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Abstract

Collocation Method (CM) such as analytical technique, which does
not need small parameters is here used to evaluate the analytical approx-
imate solutions of the nonlinear heat transfer equation. The obtained
results from Collocation Method are compared with other analytical
techniques such as Homotopy Perturbation Method (HPM) and Varia-
tion Iteration Method (VIM). Also, boundary value problem (BVP) is
applied as a numerical method for validation. The results reveal that
the Collocation Method is very effective, simple and more accurate than
other techniques. Also, it is found that this method is a powerful math-
ematical tool and can be applied to a large class of linear and nonlinear
problems arising in different fields of science and engineering especially
at some heat transfer equations.
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Nomenclature

Ac Cross sectional area of the fin

X spatial coordinate

h heat transfer coefficient at convec-
tion

k0 thermal conductivity at zero temper-
ature

P fin perimeter

CM Collocation Method

V IM Variation Iteration Method

HPM Homotopy Perturbation Method

L length of the fin

N fin parameter or convection–
conduction parameter(dimensionless)

T local fin temperature

Tb fin base temperature

TS sink temperature for radiation

T∞ sink temperature for convection

x dimensionless spatial coordinate

Greek symbols

θ∞ dimensionless convection sink tem-
perature

θs dimensionless radiation sink temper-
ature

θ dimensionless temperature

ε′ fin surface emissivity (dimensionless)

ε radiation–conduction number (di-
mensionless)

σ Stefan–Boltzmann constant

Subscripts

a surrounding fluid

c tip end of the fin

b conditions at the fin base

1 Introduction

The heat transfer rate enhancement in fins with reducing size and cost is the
aim of many researchers in engineering applications. To achieve this goals,
convective heat transfer coefficient, surface area available and temperature
difference between surface and surrounding fluid are such as ways can be
used. Most of problems and scientific phenomenon such as heat transfer are
inherently of nonlinearity. We know that except a limited number of these
problems, most of them do not have exact solution. Therefore, these non-
linear equations should be solved using other methods, Such as numerical
techniques. In the numerical method, stability and convergence should be
considered so as to avoid divergence or inappropriate results. Time consum-
ing is another problem of numerical techniques. This is caused to led scientist
to improve the traditional analytical method such as perturbation. In the
analytical perturbation method, we should exert a small parameter in the



Simple and accurate approach for solving... 161

equation. Therefore, finding this parameter and exerting it into the equa-
tion are difficulties of this method. Therefore, many different methods have
recently introduced such as the δ-expansion method [1], Adomian’s decompo-
sition method [2], Homotopy Perturbation Method (HPM) [3–9], Variational
Iteration Method (VIM) [10–18], Homotopy analysis method [19], Optimal
Homotopy Asymptopic Method (OHAM)[20,21] and optimal Homotopy Per-
turbation Method (OHPM)[22].

One of the semi-exact methods is the collocation method. In this arti-
cle, the basic idea of the CM is introduced and then its application in some
heat transfer equations is studied. The nonlinear heat convective-radiattive
equations of a fin in the steady state are solved through the three methods:
Collocation Method, Homotopy Perturbation Method and the Variation It-
eration Method, and compared with each other and also with the numerical
solution. Results demonstrate that Collocation Method is simple and offers
superior accuracy compared with the VIM and HPM.

2 Governing equations

Figure 1: Schematic diagram of fin profile under consideration
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The example to be studied is the one-dimensional heat transfer in a longitudi-
nal fin of rectangular profile area Ac, length L, constant thermal conductivity
k0 and surface emissivity ε. The fin is attached to a primary surface at fixed
temperature Tb and loses heat by simultaneous convection and radiation to
the surrounding medium. The sink temperatures for convection and radia-
tion are T∞ and Ts, respectively. The convective heat transfer coefficient h
is assumed to be a constant. The heat loss from the tip of the fin compared
with the top and bottom surfaces of the fin is taken to be negligible. Since the
transverse Biot number should be small for the fin to be truly effective, the
temperature variation in the transverse direction can be neglected. Thus heat
conduction occurs only in the longitudinal direction. For the problem just
described, the appropriate differential equation and the boundary conditions
may be written as

d2T

dx2
− h p

K0A
(T − T∞)− ε′σp

K0A

(
T 4 − T 4

S

)
= 0 (1)

x = 0,
dT

dx
= 0 as well as x = L, T = Tb, (2)

where x is measured from the tip of the fin. For simplicity, the case of
T∞ = TS = 0 is treated. With the introduction of following dimensionless
quantities,

θ =
T

Tb
, X =

x

L
, N2 =

hpL2

K0A
, ε =

ε′σpL2T 3
b

K0A
(3)

eqs. (1)–(3) take the form

d2θ

dX2
−N2 θ − ε θ4 = 0 (4)

X = 0,
dθ

dX
= 0 as well as X = 1, θ = 1. (5)

3 Application of collocation method

In collocation method a trial family of approximate solution T containing
a finite number of undetermined coefficient C1, C2, . . . and Cn can be con-
structed by the superposition of some basis functions such as polynomials,
trigonometric functions and a trial solution so selected to satisfy the essential
boundary conditions for the problem [23]. But when it is introduced into the
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differential equation,this one is not satisfied and leads to a residual R, be-
cause it is not the exact solution. For the true solution the residual vanishes
identically, therefore the problem of constructing an approximate solution
becomes one of determining the unknown coefficients C1, C2, . . . and Cn. So
the residual stays close to zero throughout the domain of the solution. De-
pending on the number of terms taken for the trial solution, the type of base
functions used and the way the unknown coefficients are determined, several
different approximate solutions are possible for a given problem. We wish to
obtain an approximate solution for this problem in the interval 0 < X < 1.
To construct a trial solution θ ≡ t/Tb , we choose the basic function as a
polynomial in X. The trial solution contains two undetermined coefficients
and satisfies the condition for all values of C as follows:

θ (X) = 1 + C1

(
1−X2

)
+ C2

(
1−X3

)
+ C3

(
1−X4

)
+ C4

(
1−X5

)
+ C5

(
1−X6

)
,

(6)

whereas the trial solution satisfies the boundary conditions of (5). When θ is
introduced into differential equation (4) it yields residual R (X) as follows:

R (X) = 24εC1C2C3X
4C4 − 24εC1C2C3X

10C5 + 24εC1C2C3X
4C5

+ 24εC1C2C4C5X
6 − 24εC1C2X

8C3C4 + 24εC1C2X
3C3C4

+ 24εC1C2X
3C3C5 + 24εC1C2X

3C4C5 + 24εC1C2X
13C3C5

+ · · · − 48εC1C2X
7C3C4 − 4εC3

4X
21C5 − 12εC4X

11C3
5

− 4εC4X
23C3

5 + 12εC4X
17C3

5 = 0.

(7)

This residual vanishes only with the exact solution for the problem. Now
the problem of finding approximate solution of the problem in the interval
0 < X < 1 becomes one adjusting the values of C1, C2, C3, C4, C5 so that
residual stays close to zero throughout the interval 0 < X < 1. The basic
assumption is that the residual does not deviate much from zero between
collocation locations:

R

(
1

6

)
= 0, R

(
2

6

)
= 0, R

(
3

6

)
= 0, R

(
4

6

)
= 0, R

(
5

6

)
= 0. (8)
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This produces the following set of algebraic equations:

R

(
1

6

)
= −ε−N2 − 0.333333C3 − 0.0231148C5

− 23.206891464εC1C2C3C5 − 0.999978566N2C5

+ · · · − C2 − 2C1 − 23.20440εC1C2C3C4 − 0.09258 C4

− 0.9953703N2C2 − 0.999223N2C3 − 0.9998713N2C4

− 11.98868εC3C4C
2
5 = 0,

(9)

R

(
2

6

)
= −ε−N2 − 1.333333C3 − 2C2 − 2C1 − 0.7407407C4

− 20.261757εC1C2C3C5 − 0.99862825N2C5 + · · ·
− 20.206093εC1C2C3C4 − 0.3703703C5 − 1.333333C3

− 0.9629629N2C2 − 0.9876543N2C3 − 0.995884N2C4

− 11.64137εC2
3 C4C5 = 0,

(10)

R

(
3

6

)
= −ε−N2 − 3C3 − 3C2 − 2 C1 − 2.5 C4 − 1.875C5

− 0.75N2C1 − 0.96875N2C4 − 0.984375N2C5

+ · · · − 14.3041992εC1C2C3C4 − 10.05764007εC2
3 C4C5

− 0.9375N2C3 − 14.53491εC1C2C3C5 = 0,

(11)

R

(
4

6

)
= −ε−N2 − 5.3 3333C3 − 4C2 − 2 C1 − 5.9259255C4

− 5.9259259C5 − 0.86831275N2C4 + · · · − 0.91220850N2C5

− 6.53782200εC1C2C3C4 − 0.703703703N2C2

− 0.80246913N2C3 − 6.12080044εC2
3 C4C5 = 0,

(12)

R

(
5

6

)
= −ε−N2 − 8.3 3333C3 − 5C2 − 2 C1 − 11.5740740C4

− 14.467592C5 − 0.59812242N2C4 + · · · − 0.66510202N2C5

− 0.95674604εC1C2C3C4 − 0.51774691N2C3

− 1.279660132εC2
3 C4C5 − 1.063885414εC1C2C3C5 = 0.

(13)

Thus we can obtain coefficients C1, . . . , C5 for different values of ε and N as
displayed in the table 1.
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Table 1: Values of coefficients C1, . . . , C5 obtained for different ε and N

ε
N

C
1

C
2

C
3

C
4

C
5

0.
8

1
−
0.
35
22
58
45
39

0.
0
28
85
43
88
74

−
0.
1
13
42
43
82
7

0
.0
7
5
3
9
4
4
8
4
9
9

−
0.
0
4
6
0
1
0
4
5
5
9
4

0.
6

1
−
0.
34
64
42
80
16

0.
0
19
50
05
20
41

−
0.
0
87
88
11
54
17

0
.0
5
1
2
5
5
4
8
4
6
9

−
0.
0
3
2
4
0
8
1
0
3
1
8

0.
8

0.
5

−
0.
21
99
36
96
90

0.
0
10
89
41
79
21

−
0.
0
53
48
34
25
86

0
.0
2
8
8
9
6
5
2
7
9
0

−
0.
0
1
9
9
9
6
3
9
0
3
6

0.
6

0.
5

−
0.
20
33
41
90
45

0.
0
05
97
91
00
62
8

−
0.
0
36
34
56
71
39

0
.0
1
5
9
8
8
2
3
9
9
2

−
0.
0
1
1
8
9
3
6
8
8
5
1

0.
8

0.
25

−
0.
18
18
05
08
85

0.
0
07
55
92
59
34
8

−
0.
0
41
84
17
10
1

0
.0
2
0
1
5
1
9
5
5
9
6

−
0.
0
1
4
5
7
8
2
9
7
8
6

0.
6

0.
25

−
0.
16
08
11
98
63

0.
0
03
69
61
28
90
8

−
0.
0
26
82
12
02
82

0
.0
0
9
9
4
1
2
9
6
2
0
3

−
0.
0
0
7
8
8
2
4
8
5
0
7
5
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4 Application of Variational Iteration Method

First we construct a correction functional which reads

θn+1 (x) = θn (x) +

x∫
0

λ
{
θ′′n (x)− N2 θn (x) + ε θ4 (x)

}
dτ (14)

where λ is general Lagrange multiplier.
Making the above correction functional stationary, we can obtain follow-

ing stationary conditions

λ′′ (t)−M2 λ (t) = 0, 1− λ′ (t)|t=x = 0, λ (t)|t=x = 0. (15)

The Lagrange multiplier, therefore, can be identified as

λ = − sinh [N (x− τ)]

N
. (16)

As a result, we obtain the following iteration formula

θn+1 (x) = θn (x) +

x∫
0

λ
{
θ′′n (x)− N2 θn (x) + ε θ4 (x)

}
dτ. (17)

Now we start with an arbitrary initial approximation that satisfies the
initial condition

θ0 (x) =
e−Nx

e−N + eN
+

eNx

e−N + eN
. (18)

Using the above iteration formula (18), after some simplifications, we get

θ1(x) =
1

15

1

(eN + e−N )(e8N + 4e6N + 6e4N + 4e2N + 1)

[
15N2eNx

+ 15N2eN(x+8) + 60N2eN(x+6) + 60N2eN(x+2) + 15N2e−Nx

+ 15N2e−N(x−8) + 60N2e−N(x−6) + 90N2e−N(x−4)

+ 24εeN(x+4) + 24εeN(x+3) + 24εe−N(x−5)

+ 24εe−N(x−3) + εeN(4x+5) − 90εe3N + εeN(4x+3)

+ 60N2e−N(x−2) + 20εe−N(2x−5) + 20εe−N(2x−3)

+ εe−N(4x−5) + εe−N(4x−3) + 20εeN(2x+5) + 90N2eN(x+4)

− 90εe5N + 20εeN(2x+3)
]
,

(19)
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where C0 =
1
A , that is

A =
1

15

1

(eN + e−N )(e8N + 4e6N + 6e4N + 4e2N + 1)

[
15N2e9N

+ 60N2e7N + 90N2e5N + 60N2e3N + 15N2eN + 15N2e7N

+ 60N2e5N + 90N2e3N − 90εe5N + εeN + 15N2e−N

+ 24εe5N + 24εe4N + 24εe2N + εe9N + εe−N − 90εe3N

+ εe7N + 60N2eN + 20εe3N + 20εe7N + 20εe5N
]
.

5 Application of Homotopy Perturbation Method

We define He’s general form of eq. (4) as:

A (θ)− U (x) = 0, x ∈ Ω . (20)

With the boundary condition of:

B

(
θ ,

∂θ

∂n

)
= 0 , x ∈ Γ. (21)

where A is a general differential operator, B a boundary operator, U (x) a
known analytical function and Γ is the boundary of the domain Ω.

So according to eq. (4) we will have:

A (θ) =
[
θ′′(X)−N2 θ(X)− ε θ4(X)

]
, U (x) = 0. (22)

Here A can be divided into two parts, L and N , where L is linear and N is
nonlinear:

L (θ) +N (θ) = 0 , x ∈ Ω . (23)

The Homotopy Perturbation structure is shown as follows:

H (θ, p) = (1− p) [L (θ)− L (θ0)] + p [A (θ)− U (x)] = 0 (24)

where, p ∈ [0 , 1] is an embedding parameter and θ0 is the first approximation
that satisfies the boundary condition. We can assume that the solution of
eq.(4) can be written as a power series in p, as following:

θ (X) = θ0 (X) + p θ1 (X) + p2 θ2 (X) + · · · =
n∑

i=0

pi θi (X). (25)
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Considering eqs. (22) and (24), we will have:

(1− p)
[
θ′′(X)−N2 θ(X)

]
+ p

[
θ′′(X)−N2 θ(X)− ε θ4(X)

]
= 0, (26)

By substituting θ (X) from eq.(25) into eq.(26) and after some simplifi-
cations and rearrangements based on powers of p-terms, we have:

p0 : −N2 θ0 (X) + θ′′0 (X) = 0,

θ0 (1) = 1 , θ′0 (0) = 0,
(27)

p1 : θ′′1 (X)− θ1(X)− ε θ40 (X) = 0,

θ1 (1) = 0 , θ′1 (0) = 0.
(28)

Solving Eqs.(23)-(24) with boundary conditions, we have:

θ0(x) =
eNX

eN + e−N
+

e−NX

eN + e−N
(29)

θ1(X) = − eNX

15N2
ε
(
e8N + 20 e6N − 90 e4N + 20 e2N + 1

)(
e−Ne8N

+ 4 e−Ne6N + 6 e−Ne6N + 4 e−Ne2N + e−N + 6 eNe4N + eN

+ 4 eNe2N + eNe8N + 4 eNe6N
)−1 − e−NX

15N2
ε
(
e8N + 20 e6N

− 90 e4N + 20 e2N + 1
)(
e−Ne8N + 4 e−Ne6N + 6 e−Ne6N + e−N

+ 4 e−Ne2N + 6 eNe4N + 4 eNe2N + eN + eNe8N + 4 eNe6N
)−1

+
e−4N(−1+X)

15N2

ε(e8N X + 20 e6N X − 90 e4N X + 20 e2N X + 1)

e8N + 4 e6N + 6 e4N + 4 e2N + 1
.

(30)

The solution of this equation, when p → 1, will be as follows:

θ (X) = θ0 (X) + θ 1 (X) (31)
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6 Results and discussion

In this manuscript the Collocation Method such as analytical technique is
employed to find an analytical solution of the nonlinear fin problem. The
results are compared with other analytical methods such as VIM and HPM,
for validation all these results are compared with the BVP. The main goal
of this article is to show the simplicity, stability and power of Collocation
Method rather than the other mentioned techniques. Figures 2.-6. show the
temperature distribution with the axial distance in a convective-radiative
fin with constant thermal conductivity by three methods. Comparing these
figures gives closer results to numerical solution. It is observed that the
Collocation Method is very effective, simple, stable and more accurate than
other methods.

Figure 2: Comparison of temperature distributions with different approxi-
mate methods: N = 1, ε = 0.8

Moreover, In order to show the effectiveness of Collocation Method, nu-
merical comparison between CM with other different approximate solutions
are tabulated in Table 2. It is interesting to note that Collocation Method is
very close to the numerical results and the results of HPM, VIM are signifi-
cantly in error.
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Table 2: The result of different method forN = 0.25 , ε = 0.8.

X
C
M

V
IM

H
P
M

N
U
M

E
rr
or

of
V
IM

E
rr
or

of
H
P
M

E
rr
or

of
C
M

0
0.
78
94

86
11

0
.7
11

41
89

5
0.
61

77
63

38
0.
78

95
95

79
0.
07

81
76

83
0.
17

18
32

40
0.
00

01
09

67

0.
1

0.
79
13

00
60

0
.7
14

23
54

6
0.
62

14
91

87
0.
79

13
99

81
0.
07

71
64

35
0.
16

99
07

94
0.
00

00
99

21

0.
2

0.
79
67

59
27

0
.7
22

69
32

5
0.
63

26
88

53
0.
79

68
41

68
0.
07

41
48

43
0.
16

41
53

15
0.
00

00
82

41

0.
3

0.
80
59

45
05

0
.7
36

81
71

2
0.
65

13
86

94
0.
80

60
12

44
0.
06

91
95

32
0.
15

46
25

50
0.
00

00
67

39

0.
4

0.
81
90

15
64

0
.7
56

64
85

5
0.
67

76
43

30
0.
81

90
69

65
0.
06

24
21

10
0.
14

14
26

35
0.
00

00
54

00

0.
5

0.
83
62

05
62

0
.7
82

24
59

4
0.
71

15
36

72
0.
83

62
46

84
0.
05

40
00

90
0.
12

47
10

12
0.
00

00
41

22

0.
6

0.
85
78

38
98

0
.8
13

68
49

4
0.
75

31
69

67
0.
85

78
68

22
0.
04

41
83

27
0.
10

46
98

55
0.
00

00
29

23

0.
7

0.
88
43

52
16

0
.8
51

05
88

7
0.
80

26
68

56
0.
88

43
70

47
0.
03

33
11

60
0.
08

17
01

91
0.
00

00
18

31

0.
8

0.
91
63

27
61

0
.8
94

47
92

1
0.
86

01
84

44
0.
91

63
34

74
0.
02

18
55

52
0.
05

61
50

29
0.
00

00
07

12

0.
9

0.
95
45

37
86

0
.9
44

07
62

9
0.
92

58
93

90
0.
95

45
33

44
0.
01

04
57

14
0.
02

86
39

54
0.
00

00
04

42
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Figure 3: Comparison of temperature distributions with different approxi-
mate methods: N = 1 , ε = 0.6

Figure 4: Comparison of temperature distributions with different approxi-
mate methods: N = 0.5 , ε = 0.8
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Figure 5: Comparison of temperature distributions with different approxi-
mate methods: N = 0.5, ε = 0.6

Figure 6: Comparison of temperature distributions with different approxi-
mate methods: N = 0.25, ε = 0.8
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7 Conclusion

In this letter, the basic idea of the Collocation Method is introduced and
then we have applied to solve the governing non-linear ordinary differential
equations. Furthermore, the obtained solutions by Collocation Method are
compared with VIM , HPM and numerical solutions. The results demon-
strates that Collocation Method is very effective, simple and offers superior
accuracy in comparison with the Variation Iteration Method and Homotopy
Perturbation Method. Also, it is found that these methods are powerful
mathematical tools and that they can be applied to a large class of linear
and nonlinear problems arising in different fields of science and engineering
specially some heat transfer equations.
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Prost i tačan pristup rešavanju nelinearne jednačine pri
konvekciji i radijaciji u peraju korǐsćenjem kolokacionog

metoda i uporedjenje sa HPM i VPM

Koristi se kolokaciona metoda (CM), kao analitička metoda kojoj nije potre-
ban mali parametar, za analitička približna rešenja nelinearne jednačine prenosa
toplote. Rezultati dobijeni kolokacionom metodom su uporedjeni sa drugim
analitičkim tehnikama kao što su: perturbaciona metoda homotopijom (HPM)
i varijaciona iterativna metoda (VIM). Takodje, za overu se koristi problem
granične vrednosti (BVP) kao numerička metoda. Rezultati pokazuju da
je kolokaciona metoda vrlo efektivna, prosta i tačnija od drugih tehnika.
Takodje, nadjeno je da je ova metoda snažna matematička alatka i može se
primeniti na veliku klasu linearnih i nelinearnih problema koji se pojavljuju u
raznim naučnim i tehničkim poljima - posebno jednačinama prenosa toplote.
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