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Abstract

In Part I of this series [7] we described the structure of the biopoly-
mer interlayers found in the shell of the mollusk Haliotis rufescens (the
red abalone). There we described how the layers can be viewed as a
viscoelastic composite reinforced by a network of chitin fibrils arranged
in an often nearly unidirectional architecture. Mechanical testing doc-
umented the response to tensile testing of layers removed via deminer-
alization. Herein in Part II we describe a general viscoelastic constitu-
tive model for such layers that may be both transversely isotropic or
orthotropic as would follow from the network of nearly aligned chitin
fibrils described by Bezares et al. in Part I [7]. Part III of this series
will be concerned with applying the models to more fully describing the
response of these types of biological membranes to mechanical loading.
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1 Introduction

Part I of this series presented a report detailing the structure of the biopoly-
mer matrix of the nacreous shell of the mollusk Halliotis rufescens (the red
abalone); this matrix, which is in the form of interlayers sandwiched between
interdigitated layers of CaCO3 tiles, is held to be responsible for the intriguing
mechanical properties of the nacreous shell and being the mediator of growth
of nacre as discussed, e.g., in [1]-[3]. With specific respect to the organic
matrix of Haliotis rufescens, we refer to the original work of Bezares et al.
[4]-[7].

(a) (b)
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 glycoproteins
silk-like
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Figure 1: (a) An optical histochemical photograph of a section of biopolymer
matrix extracted from Haliotis rufescens via enzymatic digestion that reveals
the layout of chitin fibrils. (b) A schematic depiction of the layered structure
of chitin fibrils and protein within the biopolymer interlayers of nacre.

Bezares et al. [5] extracted the biopolymer layers (i.e., the interlayers)
after demineralization with ethylene diamine tetraacetic acid (EDTA) and
various forms of digestion to remove protein. Both types of procedures were
carried out under ambient Ph conditions. They performed a series of tensile
tests on the extracted layers and found them to be viscoelastic and to possess
mechanical integrity over remarkably large length scales, which spanned lit-
erally hundreds of CaCO3 tile diameters. The analysis performed by Bezares
et al. [5] attributed the integrity of the biopolymer interlayers to the chitin
core, earlier imaged via atomic force microscopy (AFM) by Bezares et al. [4],
and modeled the chitin network as an organized mesh of chitin fibrils. Figure
1a shows an optical image of tissue extracted from Haliotis rufescens, again
after demineralization with EDTA followed by progressively intense digestion
to remove protein [7]. In this work the structure of chitin was documented
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in more detail. It was found that the fibrils were largely unidirectional and
occasionally in the form of nearly parallel sets of fibrils with an angle in the
range 10◦ ≤ ϕ ≤ 90◦ (see Fig. 5). This is illustrated in the orthotropic
model depicted in Fig. 5 that is developed in detail in Section 3. Figure
1a illustrates how most sections of the interlayers contained nearly unidirec-
tional fibril bundles and yet in many areas the fibrils were oriented in the ±ϕ
manner as explained above. It is this type of material we aim to describe by
an anisotropic viscoelastic constitutive model.

For generality, and application to a wider range of biological membranes,
we develop two models that treat the membranes as either transversely isotropic
or orthotropic. We believe the orthotropic model best fits the structural sym-
metry of the interlayers of nacre in Haliolis rufescens, but for other biological
structures a transversely isotropic description may indeed be more appro-
priate; this is addressed at the end in the discussion and conclusions section.
While elastic part of response was anisotropic, we assumed that viscous prop-
erties along and across chitin fibrils were the same, so that viscous part of
response was isotropic.

2 Transversely isotropic membranes

Our membranes are modeled as viscoelastic materials of the general Kelvin–
Voigt type, according to which the stress tensor is decomposed into its elastic
and viscous parts as [8]-[10] as
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Figure 2: A thin viscoelastic biological membrane reinforced with isotropically
distributed linear elastic fibers (shown in red).

σij = σe
ij + σv

ij . (2.1)
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The materials are taken to be in the form of thin membranes that are re-
inforced with isotropically distributed arrays of linear elastic fibers; this is
sketched in Fig. 2. The spherical part of the stress tensor is assumed to be
independent of viscous processes, as illustrated via the models sketched in
Fig. 3, so that
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Figure 3: (a) Transversely isotropic Kelvin–Voigt viscoelastic model for the
deviatoric part of stress Sij . (b) Transversely isotropic elastic model for the
spherical part of stress σkk/3.

σkk = σe
kk , σv

kk = 0 (sum on k) . (2.2)

The deviatoric part of the stress tensor (Sij), appearing in the decom-
position σij = Sij + (1/3)σkkδij , where δij is the Kronecker delta, is then
partitioned as

Sij = Se
ij + Sv

ij , Sv
ij = σv

ij . (2.3)

Since σv
ij is deviatoric, it will be assumed that it is related to the deviatoric

part of the strain rate tensor. Hence, by invoking Newton’s linear relation,
we have

σv
ij = 2η

(
ϵ̇ij −

1

3
ϵ̇kkδij

)
, (2.4)

where η is the coefficient of viscosity. More involved viscous law could be
adopted, such as one used in [11]. The viscous properties along and across
chitin fibrils are assumed to be the same, so that viscous part of the response
described by (2.4) is isotropic. Introducing the viscosity tensor with the
components [8]

Jijkl = 2η

[
1

2
(δikδjl + δilδjk)−

1

3
δijδkl

]
, (2.5)
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we can rewrite eq. (2.4) as
σv
ij = Jijklϵ̇kl . (2.6)

The elastic part of the stress tensor is related to strain via the well-known
transversely isotropic constitutive relation [12, 13], which can be cast in the
form

σe
ij = λϵkkδij + 2µϵij + α(ϵ33δij + ϵkkδi3δj3)

+ 2(µ0 − µ)(δi3ϵj3 + δj3ϵi3) + βδi3δj3ϵ33 ,
(2.7)

where λ, µ, µ0, α, and β are five material parameters. To interpret eq. (2.7)
we proceed as follows. The elastic shear modulus of the membrane within its
plane of isotropy is µ via the response

σe
12 = σe

21 = 2µϵ12 .

The other Lamé constant is λ which, along with α, fully describes the isotropic
in-plane stress response. Indeed, the in-plane normal stresses are given by

σe
11 = λϵkk + 2µϵ11 + αϵ33 , σe

22 = λϵkk + 2µϵ22 + αϵ33 .

The out-of-plane shear modulus is µ0, such that

σe
13 = σe

31 = 2µ0ϵ13 , σe
23 = σe

32 = 2µ0ϵ23 .

The remaining material constant, β, completes the description of the out-of-
plane response.

Expressed more generally, with respect to an otherwise arbitrary coordi-
nate system in which ni are components of the unit vector parallel to the axis
of transverse isotropy, the constitutive expression of eq. (2.7) can be recast
in the form

σe
ij = λϵkkδij + 2µϵij + α(nknlϵklδij + ninjϵkk)

+ 2(µ0 − µ)(ninkϵkj + njnkϵki) + βninjnknlϵkl .
(2.8)

Upon summing the elastic and viscous parts of stress, given by eqs. (2.6)
and (2.8), there follows

σij = Cijklϵkl + Jijklϵ̇kl , (2.9)

where Cijkl are the components of the elastic moduli tensor associated with
eq. (2.8). For a given strain history, eq. (2.9) specifies the corresponding
stress history.
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By inverting eq. (2.8), the strain tensor can be expressed as

ϵij = Dijklσ
e
kl , (2.10)

where Dijkl are the components of the compliance tensor, the inverse of the
elastic moduli tensor Cijkl. Since σe

ij = σij − σv
ij , eq. (2.10) becomes

ϵij = Dijkl(σkl − σv
kl) . (2.11)

In view of eq. (2.6) for σv
kl, eq. (2.11) can be written as

ϵij +DijklJklmnϵ̇mn = Dijklσkl . (2.12)

For a given stress history, this is a set of differential equations for the corre-
sponding strain history. Equation (2.12) also follows directly from eq. (2.9)
by subjecting it to the trace product with the compliance tensor Dmnij .

2.1 Plane stress

If the membrane is loaded within its plane, plane stress conditions apply so
that σi3 = 0, for i = 1, 2, 3. For the shear stresses among these, this implies,
from (2.1), (2.4) and (2.7), that

σ13 = 2ηϵ̇13 + 2µϵ13 = 0 , σ23 = 2ηϵ̇23 + 2µϵ23 = 0 . (2.13)

If initially ϵ13 = ϵ23 = 0, eqs. (2.13) require that, at all times t,

ϵ13(t) = ϵ23(t) = 0 . (2.14)

Moreover, the vanishing of the normal stress σ33 gives

σ33 = σe
33 + σv

33 = 0 , (2.15)

where, from (2.4) and (2.7),

σv
33 =

4η

3
ϵ̇33 −

2η

3
(ϵ̇11 + ϵ̇22) , σe

33 = kϵ33 + (λ+ α)(ϵ11 + ϵ22) . (2.16)

Here, the material parameter k is defined as

k = 3λ+ 4µ0 − 2µ+ 4α+ β . (2.17)

Thus, by substituting (2.16) into (2.15), we find that

σ33 =
4η

3
ϵ̇33 −

2η

3
(ϵ̇11 + ϵ̇22) + kϵ33 + (λ+ α)(ϵ11 + ϵ22) = 0 . (2.18)
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The in-plane normal stresses, again from (2.1), (2.4) and (2.7), are

σ11 = 2η
(
ϵ̇11 −

1

3
ϵ̇kk

)
+ λϵkk + 2µϵ11 + αϵ33 , (2.19)

σ22 = 2η
(
ϵ̇22 −

1

3
ϵ̇kk

)
+ λϵkk + 2µϵ22 + αϵ33 , (2.20)

whereas the in-plane shear stress is given by

σ12 = 2ηϵ̇12 + 2µϵ12 . (2.21)

The computation of the stress components may be organized as follows.
If eq. (2.20) is subtracted from eq. (2.19), there follows

2η (ϵ̇11 − ϵ̇22) + 2µ (ϵ11 − ϵ22) = σ11 − σ22 , (2.22)

which is a differential equation for the strain difference (ϵ11 − ϵ22). The
objective is next to derive a differential equation for the strain sum (ϵ11+ϵ22).
Toward that goal, in view of eq. (2.16), we can write σe

33 = −σv
33, so that

σkk = σe
kk = σe

11 + σe
22 + σe

33 = σe
11 + σe

22 − σv
33 . (2.23)

Since σkk = σ11+σ22 in the case of plane stress, and since from (2.7) we have

σe
11 + σe

22 = 2(λ+ µ)(ϵ11 + ϵ22) + 2(λ+ α)ϵ33 , (2.24)

while σv
33 is specified by eq. (2.16), the substitution into eq. (2.23) yields

σ11+σ22 = 2(λ+µ)(ϵ11+ ϵ22)+2(λ+α)ϵ33−
4η

3
ϵ̇33+

2η

3
(ϵ̇11+ ϵ̇22) . (2.25)

To eliminate the out-of-plane strain ϵ33, we recall that σkk = σe
kk, i.e., in view

of eq. (2.24) for σe
11 + σe

22 and eq. (2.16) for σe
33,

σ11 + σ22 = (3λ+ 2µ+ α) (ϵ11 + ϵ22) + kϵ33 . (2.26)

Thus,

ϵ33 =
1

k
[(σ11 + σ22)− (3λ+ 2µ+ α) (ϵ11 + ϵ22)] . (2.27)

Substitution of eq. (2.27) into eq. (2.25) yields the differential equation for
the strain sum (ϵ11 + ϵ22), which is

t⋆(ϵ̇11 + ϵ̇22) + a (ϵ11 + ϵ22) =
1

2
[b (σ11 + σ22) + c t⋆(σ̇11 + σ̇22] , (2.28)
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where t⋆ = η/µ is a time like parameter, and

a = 3
(λ+ µ)k − (λ+ α)(3λ+ 2µ+ α)

µ[k + 2(3λ+ 2µ+ α)]
,

b = 3
k − 2(λ+ α)

k + 2(3λ+ 2µ+ α)
,

c =
4µ

k + 2(3λ+ 2µ+ α)
.

(2.29)

In summary, we have reduced the problem of finding the strain history, for
the prescribed stress history, to solving a system of three decoupled 1st- order
ordinary differential equations (2.21), (2.22) and (2.28), i.e.,

t⋆ϵ̇12 + ϵ12 =
1

2µ
σ12 , (2.30)

t⋆ (ϵ̇11 − ϵ̇22) + (ϵ11 − ϵ22) =
1

2µ
(σ11 − σ22) , (2.31)

t⋆ (ϵ̇11 + ϵ̇22) + a (ϵ11 + ϵ22) =
1

2µ
[b (σ11 + σ22) + c t⋆ (σ̇11 + σ̇22)] . (2.32)

Each of these differential equations is of the form [14]

ẏ +
r

t⋆
y = f(t), y(t0) = y0. (2.33)

The initial value problem of eq. (2.33) has a closed form solution in terms of
a hereditary integral given by

y(t) = e−r(t−t0)/t⋆

{∫ t

t0

er(τ−t0)/t⋆f(τ)d τ + y(t0)

}
. (2.34)

Applying this to eqs. (2.30)–(2.32), we obtain

ϵ12(t) = e−(t−t0)/t⋆
{ 1

2η

∫ t

t0

e(τ−t0)/t⋆σ12(τ)d τ + ϵ12(t0)
}
, (2.35)

ϵ11(t)− ϵ22(t) = e−(t−t0)/t⋆
{ 1

2η

∫ t

t0

e(τ−t0)/t⋆ [σ11(τ)− σ22(τ)]d τ

+ ϵ11(t0)− ϵ22(t0)
}
,

(2.36)
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ϵ11(t) + ϵ22(t) = e−a (t−t0)/t⋆
{ 1

2η

∫ t

t0

ea (τ−t0)/t⋆
(
b [σ11(τ) + σ22(τ)]

+ c t⋆[σ̇11(τ) + σ̇22(τ)]
)
d τ + ϵ11(t0) + ϵ22(t0)

}
.

(2.37)

Individual normal strain components may be calculated from

ϵ11(t) =
1

2

{
[ϵ11(t) + ϵ22(t)] + [ϵ11(t)− ϵ22(t)]

}
,

ϵ22(t) =
1

2

{
[ϵ11(t) + ϵ22(t)]− [ϵ11(t)− ϵ22(t)]

}
.

(2.38)

Having the sum ϵ11(t) + ϵ22(t) determined, the out-of-plane normal strain,
ϵ33(t), follows via eq. (2.27).

2.2 Loading histories

The strain response corresponding to the loading history sketched in Fig. 4
will be considered first. The in-plane stresses are linearly increased from a

tt t1 2

σ

σ

ij

ij
0

Figure 4: A load history involving a linear ramp up of stress from t = 0 to
t = t1, followed by a constant load in the interval t1 ≤ t ≤ t2. For t > t2, the
stress is reduced to zero.

zero initial value to the value σ0
ij (i = 1, 2, 3), at time t = t1. The stressing

rate for each stress component, albeit constant, is generally different for each
component and equal to σ0

ij/t1. In the subsequent time interval, t1 ≤ t ≤ t−2 ,

the stress is held constant at σ0
ij and thereafter set to zero. Thus

σij =


σ0
ij t/t1 , 0 ≤ t ≤ t1 ,

σ0
ij , t1 ≤ t ≤ t−2 ,

0 , t ≥ t+2 .

(2.39)
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When this is substituted into eqs. (2.35)–(2.37), upon integration there fol-
lows in the time interval 0 ≤ t ≤ t1:

ϵ12(t) =
σ0
12

2µ

t⋆
t1

(
e−t/t⋆ +

t

t⋆
− 1

)
, (2.40)

ϵ11(t)− ϵ22(t) =
σ0
11 − σ0

22

2µ

t⋆
t1

(
e−t/t⋆ +

t

t⋆
− 1

)
, (2.41)

ϵ11(t) + ϵ22(t) =
σ0
11 + σ0

22

2µ

t⋆
t1

b

a2

[(
1− ac

b

)
e−at/t⋆ + a

t

t⋆
+

ac

b
− 1

]
. (2.42)

The initial conditions ϵ12(0) = ϵ11(0) = ϵ22(0) = 0 were used.

The above expressions specify the in-plane stress components for any time
in the interval 0 ≤ t ≤ t1. The so calculated strain components are then used
as initial conditions for the subsequent time interval t1 ≤ t ≤ t−2 , in which the
stresses are held constant. Integration of eqs. (2.35)–(2.37) in this interval
yields

ϵ12(t) =
σ0
12

2µ

[
1− e−(t−t1)/t⋆

]
+ ϵ12(t1) e

−(t−t1)/t⋆ , (2.43)

ϵ11(t)− ϵ22(t) =
σ0
11 − σ0

22

2µ

[
1− e−(t−t1)/t⋆

]
+ [ϵ11(t1)− ϵ22(t1)] e

−(t−t1)/t⋆ ,

(2.44)

ϵ11(t)+ ϵ22(t) =
σ0
11 + σ0

22

2µ

b

a

[
1− e−a (t−t1)/t⋆

]
+[ϵ11(t1)+ ϵ22(t1)] e

−a (t−t1)/t⋆ .

(2.45)
The strain components ϵ12(t

−
2 ), ϵ11(t

−
2 ), and ϵ22(t

−
2 ) are obtained from eqs.

(2.43)–(2.45) by setting t = t2.

2.3 Sudden loading or unloading

To begin we note that in a transversely isotropic Kelvin–Voigt viscoelastic
constitutive model, a sudden change in stress, [σij ] will result in a sudden
change in strain [ϵ11] = [ϵ22] and [ϵ33] caused only be the spherical part of
the stress change, i.e., [σ] = [σkk]/3. This instantaneous response is purely
elastic and from eq. (2.7) we can write for the spherical component of stress
in x1 or x2 direction,

[σ] = 2(λ+ µ)[ϵ11] + (λ+ α)[ϵ33] , (2.46)
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and for the spherical component of stress in x3 direction,

[σ] = 2(λ+ α)[ϵ11] + f [ϵ33] , (2.47)

where

f = λ+ 4µ0 − 2µ+ 2α+ β . (2.48)

Solving eqs. (2.46) and (2.47) for [ϵ11] and [ϵ33], we obtain

[ϵ11] = [ϵ22] =
λ+ α− f

2[(λ+ α)2 − (λ+ µ)f ]
[σ] , [ϵ33] =

α− µ

(λ+ α)2 − (λ+ µ)f
[σ] .

(2.49)

Returning to the considered loading history eq. (2.39), the sudden removal
of the stresses σ0

11, σ
0
22 and σ0

12 gives rise to

[σ] = −1

3
(σ0

11 + σ0
22). (2.50)

Therefore, from (2.49),

ϵ11(t
+
2 ) = ϵ11(t

−
2 )−

λ+ α− f

6[(λ+ α)2 − (λ+ µ)f ]
(σ0

11 + σ0
22) , (2.51)

ϵ22(t
+
2 ) = ϵ22(t

−
2 )−

λ+ α− f

6[(λ+ α)2 − (λ+ µ)f ]
(σ0

11 + σ0
22) , (2.52)

ϵ33(t
+
2 ) = ϵ33(t

−
2 )−

α− µ

3[(λ+ α)2 − (λ+ µ)f ]
(σ0

11 + σ0
22) , (2.53)

ϵ12(t
+
2 ) = ϵ12(t

−
2 ) . (2.54)

Finally, for t ≥ t+2 the stresses are zero and eqs. (2.35)–(2.37) directly
yield

ϵ12(t) = e−(t−t2)/t⋆ ϵ12(t2) , (2.55)

ϵ11(t)− ϵ22(t) = e−(t−t2)/t⋆ [ϵ11(t
+
2 )− ϵ22(t

+
2 )] , (2.56)

ϵ11(t) + ϵ22(t) = e−a (t−t2)/t⋆ [ϵ11(t
+
2 ) + ϵ22(t

+
2 )] . (2.57)

Note that the strain difference in eq. (2.56) is ϵ11(t
+
2 )−ϵ22(t

+
2 ) = ϵ11(t

−
2 )−

ϵ22(t
−
2 ), which follows via subtracting eq. (2.52) from eq. (2.51).
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2.4 Prescribed strain histories

If the in-plane histories ϵ12(t), ϵ11(t), and ϵ22(t) are prescribed, still under con-
ditions of plane stress, the governing equations for in-plane stress components
are

σ12 = 2µ (t⋆ϵ̇12 + ϵ12) , (2.58)

σ11 − σ22 = 2µ [t⋆(ϵ̇11 − ϵ̇22) + (ϵ11 − ϵ22)] , (2.59)

t⋆(σ̇11 + σ̇22) +
b

c
(σ11 + σ22) =

2µ

c
[t⋆(ϵ̇11 + ϵ̇22) + a (ϵ11 + ϵ22)] . (2.60)

The last equation is a differential equation for the sum in in-plane normal
stresses, which has the solution

σ11(t) + σ22(t) = e−b (t−t0)/ct⋆
{2µ

c

∫ t

t0

eb (τ−t0)/ct⋆
( a

t⋆
[ϵ11(τ) + ϵ22(τ)]

+ ϵ̇11(τ) + ϵ̇11(τ)
)
d τ + σ11(t0) + σ22(t0)

}
.

(2.61)

In case of 3-D elastic isotropy, the moduli α = β = 0 and µ0 = µ, and the
elastic part of the stress is related to strain as

σe
ij = λϵkkδij + 2µϵij . (2.62)

All the results of the previous section apply with the following specifications:

k = 3λ+ 2µ , f = λ+ 2µ ,

a = 1 , b =
λ+ 2µ

3λ+ 2µ
, c =

4µ

3(3λ+ 2µ)
.

(2.63)

3 Orthotropic membranes

The mechanical response of a viscoelastic biological membrane reinforced by
two sets of intersecting aligned fibers and subjected to biaxial in-plane loading
is described via an orthotropic viscoelastic theory. The basic configuration
is described in Fig. 5. The principal axes of orthotropy are along the unit
vectors a and b that lie between the unit vectors m and n along the sets
of fibers. With the angle ϕ as defined in Fig. 5, we note that a = (m +
n)/(2 cosϕ) and b = (m− n)/(2 sinϕ).
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Figure 5: Membrane reinforced by two sets of parallel fibers oriented by the
angles ±ϕ with respect to an axis of orthotropic symmetry, a. The fibers are
aligned along the unit vectors m and n.

The Cauchy stress tensor will again be decomposed into viscous and elas-
tic parts as in the previous sections, consistent with a 3-dimensional gener-
alization of the Kelvin model. The viscous part of the stress accounts for
the time-dependent creep aspects of the membrane response; this is assumed
to be purely deviatoric and related to the time rate of strain via eq. (2.4).
The elastic part of the stress accounts for the anisotropic elastic properties
of the fiber reinforced membrane matrix [15, 16]. From the representation
theorems for orthotropic tensor functions [12, 13] this part of the stress can
be expressed in terms of the strain tensor ϵ and the director vectors a and b
as

σe
ij = (λϵkk + α1ϵa + α2ϵb) δij + 2µϵij

+ (α1ϵkk + β1ϵa + β3ϵb) aiaj + (α2ϵkk + β3ϵa + β2ϵb) bibj

+ 2µ1(aiakϵkj + ajakϵki) + 2µ2(bibkϵkj + bjbkϵki).

(3.1)

The longitudinal strains in the directions of the principal axes of orthotropy
are ϵa = akalϵkl and ϵb = bkblϵkl. The nine elastic constants are λ, µ, µ1, µ2, α1, α2

and β1, β2, β3 [17].

If the coordinate axes are chosen to lie along the directions of the principal
axes of orthotropy, then ai = δi1 and bi = δi2, so that ϵa = ϵ11 and ϵb = ϵ22
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and eq. (3.1) becomes

σe
ij = (λϵkk + α1ϵ11 + α2ϵ22) δij + 2µϵij

+ (α1ϵkk + β1ϵ11 + β3ϵ22) δi1δj1 + (α2ϵkk + β3ϵ11 + β2ϵ22) δi2δj2

+ 2µ1(δi1ϵj1 + δj1ϵi1) + 2µ2(δi2ϵj2 + δj2ϵi2) .

(3.2)

For the in-plane stresses we find that

σ11 = 2η
(
ϵ̇11 −

1

3
ϵ̇kk

)
+ (λ+ α1)ϵkk + (2µ+ 4µ1 + α1 + β1)ϵ11 + (α2 + β3)ϵ22 ,

(3.3a)

σ22 = 2η
(
ϵ̇22 −

1

3
ϵ̇kk

)
+ (λ+ α2)ϵkk + (2µ+ 4µ2 + α2 + β2)ϵ22 + (α1 + β3)ϵ11 ,

(3.3b)

σ12 = 2ηϵ̇12 + 2(µ+ µ1 + µ2)ϵ12 . (3.4)

3.1 Plane stress

For the plane stress the conditions σ31 = σ32 = 0 imply that ϵ31 = ϵ32 = 0,
provided their initial values are set to zero. The vanishing of the normal
stress component σ33 = 0 implies

2η
(
ϵ̇33 −

1

3
ϵ̇kk

)
+ λϵkk + α1ϵ11 + α2ϵ22 + 2µ ϵ33 = 0. (3.5)

If ϵ11 and ϵ22 were known, this would be a differential equation for ϵ33. Its
integration, however, can be circumvented by noting that

σkk = (3λ+2µ+α1+α2)ϵkk+(4µ1+3α1+β1+β3)ϵ11+(4µ2+3α2+β2+β3)ϵ22 .
(3.6)

This leads to

ϵkk =
1

k
(σ11 + σ22 − k1ϵ11 − k2ϵ22) , (3.7)

where

k = 3λ+2µ+α1+α2, k1 = 4µ1+3α1+β1+β3, k2 = 4µ2+3α2+β2+β3. (3.8)

For given stresses, if ϵ11 and ϵ22 were determined, eq. (3.7) would specify the
remaining normal strain component as

ϵ33 =
1

k
[σ11 + σ22 − (k + k1)ϵ11 − (k + k2)ϵ22] . (3.9)
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Moreover, when eq. (3.7) is substituted into eq. (3.3), we obtain the
system of coupled differential equations

a11ϵ̇11 + a12ϵ̇22 + b11ϵ11 + b12ϵ22 = f1(t),

a21ϵ̇11 + a22ϵ̇22 + b21ϵ11 + b22ϵ22 = f2(t),
(3.10)

with the coefficients

a11 =
2η

3

(
3 +

k1
k

)
, a22 =

2η

3

(
3 +

k2
k

)
,

a12 =
2η

3

k2
k

, a21 =
2η

3

k1
k

,

b11 = 2µ+ 4µ1 + α1 + β1 − (λ+ α1)
k1
k

,

b22 = 2µ+ 4µ2 + α2 + β2 − (λ+ α2)
k2
k

,

b12 = α2 + β3 − (λ+ α2)
k2
k

,

b21 = α1 + β3 − (λ+ α2)
k1
k

.

(3.11)

In addition,

f1(t) = σ11 −
λ+ α1

k
(σ11 + σ22) +

2η

3k
(σ̇11 + σ̇22) ,

f2(t) = σ22 −
λ+ α2

k
(σ11 + σ22) +

2η

3k
(σ̇11 + σ̇22) .

(3.12)

Given stress histories for σ11(t) and σ22(t), eqs. (3.10) can be integrated to
obtain the corresponding strain histories for ϵ11(t) and ϵ22(t). The numerical
results will be presented in Part III, upon completion of the experimental
determination of material parameters.

4 Discussion and conclusions

Two classes of linear viscoelastic models have been developed for thin biolog-
ical membranes characterized by being reinforced by stiff fibers. The original
impetus for this development was to provide an adequate model to simulate
the mechanical response of the interlayers of the nacreous part of the shell of
mollusks such as Haliotis rufescens (the red abalone). In Part I of this series
it was described that the chitin fibril reinforcement within such interlayers are
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arranged in a predominantly unidirectional manner but with regions in which
the fibrils are oriented at directions rotated by small angles, called ϕ above.
Thus the interlayers are indeed anisotropic and may be reasonably described
by the orthotropic model developed in Section 3. There are, however, many
examples of biological membranes that are typically described as being trans-
versely isotropic such as, for example, the cell wall of fungal cells, e.g. yeast
cells. Figure 6 shows a schematic of the fungal cell wall as rendered from
descriptions given by, inter alia, Herrera et al. [18, 19] or by [20, 21]. As in-
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Figure 6: Representation of the structure of the fungal cell wall, depicting
the mannan-glucan-chitin containing PM (plasma membrane) layers.

dicated, the fungal cell wall is characterized as being organized in layers that
are, in turn, characterized by different macro-molecular constitution. The
inner most layer is rich in chitin fibrils that are thought to be arranged in a
transversely isotropic manner as described by the model developed in Section
2. Thus it is believed that this model may well be applicable to the structural
layers in the fungal cell wall. Such applications are indeed underway.

In Part III of this series we indeed apply the models developed herein to
two quite different cases that are the analysis of the interlayers of nacre in
Haliotis rufescens and to the deformation of the fungal cell wall, or actually
of the fungal cell itself. In the case of nacre in the inner shell of Haliotis
rufescens, the goal will be to understand how its brick wall tile structure
and the particular viscoelastic constitutive response of the interlayer matrix
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impart the well documented properties of nacre. In the case of the fungal cell
wall, a key goal will be the understand the role of the individual viscoelastic
layers in determining the deformation states within the cell wall and of the
entire cell itself.
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Viskoelastično ponašanje anizotropnih bioloških membrana.
Deo II: konstitutivni modeli

U prvom delu ove serije [7] opisana je struktura hitinskih vlakana u inter-
lamelama sedefa Haliotis rufescens (crvena školjka). Opisano je kako se ova
lamelarna struktura može modelirati kao viskoelastični kompozitni materijal
ojačan hitinskim vlaknima koja su često približno jednosmerne arhitekture.
Sprovedeno je mehaničko testiranje uzoraka dobijenih procesom demineral-
izacije. U ovom delu serije formiran je viskoelastični konstitutivni model
za transverzno izotropnu ili ortotropnu lamelarne strukturu, saglasno anal-
izi raspodele hitinskih vlakana iz dela I. Dio III serije biće posvećen primeni
razvijenog konstitutivnog modela na analizu experimentalnih rezultata pos-
matrane vrste bioloških membrana pod dejstvom mehaničkog opterećenja.
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