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Abstract

The flow generated by a circular cylinder, performing longitudinal and
torsional oscillations, in an infinite expanse of a micropolar fluid is stud-
ied. Analytical expressions for the velocity and micro rotation com-
ponents are obtained using no slip and hyper stick conditions at the
boundaries. The effects of coupling number, Reynolds number and gy-
ration parameter on the transverse and axial velocity components are
shown and explained graphically. Also explicit expression for the drag
force acting on the wall of the cylinder is derived and the effects of
pertinent parameters on the drag are shown graphically.

Keywords: Micropolar fluid; circular cylinder; coupling number; lon-
gitudinal and torsional oscillations; drag.

1 Introduction

Mathematical description of micropolar fluid was introduced by Eringen [1] in
1966 as a special case of polar fluids. A micropolar fluid is a non-Newtonian
fluid with local microstructure exhibiting micro rotations. The theory of mi-
cropolar fluids can be applied in many situations where fluids like lubricating
fluids, dusty fluids and additives, certain polymer solutions, colloidal suspen-
sions and complex biological fluid structures etc. are involved. The flow of
a fluid due to a cylindrical rod oscillating with longitudinal and torsional
motion has received considerable attention because of its relevance in many
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technical problems of practical importance such as mixing, oil drilling and
towing operations.

The motion of a classical viscous fluid due to the rotation of an infinite
cylindrical rod immersed in the fluid was first described by Stokes [3]. Ex-
ternal flows generated due to longitudinal and torsional oscillations of a rod
were found in the classical papers of Casarella, Laura [4]. Rajagopal [5] stud-
ied the same problem for the case of a second grade fluid. The motion of a
classical viscous fluid inside an infinite cylinder was studied by Ramkissoon
[6] and he derived an analytical expression for shear stresses, drag on the
cylinder and velocity was depicted graphically. Camlet-Eluhu, Majumdar [7]
have investigated the same problem for a micropolar fluid and examined the
effect of micropolar fluid on the two components of the velocity field through
graphical curves by using Mathematica. Owen and Rahman [8] studied the
same type of flow with an Oldroyd-B liquid. Calmelet-Eluhu, Rosenhaus [9]
studied, micropolar fluid inside a moving infinite circular cylinder due to its
oscillations along and about its axis and they found analytical solutions by
applying lie group methods. Using various types of fluids, the flow generated
due to longitudinal and torsional oscillations of a circular cylinder was ex-
amined by few authors. Ramkissoon et al [10] have examined a polar fluid
by using transform methods and they have presented the effect of micropolar
parameters on the microrotation and velocity fields graphically. Bandelli et
al [11] studied the flow of third grade fluid. Rajagopal and Bhatnagar [12]
presented two simple but elegant solutions for the flow of an Oldroyd-B fluid.
In the first part, they considered the flow past an infinite porous plate and
found that the problem admits an automatically decaying solution in the
case of suction at the plate and that in the case of blowing it admits no such
solution. In the second part, they studied longitudinal and torsional oscilla-
tions of an infinitely long rod of finite radius. Pontrelli [13] has studied the
axi-symmetric flow of a homogeneous Oldroyd-B fluid with suction or injec-
tion velocity applied at the surface. Akyildiz [14] studied an Oldroyd-B fluid
and he examined the effect of the elasticity on the velocity field and dynamic
boundary layer. Fatacau and Corina Fatacau [15] have obtained the starting
solutions corresponding to the motion of a second grade fluid by means of the
finite Hankel transforms. Vieru et al[16] investigated the exact solutions for
the motion of a Maxwell fluid using Laplace Transforms. Karim Rahaman
et al[17] studied the motion of viscoelastic incompressible flow of the upper
convected Maxwell fluid at different frequencies of oscillations of the cylinder
along and about its axis and he presented velocity components graphically
for particular values of the flow parameters. Mehrdad Massoudi and Tran
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X.Phouc [18] have solved numerically the flow of a second grade fluid and
they presented the results graphically for the shear stresses at the wall. But
not much literatures is available on the flow due to oscillations of a rod in
micropolar fluids. Hence, in this paper we consider the flow of micropolar
fluid generated by a circular cylinder subjected to longitudinal and torsional
oscillations.

2 Description and formation of the problem

Consider a circular cylinder of radius ‘a’ within an incompressible micropolar
fluid. The cylinder is subjected to torsional oscillations eiω1τ and longitudi-
nal oscillations eiω2τ with amplitudes q0sinβ0, q0cosβ0 along the respective
directions with ω1 as the frequency of the torsional oscillations, ω2 as the
frequency of the longitudinal oscillations, q0 as the magnitude of oscillations
and β0 is the angle between the direction of torsional oscillation and the base
vector eθ. i.e the cylinder oscillates with velocity as given by the expres-
sion QΓ = q0

(
Sinβ0e

iω1τeθ +Cosβ0e
iω2τez

)
and the flow of the micropolar

fluid being generated due to these oscillations of the cylinder. Choose the
cylindrical polar coordinate system (R,θ, Z) with the origin at the center of
the cylinder and Z-axis along the axis of the cylinder. The physical model
illustrating the problem under consideration is shown in figure 1.

After neglecting body forces and body couples, the field equations gov-
erning the incompressible micropolar fluid dynamics as proposed by Eringen
[1] are

∇1 ·Q = 0 (1)

ρ

(
∂Q

∂τ
+Q.∇1Q

)
= −∇1P + κ∇1 × l − (µ+ κ)∇1 ×∇1 ×Q (2)

ρj

(
∂l

∂τ
+Q · ∇1l

)
= −2κl+κ∇1×Q−γ∇1×∇1×l+(α+ β + γ)∇1 (∇1 · l)

(3)
where Q is velocity, P is Pressure, l is micro-rotation vector,j is micro-inertia
coefficient, ρ is density, τ is time, The constants α,β, γ, κ and µ are material
coefficients which satisfy the following inequalities

2µ+ κ ≥ 0 κ ≥ 0 3α+ β + γ ≥ 0 γ ≥ |β|
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Figure 1: Geometry of the problem–non dimensional form

By nature of the geometry and flow, the velocity and micro-rotation com-
ponents are assumed to be axially symmetric and depend only on radial dis-
tance and time. Hence the velocity and micro-rotations are taken in the
form

Q = V (R, τ) eθ +W (R, τ) ez (4)

l = B (R, τ) eθ + C (R, τ) ez (5)

By introducing the following non-dimensional scheme

q =
Q

q0
, υ =

a

q0
l, p =

P

ρq20
, t =

q0
a
τ, r =

R

a
and z =

Z

a
(6)

The equations in (1), (2) and (3), for the flow take the following non-
dimensional form

∇ · q = 0 (7)

Re

(
∂q

∂t
+ q.∇q

)
= −Re∇p+ c∇× υ −∇×∇× q (8)

ε

(
∂υ

∂t
+ q.∇υ

)
= −2sυ + s∇× q−∇×∇× υ (9)
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where cross viscosity parameter (also known as coupling number) c, couple
stress parameter s, Reynolds number Re and gyration parameter ε are given
by

c =
κ

κ+ µ
, s =

κa2

γ
, Re =

ρq0a

µ+ κ
and ε =

ρjq0a

γ
(10)

Let us choose the velocity vector q and micro-rotation vector υ in the
form

q = v (r) eiσ1teθ + w (r) eiσ2tez (11)

υ = B (r) eiσ2teθ + C (r) eiσ1tez (12)

p = p1 (r) e
2iσ1t (13)

where σ1 =
ω1a

q0
and σ2 =

ω2a

q0
Substituting (11)–(13) in (8) and comparing the coefficients of er,eθ, ez

we get
dp1
dr

=
v2

r
(14)

Reiσ1v = −c
dC

dr
+

d2v

dr2
+

1

r

dv

dr
− v

r2
(15)

Reiσ2w = c

(
dB

dr
+

B

r

)
+

(
d2w

dr2
+

1

r

dw

dr

)
(16)

Similarly the equation (9) yields the following equations

ε
Bv

r
ei(σ1+σ2)t = 0 (17)

εiσ2B = −2sB − s
dw

dr
+

d2B

dr2
+

1

r

dB

dr
− B

r2
(18)

εiσ1C = −2sC + s

(
dv

dr
+

v

r

)
+

(
d2C

dr2
+

1

r

dC

dr

)
(19)

Eliminating
dC

dr
from (15) and (19) we get[

D4 − (iσ1 (Re+ ε) + s (2− c))D2 + iReσ1 (iεσ1 + 2s)
]
v = 0 (20)

where D2 =
d2

dr2
+

1

r

d

dr
− 1

r2
This can be written as(

D2 − λ2
1

) (
D2 − λ2

2

)
v = 0 (21)
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where λ2
1 + λ2

2 = iσ1 (Re+ ε) + s (2− c) and λ2
1λ

2
2 = iReσ1 (iεσ1 + 2s)

Similarly equation (16) and (18) reduces to[
D4 − (iσ2 (Re+ ε) + s (2− c))D2 + iReσ2 (iεσ2 + 2s)

]
B = 0 (22)

which can be written as (
D2 − α2

1

) (
D2 − α2

2

)
B = 0 (23)

where α2
1 + α2

2 = iσ2 (Re+ ε) + s (2− c) and α2
1α

2
2 = iReσ2 (iεσ2 + 2s)

From equation (15) we notice that

dC

dr
=

1

c

(
D2 − iReσ1

)
v (24)

Substituting the expression (24) for
dC

dr
in (19) we may obtain the equa-

tion for C as

c (iσ1ε+ 2s)C = v′
′′
+

2

r
v′

′
+

(
b1 −

1

r2

)
v′ +

(
b1
r

+
1

r3

)
v (25)

Similarly from equation (18), we have

dw

dr
=

1

s

(
D2 − 2s− iσ2ε

)
B (26)

Substituting the expression (26) for
∂w

∂r
in (16) we obtain the equation

for w as

isReσ2w = B′′′ +
2

r
B′′ +

(
b2 −

1

r2

)
B′ +

(
b2
r

+
1

r3

)
B (27)

Now the equations (21) and (23) are solved for v and B under the no slip
and hyper stick conditions.

No slip condition : Velocity on the boundary equals to

QΓ = q0

(
cosβ0e

iω1τeθ + sinβ0e
iω2τez

)
which in non–dimensional form is given by q|r=1 = cosβ0e

iσ1teθ+sinβ0e
iσ2tez

This condition gives the following equations

v (1) = cosβ0 and w (1) = sinβ0 (28)
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Hyper stick condition : Micro rotation on the boundary is lΓ = 1
2CurlQΓ,

where Γ represents boundary. This condition gives the following equations

B (1) = 0 and C (1) = σ1 (29)

As q and υ are at rest as r → ∞ the solutions of (21) and (23) can be
written as

v = a1K1 (λ1r) + a2K1 (λ2r) (30)

B = a3K1 (α1r) + a4K1 (α2r) (31)

Now the constants a1,a2,a3 and a4 can be found out numerically for dif-
ferent values of micropolar parameters by using the boundary conditions (28)
and (29) in (25),(27),(30) and (31).

3 Calculation for drag

The drag D acting on a cylinder of length L is given by

D = aL

2π∫
0

(T21cosβ0 + T31sinβ0)dθ (32)

The stress components in (32) are defined by the following constitutive
equation for micropolar fluids [Eringen 1, 2]

Tij = −pδij + (2µ+ κ) eij + κεijm (ωm − υm) (33)

where ωm = 1
2 (∇1 ×Q)m the subscript m represents component in mth di-

rection, eij is the strain rate tensor and εijm is the alternative symbol. Now
the stress components T31 and T21 on the cylinder (at r= 1) can be calculated
as

T31 =
q0 (µ+ κ)

as

(
a3K1 (α1)

(
(1− c)α2

1 − cs
)
+ a4K1 (α2) ×(

(1− c)α2
2 − cs

)
− α2

1α
2
2 (1− c)

iReσ2

)
eiσ2t (34)
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and

T21 =
q0 (µ+ κ)

a

[
a1

{
K1 (λ1)

(
2
(
b1 + λ2

1

)
iReσ1

λ2
1λ

2
2

− c

)
−

λ1K2 (λ1)

((
b1 + λ2

1

)
iReσ1

λ2
1λ

2
2

+ 1− c

)}
+

a2

{
K1 (λ2)

(
2
(
b1 + λ2

2

)
iReσ1

λ2
1λ

2
2

− c

)
− (35)

λ2K2 (λ2)

((
b1 + λ2

2

)
iReσ1

λ2
1λ

2
2

+ 1− c

)}]
eiσ1t

Now finally the non–dimensional drag D′ is given by

D′ = (T21cosβ0 + T31sinβ0) on r = 1 (36)

where D′ =
D

2πLµq0

4 Numerical calculation and results

The analytical expressions for the non-dimensional velocity components v, w
and micro rotation components B,C and drag are given by (28), (29), (23),
(25) and (34) respectively. For different values of the parameters like cross
viscosity parameter or coupling number c, Reynolds number Re, couple stress
parameter s and Gyration parameter ε on velocity components v, w and
micro rotation components B,C are computed numerically and results are
graphically presented in Figs1–20. The drag is calculated numerically at
different times for fixed σ1 and σ2.

When the angle β0=0 the problem reduces to rotatory oscillations about
the axis of the cylinder. When β0 = π/2, the problem becomes the special
case of longitudinal oscillations along the axis of the cylinder. When σ1 = σ2
and oscillations are periodic, our results are in correlation with the results of
Calmelet-Eluhu and Mazumdar [7].

The numerical results are presented in the form of graphs at s=10, c=0.4,
ε=0.2, Re=0.7, σ1=1.5, σ2=2.5, β0=0.7, t = π. It can be seen from Figs 2–5
that as the Cross viscosity parameter c increases the axial velocity w and
micro rotation C are decreasing whereas transverse velocity v and micro
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rotation B are increasing near to cylinder up to double the distance of radius
of the cylinder then are decreasing as distance increases.

It can be seen from Figs 6–9 that as the Gyration parameter ε has no
effect on the velocities v, w and micro rotation components B,C. i.e., the
variation in the values of ε does not result in much variation in the values of
v, w,B and C.

It can be seen from Figs 10–13 that as the Reynolds number Re increases
the velocities v, w and micro rotation C are decreasing and the maximum
values of micro rotation B are increasing.

From figs 14–17, we observe that as couple stress parameter s increases the
transverse velocity v and micro rotation C are decreases whereas maximum
values of micro rotation B increase, but the effect on w is insignificant.

The non-dimensional drag is calculated numerically for different values of
non-dimensional time in multiples of π/σ2 at fixed values of σ1, σ2 and the
results are shown in the Fig 18. It can be seen from fig 18 that as c increases
the amplitude of drag decreases.

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

0.2

0.4

0.6

0.8

v

r

c = 0.1,0.5,0.9

Figure 2: variation of v with r
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Figure 3: variation of w with r

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.00

0.05

0.10

0.15

0.20

0.25

B

r

c = 0.1,0.5,0.9

Figure 4: variation of B with r



Unsteady flow of a micropolar fluid generated by a circular cylinder... 81

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

0.4

0.8

1.2

B

r

c = 0.1,0.5,0.9

Figure 5: variation of C with r
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Figure 7: variation of w with r
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Figure 8: variation of B with r
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Figure 9: variation of C with r
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Figure 10: variation of v with r



84 G.Nagaraju, J.V.Ramana Murthy

1 2 3 4 5 6

0.0

0.2

0.4

0.6
w

r

Re = 0.1,0.4,0.7,0.9

Figure 11: variation of w with r
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Figure 12: variation of B with r
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Figure 13: variation of C with r
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Figure 15: variation of w with r
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Figure 17: variation of C with r

0 1 2 3 4 5 6

-2

-1

0

1

2

 t

D
'

c = 0.1,0.3,0.5,0.7,0.9

Figure 18: variation of D′ with σ2t



88 G.Nagaraju, J.V.Ramana Murthy

0.25 0.50 0.75 1.00

-1.6

-1.2

-0.8

-0.4

0.0

0.4
D
'

2
t

s = 0.2,0.6,1.0,1.4,2.0

Figure 19: variation of D′ with c

1 2 3 4 5
-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

 1 t =  / 2

 1 t =

 1 t =  / 2

 1 t =

vE
xp

[i
1t]

r

Figure 20: variation of vExp(iσ1t) with r
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Figure 21: variation of wExp(iσ2t) with r

In fig 19, it is observed that as s increases, the amplitude of oscillation
for the drag decreases and all the curves are assuming the same shape nearly
after s exceeds a certain value. Drag in the case of viscous fluids is less than
that of the micropolar fluids.

We get the case of viscous fluids from the micropolar fluid by applying the
limit c →0 and s → ∞. These results are shown in Figs.20–21 for velocities
v and w and our results are in good agreement with the observations of
Ramkissoon [6] in the case of viscous fluids.
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Nestabilno tečenje mikropolarne tečnosti izazvano uzduzv
znim i torzionim oscilacijama kružnog cilindra

Proučava se tečenje mikropolarne tečnosti u beskrajnom prostoru koje je iza-
zvano uzdužnim i torzionim oscilacijama kružnog cilindra Analitički izrazi za
komponente brzine i mikro obrtanja su dobijeni korǐsćenjem odsustva klizanja
kao i uslova hiper-prilepljivanja na granici. Posledice broja spregnutosti, Re-
jnoldsovog broja i žiro-parametra na poprečne i uzdužne komponente brzine
su prikazane i slikovito objašnjene. Takodje, eksplicitni izraz za silu otpora
na zidu cilindra je izveden i učinci relevantnih parametara na otpor su grafički
prikazani.
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