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Abstract

In this paper, Oseen’s correction to Stokes drag experienced by axially
symmetric particle placed in a uniform stream perpendicular to axis of
symmetry(i.e. transverse flow) is obtained. For this, the linear relation-
ship between axial and transverse Stokes drag is utilized to extend the
Brenner’s formula for axial flow to transverse flow. General expression
of Oseen’s correction to Stokes drag on axially symmetric particle placed
in transverse flow is found to be new. This general expression is applied
to some known axially symmetric bodies and obtained values of Oseen’s
drag, up to first order terms in Reynolds number ‘R’, are also claimed to
be new and never exist in the literature. Numerical values of Oseen drag
are also evaluated and their variations with respect to Reynolds num-
ber, eccentricity and deformation parameter are depicted in figures and
compared with some known values. Some important applications are also
highlighted.

Keywords: Stokes drag, Oseen’s drag, axially symmetric body, Oseen’s
flow, transverse flow.

1 Introduction

The method and formulation for analysis of flow at a very low Reynolds num-
ber is important. The slow motion of small particles in a fluid is common
in bio-engineering. Oseen’s drag formulation can be used in connection with
flow of fluids under various special conditions, such as: containing particles,
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sedimentation of particles, centrifugation or ultracentrifugation of suspensions,
colloids, and blood through isolation of tumors and antigens. The fluid does
not even have to be a liquid, and the particles do not need to be solid. It can be
used in a number of applications, such as smog formation and atomization of
liquids.The problem of great importance in the hydrodynamics of low Reynolds
number flows is the drag or resistance experienced by a particle moving uni-
formly through an infinite fluid. Since the appearance of Stokes’s approximate
solution for the flow of a viscous fluid past a sphere(Stokes, 1851), very well
known as Stokes law, numerous attempts have been made, both to generalize
the problem by changing the shape of the body, and to improve the calculation
by including the effect of the inertia terms which were neglected in the original
calculation. Oseen(1927) tackled this type of problem involving the correction
to Stokes drag extensively. Oseen provided solutions for the flow past various
bodies at small Reynolds number ‘R’ and calculated the force to the first order
in R, one term more than would be given by the Stokes approximation. By
the inclusion of the effect of the inertia terms, Oseen improved the flow picture
far from the body where the Stokes approximation is inadequate, but near
the body the difference between the two solutions is of an order of smallness
which is outside the accuracy of either approximation. Oseen’s calculation for
the force thus requires some further justification, for flow past a sphere, by
the work of Kaplun(1957), Kaplun and Lagerstrom(1957) and Proudman and
Pearson(1957). Oseen failed to calculate correctly the velocity field, his result
for the drag on the sphere, namely

D = D0[1 + (3/8)R], (1.1)

where D0 is the Stokes drag, is in fact valid because the correction to the veloc-
ity field makes no contribution to the total force on the sphere. Almost similar
problem has been considered by Chang (1960) for the axially symmetric Stokes
flow of a conducting fluid past a body of revolution in the presence of a uni-
form magnetic field. An equation identical to that cited above, except that the
dimensionless Hartmann number, M, appears in place of the Reynolds num-
ber, ‘R’. It is interesting to note here that Chang’s(1960) result is restricted to
axially symmetric flows because of the requirement that there be sufficient sym-
metry to preclude the existence of an electric field. While, on the other hand,
Brenner’s(1961) result is limited only by the requirement that the Stokes drag
on the particle(and thus the Oseen drag) be parallel to its direction of motion.
Krasovitskaya et al.(1970) proposed a formula based on Oseen’s correction for
calculating the settling of solid particles of powdered materials with enhanced
accuracy in carrying out sedimentation analysis. Dyer and Ohkawa(1992) have
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used the Oseen drag in acoustic levitation. These two works are the main prac-
tical applications of Oseen’s correction which was not possible with the Stokes
drag. In biology(Fung, 1997), blood flow in small vessels, such as capillaries, is
characterized by small Reynolds numbers. A vessel of diameter of 10 m with a
flow of 1 milimetre/second, viscosity of 0.02 poise for blood, density of 1 g/cm3
and a heart rate of 2 Hz, will have a Reynolds number of 0.005. At these small
Reynolds numbers, the viscous effects of the fluid become predominant. Os-
een’s method is better in understanding of the movement of these particles for
drug delivery and studying metastasis movements of cancers.

Datta and Srivastava(1999) have proposed a new method to evaluate axial
Stokes drag and transverse Stokes drag based on geometry of axially symmet-
ric particle under no-slip boundary condition. From these two expressions of
Stokes drag, the linear relationship between axial and transverse Stokes drag
can be proved. With the help of this linear relationship, we can evaluate the
Oseen’s correction in Stokes drag experienced by axially symmetric particles
placed in transverse flow followed by Brenner’s formula(Brenner, 1961). Sri-
vastava et al.(2012) solved the problem of steady Stokes flow past dumbbell
shaped axially symmetric body of revolution by using newly developed analytic
approach based on D-S conjecture(Datta and Srivastava, 1999). The method
is described in section 2 and applied to various axially symmetric bodies in
section 4.

2 Method

Let us consider the axially symmetric body of characteristic length L placed
along its axis (x-axis, say) in a uniform stream U of viscous fluid of density ρ
and kinematic viscosity ν. When Reynolds number UL/ν is small, the steady
motion of incompressible fluid around this axially symmetric body is governed
by Stokes equations [Happel and Brenner, 1964],

0 = −
(
1

ρ

)
gradp + ν∇2u, div u = 0 (2.1)

subject to the no-slip boundary condition.

We have taken up the class of those axially symmetric bodies which pos-
sesses continuously turning tangent, placed in a uniform stream U along the
axis of symmetry (which is x-axis), as well as constant radius ’b’ of maximum
circular cross-section at the mid of the body. This axi-symmetric body is ob-
tained by the revolution of meridional plane curve (depicted in figure 1) about
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axis of symmetry which obeys the following limitations:

i. Tangents at the points A, on the x-axis , must be vertical,

ii. Tangents at the points B, on the y-axis , must be horizontal,

iii.The semi-transverse axis length ’b’ must be fixed.

The point P on the curve may be represented by the Cartesian coordinates
(x, y) or polar coordinates (r, θ) respectively; PN and PM are the length of
tangent and normal at the point P. The symbol R stands for the intercepting
length of normal between the point on the curve and point on axis of symmetry
and symbol α is the slope of normal PM which can vary from 0 to π.

Figure 1: Geometry of axially symmetric body

2.1 Axial flow

The expression of Stokes drag on such type of axially symmetric bodies placed
in axial flow (uniform flow parallel to the axis of symmetry) is given by [Datta
and Srivastava, 1999]

Fx =
1

2

λb2

hx
, where λ = 6πµU (2.2)

and hx =

(
3

8

)∫ π

0
Rsin3αdα. (2.3)
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2.2 Transverse flow

The expression of Stokes drag on axially symmetric bodies placed in transverse
flow(uniform flow perpendicular to the axis of symmetry) is given by [Datta
and Srivastava, 1999]

Fy =

(
1

2

)
λb2

hy
, where λ = 6πµU (2.4)

and hy =

(
3

16

)∫ π

0
R
(
2sinα− sin3α

)
dα. (2.5)

Here the suffix ‘y’ has been introduced to assert that the force is in the trans-
verse direction,

Fx

Fy
=

hy
hx

=
1

2

∫ π
0 R

(
2sinα− sin3α

)
dα∫ π

0 Rsin3αdα
= K (say). (2.6)

Now, on dividing (2.2) and (2.4), we get

Fx = KFy. (2.7)

On applying Brenner’s formula (Brenner, 1961), Oseen’s correction to Stokes
drag on a body placed in axial uniform flow, in general, may be written as

F

Fx
= 1 +

Fx

16πµLU
R+O(R2), (2.8)

by using linear relationship between axial and transverse Stokes drag (2.7),
equation (2.8) provides Oseen’s correction to Stokes drag on a body placed in
transverse uniform flow

F

Fy
= K

F

Fx
= K

[
1 +

Fx

16πµLU
R+O(R2)

]
. (2.9)

where K is a real factor defined in (2.6) and R = ρUL/µ, the particles Reynolds
number.

3 Formulation of the problem

Let us consider the axially symmetric arbitrary body of characteristic length
L placed along its axis (x-axis, say) in a uniform stream U of viscous fluid of
density ρ and kinematic viscosity, perpendicular to axis of symmetry. When
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particle Reynolds number UL/ν is small, the steady motion of incompress-
ible fluid around this axially symmetric body is governed by Stokes equations
[Happel and Brenner, 1964],

0 = −
(
1

ρ

)
gradp + ν∇2u, divu = 0, (3.1)

subject to the no-slip boundary condition. This equation is the reduced form
of complete Navier–Stokes equations neglecting inertia term (u.grad)u which
is unimportant in the vicinity of body where viscous term dominates(Stokes
approximation). Solution of this equation (3.1), called Stokes law, ‘6πµUa’,
for a slowly moving sphere having radius ‘a’, is valid only in the vicinity of the
body which breaks down at distance far away from the body. This breaks down
in Stokes solution at far distance from the body being known as Whitehead’s
paradox. It was Oseen in 1910, who pointed out the origin of Whitehead’s
paradox and suggested a scheme for its resolution(see Oseen, 1927). In or-
der to rectify the difficulty, Oseen went on to make the following additional
observations.

In the limit where the particle Reynolds number ρUa/µ → 0, Stokes ap-
proximation becomes invalid only when r/a → ∞. But at such enormous dis-
tances, the local velocity v differs only imperceptibly from a uniform stream
of velocity U. Thus, Oseen was inspired to suggested that the inertial term
(U.grad)u could be uniformly approximated by the term (u.grad)u. By such
arguments, Oseen proposed that uniformly valid solutions of the problem of
steady streaming flow past a body at small particle Reynolds numbers could
be obtained by solving the linear equations

(U.grad)u = −
(
1

ρ

)
gradp + ν∇2u, divu = 0 (3.2)

known as Oseen’s equation. Oseen obtained an approximated solution of his
equations for flow past a sphere, from which he obtained the Stokes drag for-
mula [Happel and Brenner, page 44, eq.(2-6.5), 1964]

F = 6πµaU

[
1 +

3

8
NRe +O

(
NRe

2
)]

, (3.3)

where NRe = ϱUa/µ is bodies Reynolds number.
We find the solution of these equations (3.2) for various axially symmetric

bodies like sphere, spheroid(prolate and oblate), deformed sphere, cycloidal
body, cassini oval, hypocycloidal body, cylindrical capsule with semi spherical
ends and complicated egg-shaped body consisting of semi spherical and semi
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spheroidal ends under no-slip boundary conditions by use of D-S conjecture
(2.2), (2.4) followed by linear relationship (2.7) and Brenner’s formula (2.8)
valid for axial flow and its extension (2.9) for transverse flow.

4 Solution

4.1 Flow past a sphere

Stokes drag on sphere having radius ‘a’ placed in uniform axial flow, with
velocity U, parallel to axis of symmetry(x-axis) and very well known as Stokes
law of resistance is given by(by utilizing DS conjecture 2.4 and 2.5, Datta and
Srivastava, 1999)
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Figure 2: Variation of Oseen correction with respect to Reynolds number R =
ρUa/µ for sphere

Fx =6πµUa. (4.1a)

Fy =6πµUa. (4.1b)
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From relation (4.1a, b) and (2.7), the value of

K = 1. (4.2)

Now, the Oseen’s correction as well as the solution of Oseen’s equation (3.2)
may be obtained for same sphere by substituting the value of K = 1 and Stokes
drag (4.1a,b) in Brenner’s formula (2.8) and (2.9) as

F

Fy
=

F

Fx
= 1 +

3

8
R +O

(
R2

)
, (4.3)

where R =
(
ρUa
µ

)
is particle Reynolds number. This Oseen’s correction

matches with that given by Oseen(1927) and Chester(1962).

4.2 Flow past a prolate spheroid

Stokes drag on prolate spheroid having semi-major axis length ‘a’ and semi-
minor axis length ‘b’ placed in uniform velocity U, parallel to axis of symme-
try(axial flow) and perpendicular to its axis of symmetry(transverse flow) is
given as[by utilizing formulae 2.4 and 2.5, Datta and Srivastava, 1999]
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Figure 3: Variation of Oseen correction with respect to eccentricity ‘e’ for
various values of Reynolds number R = ρUa/µ for prolate spheroid
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Figure 4: Variation of Oseen correction with respect to eccentricity ‘e’ for
various values of Reynolds number R = ρUb/µ for prolate spheroid

Fx = 16πµUae3
[
−2e +

(
1 + e2

)
ln
1 + e

1− e

]−1

, (4.3a)

Fy = 32πµUae3
[
2e +

(
3e2 − 1

)
ln
1 + e

1− e

]−1

. (4.3b)

By using (4.3a,b), from (2.7), the value of real factor ‘K’ comes out to be

K =
1

2

[
2e +

(
3e2 − 1

)
ln
1 + e

1− e

] [
−2e +

(
1 + e2

)
ln
1 + e

1− e

]−1

= 1− 1

10
e2 − 8

175
e4...

(4.4)
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Now, from Brenner’s formula (2.8) and (2.9), the Oseen’s correction, with the
use of real factor K (cf. (4.4)) may be written as

F

Fy
= K

F

Fx

=

[
1− 1

10
e2 − 8

175
e4.....

] [
1 +

3

8

{
1− 2

5
e2 − 17

175
e4...

}
R

+ O(R2)
]

= 1− 1

10
e2 − 8

175
e4 +

3

8

{
1 +

3

10
e2 − 1l8

175
e4......

}
R+O(R2),

(4.5)

where R = ρUa/µ, is particle Reynolds number. The same solution may be
re-written, when we take particle Reynolds number R = ρUb/µ, by using
b/a = (1− e2)1/2, as

F

Fy
= K

F

Fx

= K

1 + e3
√
1− e2

[
−2e + (1 + e2) ln1+e

1−e

]R+O
(
R2

) ,

=

[
1− 1

10
e2 − 8

175
e4.....

]1 + e3
√
1− e2

[
−2e + (1 + e2) ln1+e

1−e

]R
+O(R2)

]
=

[
1− 1

10
e2 − 8

175
e4.....

] [
1 +

3

8

{
1 +

1

10
e2 +

109

1400
e4......

}
R

+O(R2)

]
= 1− 1

10
e2 − 8

175
e4 +

3

8

{
1 +

31

1400
e4
}
R+O

(
R2

)
.

(4.6)

Equations (4.5) and (4.6) immediately reduce to the case of sphere(given in
(4.3)) in the limiting case as e → 0. On the other hand, the expressions (4.5)
and (4.6) due to Oseen for prolate spheroid appear to be new as no such type
of expressions are available in the literature for comparison.
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4.3 Flow past oblate spheroid

Stokes drag on oblate spheroid having semi-major axis length ‘b’ and semi-
minor axis length ‘a’ placed in uniform velocity U, parallel to axis of symme-
try(axial flow) and perpendicular to its axis of symmetry(transverse flow) is
given as [by utilizing DS conjecture 2.4 and 2.5, Datta and Srivastava, 1999]
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Figure 5: Variation of Oseen correction with respect to eccentricity ‘e’ for
various values of Reynolds number R = ρUa/µ for oblate spheroid

Fx = 8πµUae3
[
e
√

1− e2 −
(
1− 2e2

)
sin−1e

]−1
, (4.7a)

Fy = 16πµUae3
[
−e

√
1− e2 +

(
1 + 2e2

)
sin−1e

]−1
. (4.7b)
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Figure 6: Variation of Oseen correction with respect to eccentricity ‘e’ for
various values of Reynolds number R = ρUb/µ for oblate spheroid

By using (4.7a,b) and (2.7), the value of real factor ‘K’ comes out to be

K =
Fx

Fy

=
1

2

[
−e

√
1− e2 +

(
1 + 2e2

)
sin−1e

] [
e
√

1− e2

−
(
1− 2e2

)
sin−1e

]−1
= 1− 7

30
e2 − 199

33600
e4...

(4.8)

Now, from Brenner’s formula (2.8) and (2.9), the Oseen’s correction, with the
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use of real factor K(cf. (4.8)), may be written as

F

Fy
= K

F

Fx

=

[
1− 7

30
e2 − 199

33600
e4.....

] [
1 +

3

8

{
1− 1

10
e2 − 31

1400
e4.....

}
R

+O(R2)

]
= 1− 7

30
e2 − 199

33600
e4 +

3

8

{
1− 1

3
e2 − 53

11200
e4......

}
R+O

(
R2

)
,

(4.9)

where R =
(
ρUa
µ

)
is particle Reynolds number. The same solution may be

re-written, when we take particle Reynolds number R =
(
ρUb
µ

)
, by using

b/a = (1− e2)1/2, as

F

Fy
= K

F

Fx

= K

1 + e3

2
√
1− e2

[
e
√
1− e2 − (1− 2e2) sin−1e

]R+O
(
R2

)
=

[
1− 7

30
e2 − 199

33600
e4...

] [
1

+
e3

2
√
1− e2

[
e
√
1− e2 − (1− 2e2) sin−1e

]R+O
(
R2

)
=

[
1− 7

30
e2 − 199

33600
e4.....

] [
1 +

3

8

{
1

+
2

5
e2 +

61

200
e4...

}
R+O

(
R2

) ]
= 1− 7

30
e2 − 199

33600
e4 +

3

8

{
1− 1

3
e2 − 4079

33600
e4......

}
R

+O
(
R2

)
.

(4.10)

Equations (4.9) and (4.10) immediately reduces to the case of sphere(given in
eq. 4.3) in the limiting case as e → 0. On the other hand, the expressions (4.9)
and (4.10) due to Oseen for oblate spheroid appears to be new as no such type
of expressions are available in the literature for comparison.
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4.4 Flow past deformed sphere

We consider the polar equation of deformed sphere as

r = a

[
1 + ε

∞∑
k=0

dkPk (µ)

]
, µ = cosθ (4.11)

where ‘ε’ is deformation parameter and (r, θ) are polar coordinates. The Stokes
drag experienced by this deformed sphere placed in axial and transverse uni-
form stream is given by use of by D-S formulae 2.4 and 2.5( Datta and Srivas-
tava, 1999) only up to first order of ‘ε’ as

Fx = 6πµUa

[
1 + ε

(
d0 −

1

5
d2

)]
, (4.12a)

Fy = 6πµUa

[
1 + ε

(
d0 −

1

10
d2

)]
(4.12b)

By using (4.12a,b) and (2.7), the value of real factor ‘K’ comes out to be

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

 O
se

en
 c

or
re

ct
io

n 
F

/F
0 

 deformation parameter ε 

 

 
 R=0
 R=1
 R=5
 R=10
 R=20
 R=40
 R=60
 R=80
 R=100

Figure 7: Variation of Oseen correction with respect to deformation parameter
‘ε’ for various values of Reynolds number R = ρUa/µ for deformed sphere
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K =
Fx

Fy

=

[
1 + ε

(
d0 −

1

5
d2

)][
1 + ε

(
d0 −

1

10
d2

)]−1

=

[
1 + ε

(
d0 −

1

5
d2

)][
1− ε

(
d0 −

1

10
d2

)]
= 1− 1

10
d2ε+O

(
ε2
)
.

(4.13)

Now, from Brenner’s formula (2.8) for axial flow and revised Brenner’s formula
(2.9) for transverse flow, the Oseen’s correction, with the use of real factor K
(eq. 4.13), may be written as

F

Fy
= K

F

Fx

=

[
1− 1

10
d2ε+O

(
ε2
)] [

1 +
3

8

{
1 + ε

(
d0 −

1

5
d2

)
+O(ε2)

}
R+O(R2)

]
= 1− d2

10
ε+

3

8

{
1−

(
d0 +

3

10
d2

)
ε

}
R+O(R2),

(4.14)

where R =
(
ρUa
µ

)
is particle Reynolds number. This expression (4.14) imme-

diately reduces to the case of sphere (given in (4.2)) in the limiting case as
ε → 0. This further reduces to 1 for R = 0 (case of Stokes drag in transverse
flow).

4.5 Cycloidal body of revolution

Case 1. We consider the equation of cycloidal body of revolution as

x = a (t + sint) , y = a (1 + cost) , − π ≤ t ≤ π (4.15)

The Stokes drag experienced by this cycloidal body of revolution placed in
axial and transverse uniform stream is given by use of DS conjecture 2.4 and
2.5, [Datta and Srivastava, 1999]

Fx =
128

3
µUa, (4.16a)

Fy =
256

5
µUa. (4.16b)
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Figure 8: Variation of Oseen correction with respect to Reynolds number R =
ρUaπ/µ for cycloidal body

By using (4.16a,b) and (2.7), the value of real factor ‘K’ comes out to be

K =
Fx

F y
=

5

6
∼= 0.83. (4.17)

Now, from Brenner’s formula (2.8) for axial flow and revised Brenner’s formula
(2.9) for transverse flow, the Oseen’s correction, with the use of real factor
K(eq. 4.18), may be written as

F

Fy
= K

F

Fx

=
5

6

[
1 +

8

3π
R+O(R2)

]
=

[
5

6
+

20

9π
R+O(R2)

]
∼= 0.8333 + 0.7077× R+O(R2),

(4.18)

where R = ρUa/µ, is particle Reynolds number. This expression reduces to
0.8333 as R → 0, the case of Stokes drag i.e., F = 0.8333Fy which should
be equal to Fy. The reason behind this discrepancy is due to the error of
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16.67 % which persists in the operation of D-S conjecture on cycloidal body of
revolution (4.16).
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Figure 9: Variation of Oseen correction with respect to Reynolds number R =
2aρU/µ for cycloidal body

Case 2. Consider the body generated by the rotation about x-axis of the
curve composed of arcs of two cycloidal parts represented parametrically by

x = a (1 + cost) , y = a (t + sint) , 0 ≤ t ≤ π (4.19a)

x = −a (1 + cost) , y = a (t + sint) , 0 ≤ t ≤ π. (4.19b)

The Stokes drag experienced by this cycloidal body of revolution placed in
axial and transverse uniform stream is given by use of by DS conjecture 2.4
and 2.5, [Datta and Srivastava, 1999]

Fx =
96π3

3π2 + 16
µUa, (4.20a)

Fy =
192π3

9π2 + 32
µUa. (4.20b)
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By using (4.20 a,b) and (2.7), the value of real factor ‘K’ comes out to be

K =
Fx

F y
=

1

2

(
9π2 + 32

3π2 + 16

)
∼= 1.3244. (4.21)

Now, from Brenner’s formula (2.8) for axial flow and revised Brenner’s formula
(2.9) for transverse flow, the Oseen’s correction, with the use of real factor K
(eq. 4.21), may be written as

F

Fy
= K

F

Fx

=
1

2

(
9π2 + 32

3π2 + 16

)[
1 +

6π2

(3π2 + 16)
R+O

(
R2

)]
= 1.3244 + 1.718964199× R+O

(
R2

)
,

(4.22)

where R = ρUa/µ, is particle Reynolds number. This expression reduces to
1.3244 as R → 0, the case of Stokes drag i.e., F = 1.3244Fy which should
be equal to Fy. The reason behind this discrepancy is due to the error of
32.44 % which persists in the operation of D-S conjecture on cycloidal body of
revolution (4.20a,b).

4.6 Egg-shaped body

We consider the egg-shaped body of revolution in which right portion is in the
shape of semi spheroid obtained from revolution of ellipse

x = acost, y = bsint, 0 ≤ t ≤ π/2 (4.23a)

and left portion is in the shape of semi-sphere obtained from revolution of circle

x = bcost, y = bsint, π/2 ≤ t ≤ π, (4.23b)

about the axis of symmetry(x-axis). The Stokes drag experienced by this
axially symmetric egg-shaped body in axial and transverse uniform stream is
given by use of DS conjecture 2.4 and 2.5(see Datta and Srivastava, 1999)

Fx = 8πµUa

[
2

3
+

√
1− e2

4e3

{
−2e +

(
1 + e2

)
ln
1 + e

1− e

}]−1

, (4.24a)

Fy = 16πµUa
√

1− e2

[
4

3
+

√
1− e2

4e3

{
2e +

(
3e2 − 1

)
ln
1 + e

1− e

}]−1

. (4.24b)
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Figure 10: Variation of Oseen correction with respect to eccentricity ‘e’ for
various values of Reynolds number R = ρUa/µ for egg–shaped body

By using (4.23a,b) and (2.7), the value of real factor ‘K’ comes out to be

K =
Fx

F y

=
1

2
√
1− e2

[
4

3
+

√
1− e2

4e3

{
2e +

(
3e2 − 1

)
ln
1 + e

1− e

}][
2

3
(4.25a)

+

√
1− e2

4e3

{
−2e +

(
1 + e2

)
ln
1 + e

1− e

}]−1

= 1 +
5

12
e2 +

733

1680
e4 + ... (4.25b)

Now, from Brenner’s formula (2.8) for axial flow and revised Brenner’s formula
(2.9) for transverse flow, the Oseen’s correction, with the use of real factor
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K(eq. 4.25), may be written as

F

Fy
= K

F

Fx

=
1

2
√
1− e2

[
4

3
+

√
1− e2

4e3

{
2e +

(
3e2 − 1

)
ln
1 + e

1− e

}][
2

3

+

√
1− e2

4e3

{
−2e +

(
1 + e2

)
ln
1 + e

1− e

}]−1

×

1 +
1

2

[
2

3
+

√
1− e2

4e3

{
−2e +

(
1 + e2

)
ln
1 + e

1− e

}]−1

R+O
(
R2

)
=

[
1 +

5

12
e2 +

733

1680
e4....

] [
1 +

3

8

{
1 +

1

20
e2 +

51

1400
e4....

}
R+O

(
R2

)]
=

(
1 +

5

12
e2 +

733

1680
e4...

)
+

3

8

{
1 +

7

15
e2 +

14511

29400
e4 + ...

}
R+O

(
R2

)
,

(4.26)

where R = ρUa/µ, is particle Reynolds number. The same solution may
be written, when we take particle Reynolds number R = ρUb/µ, by using
b/a = (1− e2)

1/2, as

F

Fy
= K

F

Fx

=
1

2
√
1− e2

[
4

3
+

√
1− e2

4e3

{
2e +

(
3e2 − 1

)
ln
1 + e

1− e

}][
2

3

+

√
1− e2

4e3

{
−2e +

(
1 + e2

)
ln
1 + e

1− e

}]−1

×

1 +
1

2
√
1− e2

[
2

3
+

√
1− e2

4e3

{
−2e +

(
1 + e2

)
ln
1 + e

1− e

}]−1

R+O
(
R2

)
=

[
1 +

5

12
e2 +

733

1680
e4....

] [
1 +

3

8

{
1 +

11

20
e2 +

611

1400
e4....

}
R+O

(
R2

)]
=

(
1 +

5

12
e2 +

733

1680
e4 + ...

)
+

3

8

{
1 +

29

30
e2 +

26271

29400
e4 + ...

}
R+O

(
R2

)
.

(4.27)

These expressions (4.27) and (4.28) reduce to 1+ (3/8)R as e → 0, the case of
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Oseen’s correction in transverse flow for sphere having radius ‘a’ which further
reduces to 1 as R → 0, the case of transverse Stokes drag over egg-shaped
axially symmetric body.
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Figure 11: Variation of Oseen correction with respect to eccentricity ‘e’ for
various values of Reynolds number R = ρUb/µ for egg–shaped body

4.7 Cassini body of revolution

We consider the cassini body of revolution obtained by revolving the curve

y2 =
2

3

(
1 + 3x2

)1/2 − x2 − 1

3
, 0 ≤ x ≤ 1, (4.28)

about x-axis. The Stokes drag experienced by this axially symmetric cassini
body of revolution placed in axial and transverse uniform stream is given by
DS conjecture 2.4 and 2.5 (see Srivastava, 2001), on taking a = 1, b = 0.577,
is

Fx
∼= 0.8πµU, (4.29a)

Fy
∼= 0.82πµU. (4.29b)
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By using (4.30 a,b) and (2.7), the value of real factor ‘K’ comes out to be

K =
Fx

F y

∼= 0.9756098. (4.30)

Now, from Brenner’s formula (2.8) for axial flow and revised Brenner’s formula
(2.9) for transverse flow, the Oseen’s correction, with the use of real factor K
(eq. 4.30), may be written as

F

Fy
= K

F

Fx

∼= 0.9756098
[
1 + 0.3R +O

(
R2

)]
= 0.97561 + 0.2926829× R+O

(
R2

)
∼= 1 + 0.3R +O

(
R2

)
,

(4.31)

where R = ρUa/µ is particle Reynolds number. This expression reduces to
1 as R → 0, the case of transverse Stokes drag on cassini body of revolution
(Srivastava, 2001).
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Figure 12: Variation of Oseen correction with respect to Reynolds number
R = ρU/µ for cassini body
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4.8 Hypocycloidal body of revolution

We consider the hypocycloidal body of revolution obtained by revolving the
curve

y2 = −3x2 +
√

(1 + 8x4), 0 ≤ x ≤ 1, (4.32)

about x-axis. The Stokes drag experienced by this axially symmetric hypocy-
cloidal body of revolution placed in axial and transverse uniform stream is
given by DS conjecture 2.4 and 2.5(see Srivastava, 2001), on taking a = 1, is

Fx
∼= 6.264πµU, (4.33a)

Fy
∼= 7.92πµU. (4.33b)

By using (4.34 a,b) and (2.7), the value of real factor ‘K’ comes out to be

K =
Fx

F y

∼= 0.7909091. (4.34)

Now, from Brenner’s formula (2.8) for axial flow and revised Brenner’s formula
(2.9) for transverse flow, the Oseen’s correction, with the use of real factor K
(eq. 4.34), may be written as

F

Fy
= K

F

Fx

∼= 0.8
[
1 + 0.3915R +O

(
R2

)]
= 0.8 + 0.31× R+O

(
R2

)
,

(4.35)

where R = ρUa/µ is particle Reynolds number. This expression reduces to 0.8
as R → 0, which should be 1, the case of transverse Stokes drag on hypocy-
cloidal body of revolution (Srivastava, 2001). The reason behind this discrep-
ancy is due to the error of 20% which persists in the operation of D-S formulae
on hypocycloidal body of revolution (4.32).
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Figure 13: Variation of Oseen correction with respect to Reynolds number
R = ρU/µ for hypocycloidal body

4.9 Cylindrical capsule or shell

We consider the cylindrical capsule having semi-spherical caps on both ends
having same radius ‘b’ obtained by revolving the curves( PA, the circular seg-
ment, AA’ , the line segment, A’P’ , again circular segment)

PA, x = b cos t, y = b sin t, 0 ≤ t ≤ π/2, (4.36a)

AA′, y = b, θ = π/2, (4.36b)

A′P ′, x = b cos t, y = b sin t, π/2 ≤ t ≤ π. (4.36c)

The Stokes drag experienced by this axially symmetric cylindrical body of rev-
olution placed in axial and transverse uniform stream is given by DS conjecture
2.4 and 2.5 (see Srivastava, 2001), is

Fx = 6πµUa, (4.37a)

Fy = 6πµUa. (4.37b)
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By using (4.38a,b) and (2.7), the value of real factor ‘K’ comes out to be

K =
Fx

F y
= 1. (4.38)

Now, from Brenner’s formula (2.8) for axial flow and revised Brenner’s formula
(2.9) for transverse flow, the Oseen’s correction, with the use of real factor K
(eq. 4.34), may be written as

F

Fy
= K

F

Fx

= 1

[
1 +

3

16
R +O

(
R2

)]
= 1 + 0.1875R +O

(
R2

)
,

(4.39)

where R = ρU(2a)/µ is particle Reynolds number. This expression reduces to
1 as R → 0, the case of transverse Stokes drag on cylindrical shell of revolution
(Srivastava, 2001).
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Figure 14: Variation of Oseen correction with respect to Reynolds number
R = 2aρU/µ for cylindrical capsule
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5 Numerical discussion

The numerical values of Oseen correction for various axi-symmetric bodies are
calculated for finite Reynolds number and presented in tables 1 to 13. For

Table 1: Numerical values of F/Fy with respect to Reynolds number (R =
ρUa/µ = 0, 1, 5, 10, 20, 40, 60, 80, 100 ) for sphere [calculated from eq.(4.3) and
depicted in figure 2]

Oseen correction ‘F/Fy’

R=0 R=1.0 R=5.0 R=10.0 R=20 R=40 R=60 R=80 R=100

1 1.3750 2.8750 4.7500 8.5000 16.000 23.500 31.000 38.500

Table 2: Numerical values of F/Fy with respect to eccentricity ‘e’ of prolate
spheroid (0 ≤ e ≤ 1) for various values of Reynolds number (R = ρUa/µ =
0, 1, 5, 10, 20, 40, 60, 80, 100) [calculated from eq.(4.5) and depicted in figure 3]

e Oseen correction ‘F/Fy’

R=0 R=1.0 R=5.0 R=10.0 R=20 R=40 R=60 R=80 R=100

0.0 1.0 1.3750 2.8570 4.7500 8.5000 16.0000 23.5000 31.0000 38.5000

0.1 0.9989 1.3751 2.8796 4.7602 8.5214 16.0438 23.5663 31.0887 38.6111

0.2 0.9959 1.3753 2.8931 4.7903 8.5847 16.1735 23.7622 31.3510 38.9398

0.3 0.9906 1.3754 2.9147 4.8388 8.6869 16.3831 24.0794 31.7756 39.4719

0.4 0.9828 1.3748 2.9429 4.9029 8.8231 16.6633 24.5036 32.3438 40.1841

0.5 0.9721 1.3729 2.9757 4.9793 8.9864 17.0007 25.0150 33.0293 41.0436

0.6 0.9581 1.3686 3.0106 5.0631 9.1681 17.3781 25.5881 33.7982 42.0082

0.7 0.9400 1.3609 3.0443 5.1487 9.3573 17.7746 26.1919 34.6091 43.0264

0.8 0.9173 1.3485 3.0733 5.2293 9.5413 18.1653 26.7893 35.4134 44.0374

0.9 0.8890 1.3298 3.0931 5.2972 9.7054 18.5217 27.3381 36.1545 44.9708

1.0 0.8543 1.3032 3.0989 5.3436 9.8329 18.8114 27.7900 36.7686 45.7471
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sphere, from table 1, it is clear that non-dimensional drag value F/Fy increases
from 1 to 38.50 with respect to increment in Reynolds number R from 0 (case
of Stokes drag) to 100. This variation is depicted by straight line in figure
2. Similar behaviour of F/Fy persists for cycloidal body (both cases), cassini
body, hypocycloidal body and cylindrical capsule whose values are given in
the related tables (11,12,13) while their variations are depicted in the figures
12,13,14. For prolate spheroid, in both situations when R = ρUa/µ and ρUb/µ,
non-dimensional drag value F/Fy decreases slowly for low Reynolds number

Table 3: Numerical values of F/Fy with respect to eccentricity ‘e’ of prolate
spheroid (0 ≤ e ≤ 1) for various values of Reynolds number(R = ρUb/µ =
0, 1, 5, 10, 20, 40, 60, 80, 100) [calculated from eq.(4.6) and depicted in figure 4]

e Oseen correction ‘F/Fy’

R=0 R=1.0 R=5.0 R=10.0 R=20 R=40 R=60 R=80 R=100

0.0 1.0 1.3750 2.8570 4.7500 8.5000 16.0000 23.5000 31.0000 38.5000

0.1 0.9990 1.3740 2.8740 4.7490 8.4990 15.9990 23.4990 30.9991 38.4991

0.2 0.9959 1.3709 2.8709 4.7460 8.4961 15.9965 23.4967 30.9970 38.4973

0.3 0.9906 1.3657 2.8660 4.7413 8.4919 15.9933 23.4947 30.9960 38.4974

0.4 0.9828 1.3580 2.8589 4.7349 8.4870 15.9913 23.4956 30.9998 38.5041

0.5 0.9721 1.3477 2.8497 4.7273 8.4825 15.9929 23.5033 31.0137 38.5240

0.6 0.9581 1.3342 2.8385 4.7188 8.4796 16.0011 23.5226 31.0442 38.5657

0.7 0.9400 1.3170 2.8250 4.7099 8.4799 16.0198 23.5596 31.0995 38.6394

0.8 0.9173 1.2957 2.8093 4.7012 8.4853 16.0533 23.6213 31.1894 38.7574

0.9 0.8890 1.2695 2.7913 4.6935 8.5979 16.1069 23.7159 31.3248 38.9338

1.0 0.8543 1.2376 2.7708 4.6873 8.5203 16.1864 23.8525 31.5186 39.1846
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Table 4: Numerical values of F/Fy with respect to eccentricity ‘e’ of oblate
spheroid(0 ≤ e ≤ 1) for various values of Reynolds number(R = ϱUa/µ =
0, 1, 5, 10, 20, 40, 60, 80, 100,) [calculated from eq.(4.9) and depicted in figure 5]

e Oseen correction ‘F/Fy’

R=0 R=1.0 R=5.0 R=10.0 R=20 R=40 R=60 R=80 R=100

0.0 1.0 1.3750 2.8570 4.7500 8.5000 16.0000 23.5000 31.0000 38.5000

0.1 0.9976 1.3714 2.8664 4.7351 8.4726 15.9477 23.4227 30.8977 38.3726

0.2 0.99026 1.3606 2.84064 4.6906 8.3906 15.7905 23.1905 30.5904 37.9904

0.3 0.9789 1.3426 2.7976 4.6163 8.2536 15.5284 22.8031 30.0778 37.3525

0.4 0.9625 1.3174 2.7372 4.5120 8.0616 15.1607 22.2598 29.3589 36.4580

0.5 0.9412 1.2849 2.6594 4.3776 7.8140 14.6869 21.5596 28.4324 35.3052

0.6 0.9152 1.2450 2.5640 4.2129 7.5406 14.1060 20.7014 27.968 33.8922

0.7 0.8842 1.1975 2.4508 4.0174 7.1507 13.4172 19.6837 25.9502 32.2166

0.8 0.8482 1.1425 2.3196 3.7909 6.7337 12.6192 18.5046 24.3901 30.2756

0.9 0.8071 1.0797 2.1700 3.5329 6.2588 11.7105 17.1623 22.6140 28.0657

1.0 0.7607 1.0089 2.0018 3.2430 5.7252 10.6898 15.6543 20.6188 25.5833

(0 ≤ R ≤ 1) and increases slowly with respect to eccentricity ‘e’ (from 0 to 1.0)
for Reynolds number beyond 5 whose values are given in tables 2-3 and corre-
sponding variations are depicted in figures 3-4. Contrary to this fact, for oblate
spheroid, in both situations when R = ρUa/µ and ρUb/µ, non-dimensional
drag value F/Fy decreases slowly with respect to eccentricity ‘e’(from 0 to 1.0)
for various specific values of finite Reynolds number 0 (case of Stokes drag)
to 100 whose values are given in tables 4-5 and corresponding variations are
depicted in figures 5-6. It is interesting to note that for specific value of ec-
centricity ‘e’, non-dimensional drag value F/Fy increases with respect to finite
increment in R from 0 (Stokes drag) to 100. For design factors d0 = 0.5,
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Table 5: Numerical values of F/Fy with respect to eccentricity ’e’ of oblate
spheroid(0 e 1) for various values of Reynolds number(R = ϱUb/µ =
0, 1, 5, 10, 20, 40, 60, 80, 100,) [calculated from eq.(4.10) and depicted in figure
6]

e Oseen correction ‘F/Fy’

R=0 R=1.0 R=5.0 R=10.0 R=20 R=40 R=60 R=80 R=100

0.0 1.0 1.3750 2.8570 4.7500 8.5000 16.0000 23.5000 31.0000 38.5000

0.1 0.9976 1.3714 2.8663 4.7351 8.4725 15.9475 23.4224 30.8973 38.3722

0.2 0.9906 1.3605 2.8402 4.6899 8.3892 15.7877 23.1863 30.5848 37.9834

0.3 0.9789 1.3423 2.7958 4.6127 8.265 15.5142 22.7818 30.0495 37.3171

0.4 0.9625 1.3163 2.7316 4.5008 8.0392 15.1159 22.1926 29.6293 36.3460

0.5 0.9412 1.2822 2.6458 4.3503 7.7593 14.5775 21.3956 28.2137 35.0318

0.6 0.9152 1.2393 2.5357 4.1562 7.3972 13.8792 20.3612 26.8432 33.3252

0.7 0.8842 1.1870 2.3983 3.9124 6.9406 12.997 19.0534 25.1098 31.1662

0.8 0.8482 1.1245 2.2300 3.6117 6.3753 11.9024 17.4294 22.9565 28.4836

0.9 0.8071 1.0510 2.0265 3.2459 58.6847 10.5624 15.4400 20.3176 25.1952

1.0 0.7607 0.9652 1.7831 2.8055 4.8502 8.9397 3.0293 17.1188 21.2083

d2 = 0.5, from table 7, it is clear that non-dimensional drag value F/Fy for
deformed sphere decreases with respect to deformation parameter ‘ε’ for various
values of increment in Reynolds number R from 0 (case of Stokes drag) to 100.
This variation is depicted by straight lines in figure 7. For egg-shaped body,
in both situations when R = ρUa/µ and ρUb/µ, non-dimensional drag value
F/Fy increases with respect to eccentricity ‘e’(from 0 to 1.0) for various specific
values of finite Reynolds number 0 (case of Stokes drag) to 100 whose values
are given in tables 7-8 and corresponding variations are depicted in figures
11-10. It is interesting to note that for specific value of eccentricity ‘e’, non-
dimensional drag value slowly increases with respect to finite increment in R
from 0 (case of Stokes drag) to 100.
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Table 6: Numerical values of F/Fy with respect to deformation parameter ‘ε’
of deformed sphere (0 ≤ ε ≤ 1) for various values of Reynolds number(R =
ϱUa/µ = 0, 1, 5, 10, 20, 40, 60, 80, 100) [calculated from eq.(4.15) for d0=d2=1
and depicted in figure7]

e Oseen correction ‘F/Fy’

R=0 R=1.0 R=5.0 R=10.0 R=20 R=40 R=60 R=80 R=100

0.0 1.0 1.3750 2.8570 4.7500 8.5000 16.0000 23.5000 31.0000 38.5000

0.1 0.9950 1.34563 2.7481 4.5012 8.0075 15.0200 22.0325 29.0450 36.0575

0.2 0.9900 1.31625 2.6212 4.2525 7.5150 14.0400 20.5650 27.0900 33.6150

0.3 0.9850 1.2868 2.4943 4.0037 7.0225 13.0600 19.0975 25.1350 31.1725

0.4 0.9800 1.2575 2.3675 3.7550 6.5300 12.0800 17.6300 23.1800 28.7300

0.5 0.9750 1.2281 2.2406 3.5062 6.0375 11.1000 16.1625 21.2250 26.2875

0.6 0.9700 1.0987 2.1137 3.2575 5.5450 10.1200 14.6950 19.2700 23.8450

0.7 0.9650 1.1693 1.9868 3.0087 5.0525 9.1400 13.2275 17.3150 21.4025

0.8 0.9600 1.1400 1.8600 2.7600 4.5600 8.1600 11.7600 15.3600 18.9600

0.9 0.9550 1.1106 1.7331 2.5112 4.0675 7.1800 10.2925 13.4050 16.5175

1.0 0.9500 1.0812 1.6062 2.2625 3.5750 6.2000 8.8250 11.4500 14.0750

6 Conclusion

In the present problem, we have extended the Brenner’s formulae(Brenner,
1961), which were valid only for axial flow to transverse flow. This general ex-
pression is used to correct the Stokes drag, called Oseen’s correction or Oseen’s
drag, up to the first order of Reynolds number ‘R’. This proposed solution is
the solution of Oseen’s equation. The numerical values of non-dimensional
drag F/Fy with respect to various parameters like eccentricity ‘e’, deformation
parameter ‘ε’ and Reynolds number ‘R’ related to axially symmetric bodies
are calculated and presented in tables 1-13. The respective variations between
these quantities are shown in figures 2-14. It has been observed that for low
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Table 7: Numerical values of F/Fy with respect to eccentricity ‘e’ of egg-
shaped body (0 ≤ e ≤ 1) for various values of Reynolds number(R = ρUa/µ =
0, 1, 5, 10, 20, 40, 60, 80, 100) [calculated from eq.(4.26) and depicted in figure
10]

e Oseen correction ‘F/Fy’

R=0 R=1.0 R=5.0 R=10.0 R=20 R=40 R=60 R=80 R=100

0.0 1.0 1.3750 2.8570 4.7500 8.5000 16.0000 23.5000 31.0000 38.5000

0.1 1.0042 1.3809 2.8880 4.7719 8.5395 16.0750 23.6103 31.1457 38.6811

0.2 1.01736 1.3996 2.9288 4.8403 8.6632 16.3092 23.9551 31.6011 39.2470

0.3 1.04103 1.4332 3.0022 4.9635 8.8860 16.7310 24.5760 32.4210 40.2660

0.4 1.0778 1.4855 3.1165 5.1552 9.2326 17.3874 25.5421 33.6969 41.8517

0.5 1.1314 1.5617 3.2830 5.4346 9.7378 18.3442 26.9505 35.5569 44.1632

0.6 1.2065 1.6685 3.5164 5.8264 10.4463 19.6860 28.9258 38.1656 47.4053

0.7 1.3089 1.8141 3.8348 6.3608 11.4127 21.5165 31.6203 41.7241 51.8279

0.8 1.4453 2.0082 4.2594 7.0735 12.7016 23.9579 35.2141 46.4704 57.7266

0.9 1.6237 2.2619 4.8147 8.0056 14.3875 27.1512 39.9150 52.6787 65.4425

1.0 1.8529 2.5880 5.5284 9.2038 16.5548 31.2565 45.9583 60.6601 75.3619

particle Reynolds number(between 0 and 1), non-dimensional drag value de-
creases and increases for other values of Reynolds number. The increment
in drag value is related to the increment in Reynolds number. The proposed
analysis may provide a strong platform to study the optimal profiles in Oseen’s
flow which may appear in author’s future work. Other important applications
of Oseen’s correction are in calculation of the settling of solid particles of pow-
dered materials with enhanced accuracy in carrying out sedimentation analysis
and in acoustic levitation. These two works are the main practical applications
of Oseen’s correction which was not possible with the Stokes drag.
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Table 8: Numerical values of F/Fy with respect to eccentricity ‘e’ of egg-
shaped body (0 ≤ e ≤ 1) for various values of Reynolds number(R = ρUb/µ =
0, 1, 5, 10, 20, 40, 60, 80, 100) [calculated from eq.(4.27) and depicted in figure
11]

e Oseen correction ‘F/Fy’

R=0 R=1.0 R=5.0 R=10.0 R=20 R=40 R=60 R=80 R=100

0.0 1.0 1.3750 2.8570 4.7500 8.5000 16.0000 23.5000 31.0000 38.5000

0.1 1.0420 1.3828 2.8975 4.7908 8.5773 16.1506 23.7237 31.2969 38.8701

0.2 1.0173 1.4074 2.9675 4.9177 8.8180 16.6188 24.4195 32.2203 40.0210

0.3 1.0410 1.4513 3.0927 5.1444 9.2478 17.4546 25.6614 33.8682 42.075

0.4 1.0778 1.5194 3.2857 5.4936 9.9094 18.7410 27.56725 36.4041 45.2357

0.5 1.1314 1.6180 3.5642 5.971 10.8628 20.5942 30.3255 40.0569 49.7882

0.6 1.2065 1.7554 3.9511 6.6958 12.1851 23.1636 34.1422 45.1208 56.0993

0.7 1.3089 1.9420 4.4743 7.6397 13.9705 26.6321 39.2937 51.9553 64.6169

0.8 1.4453 2.1896 5.1666 8.8879 16.3304 31.2155 46.1005 60.9856 75.8706

0.9 1.6237 2.5122 6.0661 10.5085 19.3933 37.1628 54.9324 72.7019 90.4715

1.0 1.8529 2.9255 7.2159 12.5789 23.3048 44.7565 66.2083 87.6601 109.112

Table 9: Numerical values of F/Fy with respect to various values of Reynolds
number(R = ρUaπ/µ = 0, 1, 5, 10, 20, 40, 60, 80, 100) for cycloidal body(case 1)
[calculated from eq.(4.19) and depicted in figure 8]

Oseen correction ‘F/Fy’

R=0 R=1.0 R=5.0 R=10.0 R=20 R=40 R=60 R=80 R=100

0.8333 1.5410 4.3718 7.9103 14.9873 29.1413 43.2953 57.4493 71.6033
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Table 10: Numerical values of F/Fy with respect to various values of Reynolds
number(R = 2ρUa/µ = 0, 1, 5, 10, 20, 40, 60, 80, 100) for cycloidal body(case 2)
[calculated from eq.(4.23) and depicted in figure 9]

Oseen correction ‘F/Fy’

R=0 R=1.0 R=5.0 R=10.0 R=20 R=40 R=60 R=80 R=100

1.3244 3.04336 9.9192 18.514 35.7037 70.083 104.462 138.842 173.221

Table 11: Numerical values of F/Fy with respect to various values of Reynolds
number(R = ρU/µ = 0, 1, 5, 10, 20, 40, 60, 80, 100) for cassini body of revolution
[calculated from eq.(4.31) and depicted in figure 12]

Oseen correction ‘F/Fy’

R=0 R=1.0 R=5.0 R=10.0 R=20 R=40 R=60 R=80 R=100

1.0 1.3 2.5 4.0 7.0 13.0 19.0 25.0 31.0

Table 12: Numerical values of F/Fy with respect to various values of Reynolds
number(R = ρU/µ = 0, 1, 5, 10, 20, 40, 60, 80, 100) for hypocycloidal body of
revolution [calculated from eq.(4.35) and depicted in figure 13]

Oseen correction ‘F/Fy’

R=0 R=1.0 R=5.0 R=10.0 R=20 R=40 R=60 R=80 R=100

0.80 1.11 2.35 3.90 7.00 13.20 19.40 25.60 31.80
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Table 13: Numerical values of F/Fy with respect to various values of Reynolds
number(R = 2ρUa/µ = 0, 1, 5, 10, 20, 40, 60, 80, 100) for cylindrical capsule
[calculated from eq.(4.39) and depicted in figure 14]

Oseen correction ‘F/Fy’

R=0 R=1.0 R=5.0 R=10.0 R=20 R=40 R=60 R=80 R=100

1.0 1.1875 1.9375 2.875 4.75 8.50 12.25 16.0 19.75
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Oseen-ova ispravka Stokes-ovog otpora na osno simetričnoj
proizvoljnoj čestici u poprečnom toku: novi pristup

Dobijena je Oseen-ova korekcija Stokes-ovog otpora uslovljenog aksijalno
simetričnom česticom postavljenom u uniformnu struju upravnu na osu
simetrije (znazči poprečno tečenje). U tom cilju je iskorǐs ćen linearni odnos
izmedju uzdužnog i poprečnog Stokes-og otpora za proširenje Brenner-ove
formule sa uzdužnog na poprečno tečenje. Za opšti izraz Oseen-ova korek-
cija Stokes-ovog otpora na uzdužno simetričnu česticu postavljenu u poprečno
tečenje nadjeno je da je nova. Ovaj opšti izraz primenjuje se na neka poznata
uzdužno simetrična tela pa su dobijene vrednosti Oseen-ovog otpora, zaključno
sa prvim članovima reda po Reynolds-ovom broju, takodje nove i ne postoje
u literaturi. Numeričke vrednosti Oseen-ovog otpora su takodje odredjene i
njihove promene u odnosu na Reynolds-ov broj, ekscentricitet i deformacioni
parametar su prikazane i uporedjene sa nekim poznatim vrednostima. Neke
važne primene su takodje istaknute.
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