aK

bK

]
= pK

[
aK

bK

]
, (K = 1, 2, 3, 4), (75)

[
N1 N2

N3 NT
1

][
cα

dα

]
= λα

[
cα

dα

]
− (Y1 +Y2)

−1Ωeα, (α = 1, 2). (76)

The above general solution is valid when all the eigenvalues are unequal,
i.e., λ1 ̸= λ2 ̸= p1 ̸= p2 ̸= p3 ̸= p4. Even though the standard eigenrelation
(75) is symbolically the same as that of the Stroh sextic formalism as observed
by Cheng and Reddy [4], the second term on the right-hand side of Eq.(76)
is symbolically different from its counterpart in thermo-anisotropic elasticity
[8].

5 Eigenvalues for heat conduction

The eigenvalues corresponding to the heat conduction can be determined by
solving Eq.(15), which is a quartic equation in λ. For some special cases
discussed below, the eigenvalues can be given explicitly.

5.1 Plate symmetric about its mid-plane

If the plate is symmetric about its mid-plane, we have Qx3k̃αβ = 0. Conse-
quently the eigenvalues can be explicitly determined from Eq.(15) as

λ1 =
−Qk̃12+i

√
(Qk̃11)(Qk̃22)−(Qk̃12)2

Qk̃22
,

λ2 =
−Qx2

3k̃12+i
√

(Qx2
3k̃11)(Qx2

3k̃22)−(Qx2
3k̃12)

2

Qx2
3k̃22

.

(77)

5.2 Anti-symmetric angle-ply laminated plate

For an anti-symmetric angle-ply laminated plate [4],

Qk̃12 = 0, Qx3k̃11 = Qx3k̃22 = 0, Qx23k̃12 = 0. (78)

Consequently the eigenvalues can be determined from Eq.(15) as [10-11],

λ1, λ2 =

 i
√
ρ1([

1
2(s1 + 1)]

1
2 ± [12(s1 − 1)]

1
2 ), if s1 ≥ 1

√
ρ1(±[12(1− s1)]

1
2 + i[12(1 + s1)]

1
2 ), if − 1 < s1 < 1

(79)
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where

ρ1 =

√
(Qk̃11)(Qx23k̃11)

(Qk̃22)(Qx23k̃22)
, s1 =

(Qk̃11)(Qx
2
3k̃22) + (Qk̃22)(Qx

2
3k̃11)− 4(Qx3k̃12)

2

2
√

(Qk̃11)(Qx23k̃11)(Qk̃22)(Qx
2
3k̃22)

.

(80)

5.3 Orthotropic material with three axes of symmetry along
the coordinate axes

In this case, k̃12 = 0. Consequently the eigenvalues can be similarly deter-
mined from Eq.(15) as

λ1, λ2 =

 i
√
ρ2([

1
2(s2 + 1)]

1
2 ± [12(s2 − 1)]

1
2 ), if s2 ≥ 1

√
ρ2(±[12(1− s2)]

1
2 + i[12(1 + s2)]

1
2 ), if − 1 < s2 < 1

(81)

where

ρ2 =

√
(Qk̃11)(Qx2

3k̃11)−(Qx3k̃11)2

(Qk̃22)(Qx2
3k̃22)−(Qx3k̃22)2

,

s2 =
(Qk̃11)(Qx2

3k̃22)+(Qk̃22)(Qx2
3k̃11)−2(Qx3k̃11)(Qx3k̃22)

2
√
[(Qk̃22)(Qx2

3k̃22)−(Qx3k̃22)2][(Qk̃11)(Qx2
3k̃11)−(Qx3k̃11)2]

.

(82)

5.4 Transversely isotropic material with the axis of symmetry
at the x3-axis

In this case we have k̃11 = k̃22 and k̃12 = 0. Consequently Eq.(15) becomes

(1 + λ2)2
[
(Qk̃11)(Qx

2
3k̃11)− (Qx3k̃11)

2
]
= 0. (83)

Due to the Schwarz integral inequality [4], we have

λ1 = λ2 = i. (84)

In addition there are two independent eigenvectors associated with the
double eigenvalues of i. We conclude that N̂ is semisimple, and the general
solution (31) is still valid.
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6 Conclusions

A Stroh-like formalism has been developed for the decoupled steady-state
thermal conduction and the thermal stress analyses of a laminated anisotropic
thin plate. For the heat conduction problem, a Stroh-like quartic formalism
is derived through the introduction of a pair of two-dimensional generalized
temperature and heat flux function vectors. The structure of the introduced
4×4 fundamental plate matrix for heat conduction is the same as that of the
8×8 fundamental elasticity matrix [8]. Thus the orthogonality and closure
relations and further identities can be similarly derived. For the thermal
stress analysis, a Stroh-like octet formalism is derived. The resulting general
solution (73) consists of the homogeneous solution obtained by Cheng and
Reddy [4]and the inhomogeneous particular solution derived in this work
to account for the thermal effect. It is expected that the derived Stroh-
like formalism for Kirchhoff laminated anisotropic thermoelastic thin plates
can be conveniently used in the analysis of inclusion and crack problems in
these laminated structures under thermomechanical loadings. The solution
procedure can be outlined as: (i) first the two-dimensional complex function
vector g(z) characterizing the temperature field in the laminated anisotropic
thin plate can be derived using Eq. (31) and appropriate boundary conditions
for heat conduction; (ii) the four-dimensional complex function vector f(z)
characterizing the thermoelastic field in the laminated anisotropic thin plate
can then be derived using Eq.(73) and appropriate boundary conditions for
thermoelasticity.
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Appendix

Since kij is positive definite (Ting, 1996), the following inequality follows

k̃αβyαyβ > 0, (A1)

where
[
y1 y2

]T
is any non-zero real vector.

If λ is real, taking yα = (δα1 + λδα2)e1 into Eq.(A1) yields

(k̃11 + 2λk̃12 + λ2k̃22)e
2
1 > 0, (A2)

and e1 is an arbitrary real and non-zero number. Replacing e1 by e1 + x3e2
in Eq.(A2) and integrating it through the plate thickness gives

Q(k̃11 + 2λk̃12 + λ2k̃22)(e1 + x3e2)
2 > 0, (A3)

or equivalently

[
e1 e2

] [ Q(k̃11 + 2λk̃12 + λ2k̃22) Qx3(k̃11 + 2λk̃12 + λ2k̃22)

Qx3(k̃11 + 2λk̃12 + λ2k̃22) Qx23(k̃11 + 2λk̃12 + λ2k̃22)

][
e1

e2

]
> 0,

(A4)
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which violates Eq.(15). Therefore λ cannot be real.
Similarly by substituting yα = δα1(e1 + x3e2) and yα = δα2(e1 + x3e2)

into Eq.(A1) respectively and integrating through the plate thickness, we will
finally arrive at

[
e1 e2

] [ Qk̃11 Qx3k̃11

Qx3k̃11 Qx23k̃11

][
e1

e2

]
> 0,

[
e1 e2

] [ Qk̃22 Qx3k̃22

Qx3k̃22 Qx23k̃22

][
e1

e2

]
> 0, (A5)

which implies that Q̂ and T̂ defined by Eq.(24) are positive definite.
Thus the coefficients of λ0 and λ4 of the polynomial of degree four in λ

arising from Eq.(15) are positive.
Since the coefficients of λ0 and λ4 arising from Eq.(15) are non-zero, we

will have four non-zero roots of λ. Since all the coefficients of the quartic
equation in λ are real, we can conclude that Eq.(15) provides two pairs of
complex conjugates of λ.

Submitted in August 2013.
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Formalizam tipa Stroh-a za Kirchhoff-ove anizotropne
termoelastične ploče

Formalizam tipa Stroha, baziran na Kirchhoff-ovoj teoriji, je razvijen za
provodjenje toplote i spregnute deformacije zatezanja i savijanja laminatne
anizotropne termoelastične tanke ploče. Za problem provodjenja toplote,
formalizam tipa Stroha četvrtog stepena je razvijen. Vektori dvodimenzion-
alne generalisane temperature i funkcije toplotnog fluksa su uvedeni. Struk-
tura uvedene 4 × 4 osnovne matrice ploče za provodenja toplote je ista kao
8 × 8 fundamentalna matrica elastičnosti u Stroh-ovom formalizmu šestog
stepena elastičnost generalisane ravanske deformacije. Shodno tome, relacije
upravnosti i zatvaranja za provodenje toplote u tankim pločama su uspostavl-
jene. Za problem termoelastičnosti, nehomogeno posebno rešenje je izvedeno
rigorozno. Dobijamo formalizam osmog stepena u kome je opšte rešenje
sastavljeno od poznatog homogenog rešenja razvijenog Cheng-om i Reddy-
jem (izotermni slučaj) kao i nehomogenog posebnog rešenja koje dolazi iz
termičkog efekta.

doi:10.2298/TAM1304543W Math. Subj. Class.: 74A40, 74E10, 74F05, 74K20.
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