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Abstract

A mathematical model is presented for viscous hydromagnetic flow through
a hybrid non-Darcy porous media rotating generator. The system is simu-
lated as steady, incompressible flow through a nonlinear porous regime in-
tercalated between parallel plates of the generator in a rotating frame of ref-
erence in the presence of a strong, inclined magnetic field A pressure gradi-
ent term is included which is a function of the longitudinal coordinate. The
general equations for rotating viscous magnetohydrodynamic flow are pre-
sented and neglecting convective acceleration effects, the two-dimensional
viscous flow equations are derived incorporating current density compo-
nents, porous media drag effects, Lorentz drag force components and Hall
current effects. Using an appropriate group of dimensionless variables, the
momentum equations for primary and secondary flow are rendered non-
dimensional and shown to be controlled by six physical parameters- Hart-
mann number (Ha), Hall current parameter (Nh), Darcy number (Da),
Forchheimer number (Fs), Ekman number (Ek) and dimensionless pres-
sure gradient parameter (Np), in addition to one geometric parameter- the
orientation of the applied magnetic field (θ ). Several special cases are
extracted from the general model, including the non-porous case studied
earlier by Ghosh and Pop (2006). A numerical solution is presented to the
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nonlinear coupled ordinary differential equations using both the Network
Simulation Method and Finite Element Method, achieving excellent
agreement. Additionally very good agreement is also obtained with the ear-
lier analytical solutions of Ghosh and Pop (2006). for selected Ha, Ek and
Nh values. We examine in detail the effects of magnetic field, rotation, Hall
current, bulk porous matrix drag, second order porous impedance, pressure
gradient and magnetic field inclination on primary and secondary velocity
distributions and also frictional shear stresses at the plates. Primary ve-
locity is seen to decrease with an increase in Hall current parameter (Nh)
with the converse observed for the secondary velocity.

Keywords: Magnetohydrodynamics (MHD); inclined field; porous regime;
Forchheimer number; Ekman number; Hall currents; plasma; numerical;
network simulation; finite element method; propulsion

1 Introduction

The Magnetohydrodynamic (MHD) generator has been developed for some time
and has undergone major modifications to increase efficiency. It has been cus-
tomized to the novel MPD thrusters developed by NASA. A lucid review of
state-of-the-art developments has been conducted recently by Osmond [1]. Early
studies of MHD generators focused on the Faraday generator. Unfortunately in
such generators, there is a tendency for differential voltages and currents in
the fluid to short through the electrodes on the sides of the duct, often due to
the presence of Hall currents. As such the Faraday MHD duct generator [2,
3] has a greatly reduced efficiency. Although very powerful super-conducting
magnets may be employed to improve the Faraday MHD generator efficiency,
a more effective and economically viable mechanism is to utilize the Hall effect
to generate a current which flows with the fluid, which is often achieved by
implementing groups of short, vertical electrodes on the sides of the generator
duct [4]. These shorts of the Faraday current generate a strong magnetic field
within the fluid and this secondary, induced field produces current flow in a
“rainbow shape” between the first and last electrodes. As a result energy losses
are significantly less than with the conventional MHD Faraday generator, and
voltages are higher because there is less shorting of the final induced current.
On the other hand this mechanism also creates some new inefficiency problems
since the velocity of the working fluid requires the middle electrodes to be offset
to ”catch” the Faraday currents. When the load varies, the fluid flow velocity
is affected resulting in misalignment of the Faraday current with its intended
electrodes, and reducing the generator’s efficiency. A key problem is to stabilize
the hydro-magnetic flow in such systems. Porous media may successfully achieve
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this; the present study aims to address this problem mathematically and numer-
ically. Under low strength magnetic fields, the electrically-conducting “working”
fluid can be simulated usually by augmenting the Navier-Stokes equations with a
Lorentzian body force term [5]. Numerous researchers have investigated a wide
variety of magnetohydrodynamic energy flow problems in purely fluid media.
Inui et al [6] studied the non-equilibrium disk MHD generator flow regime Al-
Nimr [7] studied hydro-magnetic flow and heat transfer in annular regimes with
wall suction. Chatuverdi [8] investigated the influence of exponential variation of
suction velocity and free stream velocity with time on hydromagnetic flat plate
flow. Inoue et al [9] investigated the CDIF (Component Development Integra-
tion Facility) MHD generator theoretically. Chen et al [10] considered the heat
transfer effect on the performance of MHD power plant under constant Mach
number conditions. Ishikawa et al [11] studied magnetic induction effects in two-
phase hydromagnetic flow in a large scale pulsed MHD generator. Very recently
Aı̈boud-Saouli et al [12] reported on the entropy generation in hydro-magnetic
fully-developed channel flow with heat generation and viscous dissipation ef-
fects.With high magnetic field strengths, supplementary effects arise in MHD
generator systems including Hall currents, ionslip effects, Alfven waves, Landau
damping etc. Considerable attention has been devoted to analyzing theoreti-
cally and numerically a wide range of MHD flows with Hall current effects in
various simple geometrical scenarios. In partially ionized fluids (e.g. water solu-
tion seeded with Potassium) which occur in MHD energy systems, Hall currents
can have a significant effect on the flow development. The presence of longitu-
dinal Hall currents in a flow creates a transverse body force which can lead to
transverse pressure gradients, velocity gradients etc [5]. Sato [13] presented one
of the earliest analyzes for Hall current effects in parallel plate viscous MHD
flow. Other studies assessing hydromagnetic flows with Hall current effects in-
clude those by Yamanishi [14], Katagiri [15], Pop and Soundalgekar [16] and
Gupta [17], the latter two analyses also incorporating suction/injection effects.
Masapati et al [18] studied the influence of Hall and ionslip currents on hydro-
magnetic entry channel flow. Bhat and Mittal [19] later investigated the heat
transfer regime with uniform wall heat flux in the developing flow region in the
presence of Hall and ionslip currents. Soundalgekar et. al. [20] obtained nu-
merical solutions for hydro-magnetic Couette flow and convection with Hall and
Ionslip currents. Singh [21] presented one of the first papers on transient MHD
flow with Hall currents for the Stokes problem past an infinite porous vertical
surface. Kinyanjui et al [22] studied hydro-magnetic natural convection heat
and mass transfer with Hall current and radiation effects considering both the
cooled and heated plate scenarios. These investigations did not consider rota-
tional effects. In MHD generator system flows, rotation can exert a significant
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influence on the fluid dynamics of the system. Nanda and Mohanty [23] probably
were the first to perform a rigorous analysis of steady hydro-magnetic rotating
channel flow. Their exact solutions indicated that for high Hartmann and low
Ekman numbers, thin boundary layers are generated on the channel wall inte-
riors.Soundalgekar and Bhat [24] presented exact solutions for hydro-magnetic
viscous flow in a rotating channel with magnetic induction effects, showing that
the velocity field is strongly affected by the sum of the electrical conductance
ratios of the two plates. Arikoglu et al [25] investigated numerically the influ-
ence of slip on entropy generation in hydro-magnetic flow from a rotating disk,
showing that with a minimzed entropy generation, equipartitioning is encoun-
tered between the fluid friction irreversibility and Joule dissipation. Bég et al
[26] used an implicit difference method to study the combined effects of buoy-
ancy and impulsive motion on hydro-magnetic convection boundary layer flow
from a spinning sphere. Very recently Ghosh et al [27] analyzed thermal radia-
tion effects on rotating hydro-magnetic gas flow from a vertical plate. Rotating
hydro-magnetic flows with Hall current effects have also received some attention
owing to application in the MHD rotating generator system. Takhar et al [28]
studied analytically the Strouhal and Hartmann number effects on transient ro-
tating hydro-magnetic channel flow of a dusty fluid. Myoshi and Kusano [29]
considered the rapidly rotating magnetohydrodynamic flow from a sphere with
an external plasma flow including Hall currents. Ram et al [30] studied the effects
of Hall and ionslip currents on MHD rotating convection using a finite difference
method. Takhar and Jha [31] considered the impulsively-started hydro-magnetic
rotating flow from a vertical plane with Hall and ionslip effects.Kinyanjui et al
[32] employed a finite difference method to study hydro-magnetic Stokes flow
problem for a vertical infinite plate in a dissipative rotating fluid with Hall cur-
rent, for the case of cooling of the plate by free convection currents. Takhar et
al [33] later reported on free stream effects on magneto-hydrodynamic rotating
flow over a translating surface. Naroua et al [34] more recently studied the heat
generation/absorption effects on transient MHD convection of a gas in a rotat-
ing system with Hall/ionslip effects using finite element analysis. Generally in
studies concerning rotating hydro-magnetic flow the applied magnetic field has
been assumed to be normal to the primary flow. However the effects of inclined
magnetic field are especially significant in establishing the optimum performance
of MHD plasma devices and also in the context of operation of MHD generators.
Several articles have addressed rotating hydro-magnetic flows with an inclined
magnetic field including the study by Ghosh [35] which included the influence
of an oscillator and Hall effects and more recently the analysis by Ghosh and
Pop [36] which presented closed-form solutions for steady MHD rotating plasma
flow under inclined magnetic fields in the context of solar hydro-magnetics. The
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above investigations have been restricted to purely fluid regimes. Porous media
may be exploited to achieve enhanced flow control in MHD energy systems. The
majority of porous fluid dynamics studies with or without magnetic fields have
employed the Darcy law, which is an empirical linear relation between the pres-
sure drop across the porous medium and the viscous and gravitational forces.
Bear [37] provides an excellent discussion of Darcian flows. In high-velocity sce-
narios, the influence of inertial effects may become significant. To model such a
phenomenon the Darcy-Forchheimer non-linear drag force model is widely used
and can simulate therefore porous media flows where the Reynolds number based
on the mean pore size is greater than unity. The pressure gradient across the
porous medium is a quadratic relation with the volume averaged velocity.Takhar
et al [38] studied Forchheimer drag effects on steady, incompressible biomagnetic
flow in a porous medium. Magnetohydrodynamic flow in porous media has also
received some attention. Takhar and Ram [39] discussed hydro-magnetic free
convection in porous media with Hall current effects using the Darcian model.
Prasad et al [40] studied numerically the MHD flow in a Darcian rotating porous
regime under inclined magnetic field with Hall effects. In the present study we
extend the study by Ghosh and Pop [36] to incorporate porous medium effects
using the Darcy-Forchheimer model. A full numerical solution using both Net-
work Simulation Methodology (NSM) and the Finite Element Method (FEM)
is developed and the effects of Hartmann number (Ha), Hall current parameter
(Nh), Darcy number (Da), Forchheimer number (Fs), Ekman number (Ek) and
dimensionless pressure gradient parameter (Np), in addition to the orientation
of the applied magnetic field (θ) on primary and secondary flow fields is consid-
ered. Such a study has to the authors’ knowledge thusfar not received attention
in the scientific literature and find important applications in the use of porous
media to control MHD rotating thruster/generator flow dynamics under strong
magnetic field. In a subsequent study we employ the model to compute thrust
specifications.

2 Mathematical model

The fundamental equations of magnetohydrodynamics in a rotating frame of
reference, following Sutton and Sherman [5] can be shown to take the following
form:

Hydromagnetic momentum conservation (Navier-Stokes) in rotating frame
of reference:

(q · ∇)q + 2ΩK̂ × q = −1

ρ
∇p+ ν∇2q +

1

ρ
J ×B (1)
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Mass Conservation

∇⃗ · q = 0 (2)

Oh’s Law for moving conductor with Hall currents:

J +
ωeτe
Bo

(J ×B) = σ[E + q ×B] (3)

Maxwell Electromagnetic Equations:

∇⃗ ·B = µeJ (4)

∇⃗ · E = −∂B
∂t

(5)

∇⃗ · J ̸= 0 (6)

∇⃗ ·D = ρe (7)

∇⃗ ·B = 0 (8)

where q is velocity vector, B is magnetic field vector, E denotes electrical field
vector, J is current density vector and D is the displacement vector, K⃗ is unit
vector along the z-axis, p is pressure,ρ is density of the working fluid, ν is kine-
matic viscosity, ωe is the cyclotron frequency, τ e is electron collision time, σ is
the electrical conductivity of the working fluid and µe is the magnetic perme-
ability. We consider the steady magnetohydrodynamic viscous incompressible,
partially-ionized fluid in nonlinear isotropic, homogenous, porous medium in-
tercalated between two parallel infinitely long plates, rotating with constant
angular velocity,Ω, in an x− y plane, in the presence of a strong magnetic field
inclined to the positive direction of the z-axis (axis of rotation, normal to the x-y
plane). The plates are therefore located at z = L and z= -L. The fluid-saturated
regime and the plate are assumed to be in a state of rigid rotation. They both
possess a uniform angular velocity, , about the z-axis, which is perpendicular to
the plates. A constant pressure gradient is applied to the flow. The magnetic
Reynolds number is small for the partially-ionized plasma so that magnetic in-
duction effects can be ignored. However, relative motion of the particles in the
fluid can occur. As such, an electric current density, J , is required to represent
the relative motion of charged particles. Considering only the electromagnetic
forces on these particles, we can utilize the generalized Ohm law. Ionslip effects
are however ignored in the analysis. The physical regime is shown in figure 1.
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Figure 1: Physical Regime and Coordinate System

In the conservation equations (1) to (8), the velocity, magnetic field, electrical
field and current density vectors are defined as:

q = (u′, v′, 0), B = (Bx +BoSinθ,By, BoCosθ),

E = (Ex, Ey, Ez), J = (Jx, Jy, Jz).
(9)

Due to the presence of Hall currents a secondary flow is induced and the flow
domain is two-dimensional. Owing to the infinitely lengths of the plates in the
x− and y-directions, all physical variables with the exception of pressure are
functions of the z−coordinate only. For steady state flow as considered in this
paper, ∇⃗ ·E = 0. Following Ghosh and Pop [36], for continuous media equation
(6) is valid for a discharge channel where the applied magnetic field is inclined
to the rotation axis. For the present scenario, charge density, ρe, is minute
and equation (7) reduces to ∇⃗ ·D = 0. In equations (1) to (9),Equation (8) is
also known as the solenoidal relation. The porous medium is simulated using
a Darcy–Forcheimmer drag force model which is a second order relationship
defining the pressure gradient across the porous medium as:

∇p = −aU + bU2 (10)

where U denotes a volume-averaged velocity, ∇p is pressure gradient, a and b
are constants defined by a = µ/K and b is a function of the geometry of porous
medium (i.e. b is the Forcheimmer form-drag parameter for quadratic effects), µ
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is the dynamic viscosity of the working fluid, K is permeability [hydraulic con-
ductivity] of the porous medium. We have assumed that the porous medium is
homogenous and isotropic so that only a single permeability is needed to simulate
hydraulic conductivity. Under these physical conditions, the flow regime in the
[x, y,z] coordinate system can be represented by the following simplified conser-
vation equations, neglecting convective acceleration terms in the hydro-magnetic
Navier-Stokes equations (1), viz:

x-direction Momentum Conservation

−2Ωv′ = −1

ρ

∂p

∂x
+ ν

∂2u′

∂z2
+
Bo

ρ
JyCosθ − ν

u′

K
− b

u′2

K
(11)

y-direction Momentum Conservation

2Ωu′ = ν
∂2v′

∂z2
+
Bo

ρ
[JySinθ − JxCosθ]− ν

v′

K
− b

v′2

K
(12)

z-direction Momentum Conservation

0 = −1

ρ

∂p

∂z
− Bo

ρ
JySinθ (13)

To facilitate a numerical solution of the coupled, nonlinear partial differential
equations (11) to (13) we introduce the following transformations:

η =
z

L
(14)

u′ =
uν

L
(15)

v′ =
vν

L
(16)

Np =
L3

ρν2

[
−∂p
∂x

]
(17)

Ek =
ν

ΩL2
(18)

Ha = BoL[
σ

ρν
]1/2 (19)

Nh = ωeτe (20)

p = p′ − 1

2
ρ |Ω× r|2 (21)

Da =
K

L2
(22)
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Fs =
b

L
(23)

where L denotes semi-channel depth, η is dimensionless z-coordinate, u is di-
mensionless x-direction velocity,v is dimensionless y−direction velocity, Np is
the pressure gradient parameter, Ek is the Ekman number, Ha is the Hartmann
number, Nh is the Hall current parameter, p is the dimensionless modified fluid
pressure including centrifugal force, Da is the Darcy number, Fs is the Forch-
heimer number and r is the position vector from the axis of rotation. The
momentum equations now reduce to the following simplified pair of coupled
ordinary differential equations:

−2
v

Ek
= Np+

d2u

dη2
+
Ha2 cos θ

1 +Nh2
[Nhv − u cos θ]− u

Da
− Fs

Da
u2 (24)

2
u

Ek
=
d2v

dη2
− Ha2

1 +Nh2
[v +Nhu cos θ]− v

Da
− Fs

Da
v2 (25)

The corresponding transformed boundary conditions now become:

At η = +1 (upper plate) : u = v = 0 (26a)

At η = −1 (lower plate) : u = v = 0 (26b)

The ordinary differential equations (24) and (25) under boundary conditions
(26a,b) constitute a robust two-point boundary value problem, which can be
solved numerically. While we shall compute primary (u) and secondary (v) ve-
locity profiles, we are also interested in evaluating the dimensionless frictional
shear stresses at the plates, which are of interest from the viewpoint of indus-
trial MHD energy system design (confining walls etc). These are given by the
following relations for the primary and secondary flows:

τupper primary =
du

dη

∣∣∣∣
η=1

(27a)

τlower primary =
du

dη

∣∣∣∣
η=−1

(27b)

τupper sec ondary =
dv

dη

∣∣∣∣
η=1

(27c)

τlower sec ondary =
dv

dη

∣∣∣∣
η=−1

(27d)

In equations (24) and (25) the penultimate terms on the right hand side are
the x- direction Darcian drag force and the y-direction Darcian drag force; the
final terms on the right hand side of these equations designate the Forcheimmer
quadratic drag in the x-direction and y-direction respectively.
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3 Special cases

A number of special cases can be derived from the full transformed momentum
equations (24), (25) which we shall now discuss

CASE I: Rotating MHD flow in non-Darcian regime under transverse mag-
netic field with Hall currents

With ϑ = 0, Cos 0 → 1, the inclined magnetic field is adjusted to be normal
now to the plates i.e. parallel to the y-axis (rotation axis). The transport
equations reduce therefore to:

−2
v

Ek
= Np+

d2u

dη2
+

Ha2

1 +Nh2
[Nhv − u]− u

Da
− Fs

Da
u2 (28a)

2
u

Ek
=
d2v

dη2
− Ha2

1 +Nh2
[v +Nhu]− v

Da
− Fs

Da
v2 (28b)

Such a case constitutes much simpler MHD flow and is studied numerically
in the present analysis.

CASE II: Rotating MHD flow in Darcian regime under inclined magnetic
field with Hall current

With Fs → 0, inertial effects disappear and only a linear bulk matrix resis-
tance acts on the fluid in the porous medium. Both momentum equations (24)
and (25) then reduce to:

−2
v

Ek
= Np+

d2u

dη2
+
Ha2 cos θ

1 +Nh2
[Nhv − u cos θ]− u

Da
(29a)

2
u

Ek
=
d2v

dη2
− Ha2

1 +Nh2
[v +Nhu cos θ]− v

Da
(29b)

CASE III: Rotating MHD flow in Darcian regime under Inclined magnetic
field without Hall current

As Nh → 0, Hall current effects vanish. The magnetic field parameter, Ha,
in this case will have relatively small values. Case II can be further simplified
now to yield:

−2
v

Ek
= Np+

d2u

dη2
+Ha2 cos θ[−u cos θ]− u

Da
(30a)

2
u

Ek
=
d2v

dη2
−Ha2[v]− v

Da
(30b)

Clearly the flow fields are still coupled via the rotational terms on the left
hand side of equations (30a) and (30b).
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CASE IV: Rotating electrically non-conducting flow in non-Darcian regime
As Ha → 0, magnetic drag force and Hall current effects vanish. The regime

is then hydrodynamic rotating flow in a parallel plate system containing a non-
Darcian porous medium. Equations (24) and (25) now take the form:

−2
v

Ek
= Np+

d2u

dη2
− u

Da
− Fs

Da
u2 (31a)

2
u

Ek
=
d2v

dη2
− v

Da
− Fs

Da
v2 (31b)

CASE V: Rotating MHD flow in purely fluid regime with Hall currents
As Da → ∞, the permeability of the medium becomes infinite. In this limit,

the material fibers vanish and the regime is now non-porous. Both Darcian and
Forchheimer impedances vanish and equations (24) and (25) reduce to the form
given by:

−2
v

Ek
= Np+

d2u

dη2
+
Ha2 cos θ

1 +Nh2
[Nhv − u cos θ] (32a)

2
u

Ek
=
d2v

dη2
− Ha2

1 +Nh2
[v +Nhu cos θ] (32b)

This linear case was studied analytically by Ghosh and Pop [36]. To compare
the present numerical solutions we have reproduced the graphs of [36] for the
variation of u and v with (for Ha2 = 10, Ek = 0.25, Nh = 0 (i.e. Hall currents
absent and strong rotation relative to weaker viscous forces)) in figures 2 and 3,
in section 6.

Figure 2: Velocity distribution (u) in the primary flow for Ha2 = 10, Ek = 0.25,
Np=1.0, Nh = 0 (NSM Method)
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Figure 3: Velocity distribution (v) in the secondary flow for Ha2 = 10, Ek =
0.25, Nh = 0 (NSM Method)

4 Network simulation method solutions

Numerical solutions to the governing transformed equations (24) and (25) sub-
ject to boundary conditions (26a,b,c) have been obtained using the Network
Simulation Method (NSM) This method is a computationally-based solver with
excellent accuracy, efficiency and reliability. NSM is based on the classical ther-
moelectric analogy between thermal and electrical variables. Nevertheless, its
capacity to implement in the model any kind of non-linearity (due to boundary
conditions, phase-change processes, temperature dependencies of the thermal
properties, etc) distinguishes NSM from the analogies generally exposed in text
books. NSM has been used in several recent studies by the authors and vali-
dated against other numerical methods including the Blottner implicit difference
method. Bég et al [41] studied transient hydro-magnetic convection flow in a dis-
sipative regime with Hall currents present, using NSM. Other studies employing
NMS include thermal convection boundary layer flow in stratified porous media
[42] and unsteady rotating non-Darcian Couette flow [43] The starting point
in NSM is the set of finite-differential equations, one for each control volume,
obtained by spatial discretization of the transformed equations (24) and (25).
Based on these equations, a network model is designed, whose equations are
formally equivalent to the discretized ones. The electrical analogy relates the
electrical current (J) with the velocity fluxes (∂u∂η and ∂v

∂η ), while the electrical
potential (Φ) is equivalent to u and v. A number of networks are connected
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in series to make up the whole medium and boundary conditions are added by
means of special electrical devices (current or voltage control-sources). Once
the complete network model is designed, for which few programming rules are
needed since not many devices form the network, a computer code (Pspice [44])
is used to simulate it providing the numerical solution. Using Fourier Law, the
spatial discretization of eqs. (24) and (25) gives:

2∆η/Ekvi +∆ηNp+ (ui∆η − ui)/(∆η/2)−

(ui − ui+∆η)/(∆η/2) + ∆ηH2
acosθ[Nhvicosθui]/(1 +Nh2)− (33)

∆η/Daui −∆ηFs/Dau2
i = 0

(vi∆η − vi)/(∆η/2)− (vi − vi+∆η)/(∆η/2)−

2∆η/Ekui −∆ηH2
a [vi +Nhcosθui]/(1 +Nh2)− (34)

∆η/Dav i −∆ηFs/Dav2i = 0

The electrical analogy is applied to eqs.(33) and (34) together with Kirchhoff’s
law for the currents. To implement the boundary conditions at η= +1 and
η= -1, constant voltage sources are employed for both velocities. The principal
advantage of the NSM approach is that it avoids the necessity in traditional
numerical difference schemes of manipulation of difference equations and the
constraints of specified yardsticks around the convergence of numerical solutions.

5 Finite element method solutions

Numerical solutions to the governing transformed equations (24) and (25) sub-
ject to boundary conditions (26a,b,c) have also been obtained using the Finite
Element Method. This is the most versatile numerical method employed by
engineers. Bhargava et al [45] studied pulsating hydro-magnetic blood flow in
porous media using FEM. Bég et al [41] investigated the non-Newtonian thermal
convection flow from a porous plate to a Darcy-Forchheimer regime using FEM.
Other studies utilizing FEM include biomagnetic thermal convection in porous
media [47] and two-phase magnetohydrodynamic convection in a porous medium
channel [48]. In FEM, the whole domain is initially discretized. In the present
regime, the flow domain was therefore divided into a set of 160 line elements of
equal width, each element being two-noded
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5.1 Variational Formulation

The variational form associated with equations (24)-(25) over a typical two noded
linear element (ηe, ηe+1) is given by:

ηe+1∫
ηe

w1

{
d2u

dη2
− Ha2 cos2 θ

1 +Nh2
u− u

Da
− Fs

Da
u2

+2
v

Ek
+
Ha2Nh cos θ

1 +Nh2
v +Np

}
dη= 0 (35)

ηe+1∫
ηe

w2

{
d2v

dη2
− Ha2

1 +Nh2
v − v

Da
− Fs

Da
v2 − Ha2Nh cos θ

1 +Nh2
u− 2

u

Ek

}
dη = 0

(36)
where w1 andw2 are arbitrary test functions and may be viewed as the variation
in u and v respectively.

5.2 Finite Element Formulation

The finite element model may be obtained from equations (35)-(36) by substi-
tuting finite element approximations of the form:

u =

2∑
j=1

ujψj , v =

2∑
j=1

vjψj (37)

with w1=w2 = ψi (i= 1,2) where ψi are the shape functions for a typical element
(ηe, ηe+1) and are taken as

ψ
(e)
1 =

ηe+1 − η

ηe+1 − ηe
, ψ

(e)
2 =

η − ηe
ηe+1 − ηe

ηe ≤ η ≤ ηe+1 (38)

The finite element model of the equations thus formed is given by[ [
K11

] [
K12

][
K21

] [
K22

] ] [
{u}
{v}

]
=

[ {
b1
}{

b2
} ]

(39)

where [Kmn] and [bm] (m, n = 1, 2) are the matrices of order 2 × 2 and 2 × 1
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respectively. All these matrices may be defined as follows:

K11
ij =−

ηe+1∫
ηe

dψi

dη

dψj

dη
dη − Ha2 cos2 θ

(1 +Nh2)

ηe+1∫
ηe

ψiψjdη − 1

Da

ηe+1∫
ηe

ψiψjdη

− Fsū1
Da

ηe+1∫
ηe

ψiψ1ψjdη −
Fsū2
Da

ηe+1∫
ηe

ψiψ2ψjdη,

K12
ij =

2

Ek

ηe+1∫
ηe

ψiψjdη +
Ha2Nh cos θ

(1 +Nh2)

ηe+1∫
ηe

ψiψjdη,

K21
ij =− Ha2Nh cos θ

(1 +Nh2)

ηe+1∫
ηe

ψiψjdη − 2

Ek

ηe+1∫
ηe

ψiψjdη,

K22
ij =−

ηe+1∫
ηe

dψi

dη

dψj

dη
dη − Ha2

(1 +Nh2)

ηe+1∫
ηe

ψiψjdη − 1

Da

ηe+1∫
ηe

ψiψjdη

− Fs v̄1
Da

ηe+1∫
ηe

ψiψ1ψjdη −
Fs v̄2
Da

ηe+1∫
ηe

ψiψ2ψjdη

(40)

and

b1i = −
(
ψi
du

dη

)ηe+1

ηe

−Np

ηe+1∫
ηe

ψi dη, b2i = −
(
ψi
dv

dη

)ηe+1

ηe

, (41)

where

ū =

2∑
i=1

ūiψi, v̄ =

2∑
i=1

v̄iψi. (42)

Each element matrix is of the order 4×4. Since the whole domain is di-
vided into a set of 160 line elements, therefore following assembly of all the
elements equations we obtain a matrix of order 322×322. This system of equa-
tions is non-linear therefore an iterative scheme has been used to solve it. The
system is linearized by incorporating the functions ū and v̄, which are assumed
to be known. After applying the given boundary conditions only a system of
318 equations remains for solution which is achieved using Gauss elimination
method maintaining an accuracy of 0.0005. Benchmarking of the source FEM
code has been performed against finite difference methods. Excellent agreement
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was found. Details have been omitted however for brevity. The line elements
employed achieved rapid convergence. A monotonic convergence criterion was
also established for which the 2-node line elements employed were selected to
ensure that the mesh was compatible. When monotonic convergence is achieved
the accuracy of the solution results in a continuous increase with further re-
finement of the finite element mesh. As such mesh refinement is executed by
delineating a priori utilized elements into two or more elements, resulting in
“embedding” in the new mesh. Effectively, as documented by Bathe [49] the
new space of finite element interpolation functions encapsulates the previously
utilized space and, with mesh refinement, the dimension of the finite element
solution space is enhanced continuously to embody the exact solution.

6 Results and discussion

In the present study we examine the influence of Hartmann number (Ha), Hall
current parameter (Nh), Darcy number (Da), Forchheimer number (Fs), Ekman
number (Ek), dimensionless pressure gradient parameter (Np), and orientation
of the applied magnetic field (θ) on u, v and shear stresses at the plate, with
separation of the plates (η). Representative values are used to simulate physi-
cally realistic flows. Throughout we have adopted Da = 0.1, Ek = 0.25, Nh =
0.5, Fs = 1, Ha = 3, Np = 0.5 and θ = π/4 unless otherwise indicated. Such
data constitute a weakly rotating magnetohydrodynamic flow with Hall currents
flowing through a weakly non-Darcian regime under weak constant pressure gra-
dient, with the magnetic field inclined at 45 degrees to the positive y-axis (axis
of rotation).

In figure 2 we have computed the distribution of primary flow velocity, u,
versus the transformed coordinate, η, for the purely fluid regime scenario i.e.
for Da → ∞ and Fs = 0. Under these conditions, the governing equations
reduce to Case V i.e. the non-porous case examined by Ghosh and Pop [36].
Excellent agreement for all inclinations of the magnetic field i.e. all θ values
are seen. With increasing orientation from π/3 i.e. 60 degrees to π/2 i.e. 90
degrees, we observe that the primary velocity, u, is increased. However as θ is
increased to greater than 90 degrees i.e. when the orientation becomes obtuse,
clearly the velocity u is also decreased. The minimal velocity corresponds to
θ = π for which the magnetic field has swept through to the opposite direction
with respect to the rotation axis i.e. instead of being orientated to the positive
y axis, it is now in fact directed along the negative y axis. From this we can
infer that the best control mechanism for the flow velocity in a variable angle
magnetohydrodynamic generator, would correspond to the negative y axis i.e.
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maximum retardation would be achieved for this scenario. In consistency with
classical MHD channel flow, all profiles are symmetrical parabolas about the
centre line of the channel i.e. about η =0. We note that the Ek parameter defines
the ratio of the hydrodynamic viscous force to the Coriolis (rotational) force. As
such the value Ek = 0.25 corresponds to a weak rotation of the flow. For Ek
∼ 1 in a rotating fluid near a flat plate the Ekman boundary layer is generated
where the viscous and Coriolis forces are of the same order of magnitude. For the
present case of fully developed flow we do not consider boundary-layer regimes.
The pressure gradient parameter for figure 2 (and figure 3) is also held constant
at unity and intermediate magnetic field is imposed (Ha ∼ 3.162) for which Hall
currents are ignored (Nh =0). It is also worth noting that, as with Ghosh and
Pop [36] the velocity distribution is identical when θ = ηπ and (2n +1) π/2.

A similar trend is observed for the development of the secondary velocity
profile, v, with η coordinate across the rotating channel, except that the velocity
is always negative indicating that backflow dominates in the secondary flow field.
We observe that the magnitude of v increases with increasing orientation from
π/4 i.e. 45 degrees to π/3 i.e. 60 degrees, and thence to π/2 i.e. 90 degrees.
However as with primary flow velocity, when θ is increased to greater than 90
degrees i.e. π for which the magnetic field has swept through to the opposite
direction with respect to the rotation axis i.e. instead of being orientated to
the positive y axis, the secondary velocity magnitude is infact decreased. Once
again the computations show excellent agreement with the analytical solution of
Ghosh and Pop [36].

In figures 4a and 4b we have illustrated the variation of primary and sec-
ondary velocity with the Darcy number (Da). A substantial increase in primary
velocity, u, is observed as Da increases from 0.01 (low permeability regime) to
0.1 and then to 1 (high permeability). In the momentum equation (24), the Dar-
cian bulk impedance term, − u

Da is inversely proportional to the Da parameter.
The FEM computations are shown in figure 4a. The Darcy drag force arises
from the viscous contribution to stress at the solid particle boundaries. As such
with increasing permeability (and Da value) the flow receives progressively less
resistance from the porous fibers which diminish in concentration. Consequently
flow is accelerated with a rise in Da and primary velocities increased. An in-
teresting feature of the profiles for all Da values is that they are flattened near
the centre of the channel. The extent of the flattened central zone in the graphs
is increased for lower Da values. For all three profiles there is a sharp descent
from the plateau to zero at each of the plates (no-slip condition at the channel
boundaries). In figure 4b, the secondary velocity distribution, vis shown. In this
case, again an increase in Da serves to boost the velocity considerably. For very
low Da values (0.01) the secondary velocity diminishes to near zero in value.
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(a) Variation of u

(b) Variation of v

Figure 4: Variation of u and v with η for various Da[0.001, 0.01, 0.1, 1] for Ha
= 3, Nh = 0.5, Fs = 1, Ek = 0.25, Np = 0.5, ϑ = π/4. (FEM)

This is contrary to the primary flow velocity, u, which remains non-trivial
even at the lowest Da value (figure 4a). Secondary flow is therefore more strongly
affected by permeability changes than the primary flow. All profiles resemble
the classical Hartmann channel flow parabolic profiles, but are considerably more
curved than for the primary velocity distribution, u.

Figures 5a and 5b illustrate the influence of Forchheimer number (Fs) on
primary and secondary velocity profiles. A decrease in Fs from 25 through 10, 5,
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2, 1 to 0.1,causes a considerable increase in primary velocity. In the primary flow
momentum equation (24), inertial effects due to the porous medium are experi-
enced via the final term on the right hand side, − Fs

Dau
2. The Forchheimer drag

term does not explicitly involve viscosity but does arise from viscosity action,
mediated by the inertial effects affecting the distribution of pressure which also
contributes to the stress at the solid boundaries (plates) in the regime. Forch-
heimer dragmodels essentially a “form drag phenomenon”, and infact involves
the separation of boundary layers and wake formation behind solid obstacles.

(a) Variation of u

(b) Variation of v

Figure 5: Variation of u and v with η for various Fs[0.1, 1, 2, 5, 10, 25] for Ha
= 3, Nh = 0.5, Da = 0.1, Ek = 0.25, Np = 0.5, ϑ = π/4. (NSM Method)

The pore scale convective inertial effects contributing to the form drag lead
to a substantial alteration of the velocity field and exacerbate the macroscopic
region in which the pore scale velocity gradients are large. These characteristics
apply to both porous media of the bluff body type as well as those of the conduit
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type (relevant to the present paper). Forchheimer drag simulates the strong
inertial flow regime in porous media hydrodynamics. This pertains to the regime
where the pore Reynolds number, Rep based on a consideration of the particle
or pore diameter, is greater than or equal to unity. At this point the model
departs from the purely Darcian or viscous-dominated classical porous media
transport physics. Profiles for primary flow are seen to be relatively flattened
between -0.8 ¡ η ¡ 0.8, and then decay sharply to zero at the channel plate
boundaries (η = ± 1). In figure 5b, secondary velocity, v, which is affected
via the secondary Forchheimer drag term in equation (25), − Fs

Dav
2, is seen to

increase with a decrease in Fs. However the changes are much less dramatic than
in the case of the primary flow velocity distribution (figure 5a). Profiles are also
much more parabolic in nature with an absence of flatness near the centre of the
channel. Forchheimer drag therefore has much less effect on secondary velocity
and none at all in the near-plate regions (η < −0.85 and η > 0.85).

The influence of hydro-magnetic parameter, the Hartmann number, Ha on u
and v distributions is depicted in figures 6a and 6b. An increase in Ha from 1
(where Lorentz hydro-magnetic drag is of the same order as the viscous force in
the flow) to 3, 5, and 10 induces a significant decrease in primary velocity across
the channel. Profiles are symmetric and plateau-like across most of the channel
width (- 0.8 ≤ η ≤ 0.8). Secondary velocity profiles are also decreased with
a rise in Ha, and more so than in the case of primary flow velocity. In the
secondary momentum equation, the hydro-magnetic drag (albeit modified for

Hall current and oblique magnetic field effects), − Ha2

1+Nh2 [v+Nhu cos θ], remains
negative i.e. impedes the flow development, resulting in more dramatic reduction
in the secondary field flow.

In figures 7a and 7b, the influence of Hall parameter, Nh, on u and v
distributions across the channel are given. The presence of a Hall current in the
flow causes two-dimensionality. Longitudinal Hall current imparts a transverse
body force which in turn generates transverse gradient in velocity. Primary
velocity in the channel is seen to decrease with an increase in Nh values from
0 (no Hall current), through 0.2, 0.5, 1.0 to 1.5. A similar behaviour was re-
ported by Ghosh and Pop [36]. We infer from the primary momentum equation
(24) that the Nh parameter is expressed in the reciprocal – the primary flow

velocity term with Hall current will then be −Ha2 cos θ
1+Nh2 u cos θ i.e. −Ha2 cos2 θ

1+Nh2 u.
An increase in Nh will induce for small Nh values very minor alterations in
the expression 1 +Nh2. However in the secondary momentum equation, the
term, − Ha2

1+Nh2 [v+Nhu cos θ], gives an effective contribution to primary velocity

field, u, of − Ha2

1+Nh2Nhu cos θ i.e. −NhHa2Cosθ
1+Nh2 u indicating that an increase in Nh

causes a direct increase in the drag force term affecting the primary velocity, u.
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This secondary effect is the principal reason explaining the decrease in primary
flow velocity with an increase in Hall current parameter, Nh which effectively
decelerates the flow.

(a) Variation of u

(b) Variation of v

Figure 6: Variation of u and v with η for various Ha ∈ [1, 3, 5, 10] for Nh = 0.5,
Da = 0.1, Fs = 1, Ek = 0.25, Np = 0.5, ϑ = π/4. (NSM Method)

Conversely we observe that the secondary velocity, v, is in fact increased
with a rise in Hall current parameter, Nh. Peak values (at the channel cen-
tre line, η =0) rise from 0.011 to 0.019 as Nh increases from 0 (Hall effect
neglected) through 0.5, 1.0 to 1.5. A similar argument applies here. In the
secondary momentum equation a change in Nh has very little effect, due to the
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inverse relationship on the secondary velocity, v for Nh ¡ 1 [it is affected via

the term− Ha2

1+Nh2 v]. This effect will impede the secondary flow. However it will
be swamped out by the much greater direct proportionality in the factor affect-
ing the secondary velocity in the primary momentum equation, viz NhHa2Cosθ

1+Nh2 v.
This positive term accelerates the flow for increase in Nh, explaining the rise
in secondary flow velocity, v, with increase in Nh in figure 7b. The mecha-
nism by which Hall currents influence hydro-magnetic channel flow (whether
translational or rotational) is therefore via secondary effects and coupling in the
momentum equations.

(a) Variation of u

(b) Variation of v

Figure 7: Variation of u and v with η for various Nh ∈ [0.0, 0.5, 1.0, 1.5] for Ha
= 3, Da = 0.1, Fs = 1, Ek = 0.25, Np = 0.5, ϑ = π/4. (NSM Method)

Figures 8a and 8b show the effect of the rotational parameter, Ek, on
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primary and secondary velocity components across the channel. Primary velocity
u is seen to decrease substantially as Ek decreases from 1 through 0.5, 0.25 to 0.1.
Ek represents the relative contribution of viscous and rotational forces. Smaller
Ek values imply greater rotational effects. The viscous and rotational forces are
of the same order of magnitude for Ek = 1. Primary velocity is affected via the
secondary momentum equation coupling, through the term 2 u

Ek .

(a) Variation of u

(b) Variation of v

Figure 8: Variation of u and v with η for various Ek ∈ [0.1, 0.25, 0.5, 1.0, 2.0, 5.0]
for Ha = 3, Nh = 0.5, Da = 0.1, Fs = 1, Np = 0.5, ϑ = π/4. (NSM Method)

This is in fact a drag force (it becomes negative when migrated to the right
hand side of (25). As such increasing Ek will decrease the drag force (inverse
proportionality) and this will serve to accelerate the primary velocity field i.e.
increase u values with greater Ek values. The converse is apparent for the
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secondary velocity distribution, v, which is controlled by the coupling term in
the primary momentum equation (24), viz, −2 v

Ek , which becomes positive when
migrated to the right hand side of (24). As such this force is a positive body
force which serves to accelerate the flow. However as Ek increases the magnitude
of this force of course decreases explaining the plummet in secondary velocity,
v with a rise in Ek in figure 8b. Although we have studied only low Ek number
effects in the present analysis, the case of maximum Ek value i.e. 1 in this
paper, is important. It corresponds to the formation of an Ekman boundary
layer in the plate vicinity. The system is a relatively strong rotating system in
this scenario. As will be seen later, for low Ek values the magnetic field has
greater influence on the dynamics of plasma flow, as indicated by Nanda and
Mohanty [23]. Unfortunately in that study only extreme cases of Ek have been
considered, for which analytical solutions are possible. A primary objective of
the present study has been to widen the sensitivity of the analysis to various
low Ek values, to ascertain exactly how plasma rotating channel flow responds
to strong rotational effects.

The influence of pressure gradient parameter, Np, on u and v velocity com-
ponent distributions is shown in figures 9a and 9b. Ghosh and Pop [36]
studied only the case of Np = 1. As such there is no data in their study elu-
cidating how an increase or decrease in dimensionless pressure gradient affects
the flow. We observe in figure 9a that an increase in Np accelerates the primary
flow i.e. increases the u values considerably. Maximum central channel u value
rises from about 0.005 for Np = 0.1 to 0.049 for Np = 1 an increase of almost
1000 % (a tenfold increase). Np appears only in the primary momentum equa-
tion, where clearly it is a positive body force and will enhance flow velocities.
This is of significance in plasma MHD energy systems where it is evident that
higher momentum can be achieved simply by increasing pressure gradient in
the x-direction. Via coupling with the secondary flow equation (25) we observe
that secondary velocity, v, is also increased with a rise in Np, but for the same
increase in Np (from 0.1 to 1) the escalation in v values is less i.e. from 0.005
to 0.028 constituting a 500 % increase. For small Ek values (i.e. 0.25 for figures
9a and 9b), the Taylor-Proudman theorem shows that the influence of pressure
gradient will be two-dimensional, especially in the core of the channel (around
the centre-line), which indeed is consistent with the present computations.
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(a) Variation of u

(b) Variation of v

Figure 9: Variation of u and v with η for various Np ∈ [0.1, 0.25, 0.5, 1.0] for Ha
= 3, Nh = 0.5, Da = 0.1, Fs = 1, Ek = 0.25, ϑ = π/4. (NSM Method)

Profiles of u and v versus η for various orientations of the magnetic field,
θ, are depicted in figures 10a, b. We observe that as θ increases from 0 to
π/4 u value decreases. In the primary momentum equation, the influence of θ

is experienced via the Ha2 cos θ
1+Nh2 [−u cos θ] term which simplifies to −Ha2 cos2 θ

1+Nh2 u.
This is adrag force term, implying that a rise in the value of Cos θ will increase
impedance to the primary flow and cause a deceleration. Cos θ values decrease
from 1 for θ = 0 (where the magnetic field, Bo is directed along the rotation
axis i.e. y-axis) to 0.707 for θ = π/4; the value of Cos2θ will change from 1
to 0.5 and the drag force therefore decreases as θ increases from 0 to θ = π/4,
explaining the increase in u value. Incidentally the u value will be the same for
θ = 0, π and 2π i.e. the same magnetic drag force will be experienced by the
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fluid when the field is inclined along the y axis or the negative y axis direction.
As θ increases to π/3, 5π/6 and then falls to π/2, the value of Cos θ changes
from 0.5 to -0.866 and then to 0. As a result the value of Cos2θ will become
0.25, 0.75 and then to 0, respectively. Hydromagnetic drag force, −Ha2 cos2 θ

1+Nh2 u,
for constant Ha and Nh (which are prescribed values of 3 and 0.5 respectively),
will respectively decrease from θ = π/4 (for which Cos2θ = 0.5] to the new value
for θ = π/3 (Cos2θ = 0.25), then increase for θ = 5π/6 (Cos2θ = 0.75), and
then fall to 0. Hence the minimum hydro-magnetic drag force will correspond
to the last of these cases i.e. θ = π/2, for which there will be no hydro-magnetic
drag, explaining the maximum primary velocity for this case. In MHD plasma
generator design, therefore the highest velocity for a given magnetic field strength
will be achieved for a magnetic field imposed at 90 degrees (θ = π/2) to the y-
axis (rotation axis). In nuclear fusion control problems, the minimum primary
flow velocity will be of importance and this will be achieved for the maximum
hydro-magnetic drag i.e. for the maximum value of Cos2θ, which is associated
with the case θ = 0 i.e. where the magnetic field, Bo is directed along the
rotational (y) axis. Let us now consider the influence of θ on secondary flow
velocity. In equation (25), the hydro-magnetic drag force term (containing θ

contribution) takes the form, − Ha2

1+Nh2 [v + Nhu cos θ], where we immediately

observe two important facts- firstly that θ appears in Cosθ (and not Cos2θ, as
with the primary flow equation (24)) and secondly that Cosθ is coupled to the
primary velocity, u, not the secondary velocity, v. The influence of changing
Cos θ will therefore be experienced indirectly by the secondary velocity and we
expect a different change over the same variation of θ. This is indeed the case
in figure 10b where we observe that the difference in centerline peak values of v
is 0.05 (minimum) to 0.15 (maximum). Over the same effective range of θ (i.e.
from 0 to π) we observe in figure 10a that the primary velocity changes at η =
0 from 0.025 to 0.035, although of course these values correspond to different
values of θ in both cases.

As θ changes from π/2, π/3, π/4, 0 and 2π, to 5π/6 and finally to π, Cos
θ changes in value from 0, 0.5, to 0.707, to 1 (maximum), -0.87 and then to
-1. As a result the hydro-magnetic drag will increase for the first three of these
values and then infact become positive for the last two. Progressively therefore
the flow will be accelerated i.e. the maximum velocities should correspond to
θ = π. This is indeed indicated on figure 10b.
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(a) Variation of u

(b) Variation of v

Figure 10: Variation of u and v with η for various ϑ ∈
[0, π/4, π/3, π/2, 5π/6, π, 2π] for Ha = 3, Nh = 0.5, Da = 0.1, Fs = 1,
Np = 0.5, Ek = 0.25. (NSM Method)

We have also computed, using FEM, the variation of shear stresses at the
lower plate due to the primary and secondary velocity fields for the effects of
Da, Fs, Nh and θ are shown in figures 11 to 14.

We observe in figure 11 that as Da increases from 0.1 to unity (very high
permeability) primary shear stress at the lower plate (τu at η = -1) is increased
in magnitude since the Darcian drag force is reduced with a rise in Da; while
magnitude of the secondary shear stress at the lower plate (τv at η = -1) is also
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increased, values become more negative with a rise in Da, indicating significant
backflow. However flow separation does not occur as shear stresses are never
zero, a result consistent with the deductions of Nanda and Mohanty [23] among
other researchers.

Figure 11: Shear stress τ for various Darcy numbers (Da) values at the lower
plate (FEM solution)

Figure 12: Shear stress τ at various Fs values at the lower plate (FEM solu-
tion)
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Conversely, figure 12 indicates that as Forchheimer number, Fs is increased
from 0.1 to 25, corresponding to a significant increase in inertial (quadratic
porous resistance) primary shear stress at the lower plate (τu at η = -1) is
decreased in magnitude. Very little difference however in secondary shear stress
at the lower plate (τv at η = -1) is observed, since magnitudes of secondary
velocity are substantially lower than the primary velocity. As such the secondary
Forchheimer drag force will have very small values as it is a function of the
secondary velocity, v.

The influence of Hall current parameter, Nh, is shown in figure 13, from
which we deduce that primary shear stress at the lower plate (τu at η = -1) is
initially decreased slightly but with larger Nh values is slightly enhanced. There
is a larger decrease in secondary shear stress at the lower plate (τv at η = -1)
with increasing Nh values, initially; however with subsequent increase the profile
stabilizes.

Figure 13: Shear stress τ at various Nh values at the lower plate(FEM solu-
tion)

Finally in figure 14, the effect of magnetic field inclination, θ on the shear
stress values indicates that primary shear stress at the lower plate (τu at η =
-1) is increased steadily with increasing values of θ (plotted in radians) i.e. the
primary flow at the lower channel plate is accelerated. There is a slight decrease
in secondary shear stress at the lower plate (τv at η = -1) with initial increase
in θ, but generally very little effect on the secondary flow shear stress at the
channel lower plate is observed.
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Figure 14: Shear stress τ at various θ values at the lower plate (FEM solution)

7 Conclusions

We have described in detail a new theoretical model for rotating hydro-magnetic
flow in a nonlinear, isotropic, homogenous porous medium channel system in the
presence of Hall currents, under the action of an inclined magnetic field and a uni-
directional pressure gradient. The general equations for rotating magnetoplasma
dynamics have been reduced to a set of viscous hydro-magnetic partial differential
equations which have been transformed to a pair of nonlinear ordinary differential
equations under appropriate boundary conditions. These primary and secondary
momentum equations are shown to be dictated by the Hartmann number (Ha),
Hall current parameter (Nh), Darcy number (Da), Forchheimer number (Fs),
Ekman number (Ek) and dimensionless pressure gradient parameter (Np) and
also the orientation of the applied magnetic field (θ). A number of special cases
are derived. The succinct aspects of network simulation method used to solve the
transformed two-point boundary value problem, are discussed. A finite element
solution is also developed. The present study has shown that both primary and
secondary flow fields are accelerated with increasing Darcy number, increasing
Forchheimer number and increasing pressure gradient parameter. They are how-
ever decelerated with a rise in Hartmann (hydro-magnetic) number. Primary
velocity, u is decreased with increasing Hall current parameter (Nh) whereas sec-
ondary velocity, v, is conversely increased. Primary velocity is however increased
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with a rise in rotational parameter, Ek i.e. Ekman number, (corresponding to a
decrease in rotational effects) whereas the secondary velocity is decreased with
a rise in Ek. A thorough explanation is provided for this behaviour. Primary
velocity is seen to increase for certain orientations of the magnetic field and
these are discussed with pertinence to MHD energy generators. The important
stabilizing influence of a porous medium has been demonstrated in the present
study; porous media therefore hold excellent potential for controlling rotating
hydro-magnetic flows in MPD (Magneto-Plasma Dynamic) thruster systems.
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Simulacija konačnim elementima i električnom mrežom obrtnog
magnetofluidnog tečenja u nelinearnoj poroznoj sredini sa

nagnutim magnetnim poljem i Hall-ovim tečenjem

Dat je matematički model za viskozno hidromagnetno tečenje kroz hibridnu ne-
Darcy poroznu sredinu obrtnog generatora. Sistem je simuliran kao stacionarno
nestǐsljivo tečenje nestǐsljivim nelinearnim poroznim režimom ubacenim medju
paralelne ploče generatora u obrtnom sistemu referencije u prisustvu jakog nag-
nutog magnetskog polja. Gradijentni član je uključen koji je funkcija uzduňe ko-
ordinate. Opšte jednačine obrtnog viskoznog magnetohidrodinamičkog tečenja
su prikazane. Zanemarujući članove konvektivnog ubrzanja 2D jednačine su
izvedene koje uključuju komponente gustine struje, efekte otpora porozne sre-
dine, komponenata Lorentz-ove sile otpora i efekte Hall-ovog toka. Koristeci
podesnu grupu bezdimenzionalnih promenljivih, jednačine količine kretanja za
primarno i sekundarno tečenje su pruž. Pokazano je da su one kontrolisane
sa šest fizičkih parametara– Hartmann-ovim brojem (HA), Hall-ovim tekućim
parametrom (NH), Darcy-jevim brojem (Da), Forchheimer-ovim brojem (FS),
Ekman-ovim brojem (Ek), i bezdimenzionim parametrom gradijenta pritiska
(NP), sa dodatkom samo jednog geometrijskog parametra-orijentacijom primen-
jenog magnetskog polja (θ). Nekoliko posebnih slučajeva su izdvojeni iz opšteg
modela, uključujući neporozni slučaj proučen ranije Ghosh-om i Pop-om (2006.).
Numeričko rešenje je predstavljeno nelinearnim spregnutim obicnim diferenci-
jalnimh jednačinama korǐsćenjem kako Network Simulation Method tako i
Metode konačnih elemenata, postižući izvrsnu saglasnost. Uz to vrlo dobra
saglasnost je dobijena sa ranijim analitičkim rešenjem Ghosh-a i Pop-a (2006.) za
odabrane Ha, Ek i Nh vrednosti. Ispitujemo u detalje učinke magnetskog polja,
obrtanja, Hall-ove struje, zapreminskim otporom porozne matrice, poroznom
impedancom drugog reda, gradijenta pritiska a, takodje, i smičućim naponima
na pločama. Vidi se da se osnovna brzina smanjuje sa povećanjem Hall-ovim
tekućim parametrom (NH), dok je obrnuto primećeno za sekundarnu brzinu.
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