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Abstract

We consider problems involving singularities such as point force, point
moment, edge dislocation and a circular Eshelby’s inclusion in isotropic
bimaterials in the presence of an interface incorporating surface/interface
elasticity under plane strain deformations and derive elementary solu-
tions in terms of exponential integrals. The surface mechanics is incor-
porated using a version of the continuum-based surface/interface model
of Gurtin and Murdoch. The results indicate that the stresses in the
two half-planes are dependent on two interface parameters.

Keywords:Plane-strain deformation; Surface elasticity; Bimaterial in-
terface; Exponential integrals; Singularity

1 Introduction

Solutions to problems involving pointwise singularities (for example, point
force, point moment, edge dislocation and a circular Eshelby inclusion) in-
teracting with a material interface are fundamental to the development of
theories in micromechanics [14, 20, 21]. The majority of previous studies
have assumed that the interface is perfect so that tractions and displacements
are continuous across the material interface. For nanoscaled structures with
high surface to volume ratios, however, the assumption of a perfect interface
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is insufficient and surface or interface elasticity must be taken into account
[1, 10, 18]. The theory of surface elasticity was established on the basis of
rational continuum mechanics by Gurtin, Murdoch and co-workers [5]-[7].
Recently, the Gurtin-Murdoch model was further clarified and developed by
Ru [17]. This model has been successfully used to study various defect prob-
lems in nanostructured systems (see, for example, [3, 8],[9]-[13],[18, 19],[22]-
[26]). Most recent advances in this particular surface theory can be found in
[2, 4, 15].

In this work, we endeavor to study the plane elasticity problem associated
with a singularity of arbitrary type interacting with a bimaterial interface
incorporating surface/interface elasticity. The surface mechanics is incorpo-
rated using a version of the surface/interface model of Gurtin and Murdoch.
An elementary and elegant solution to the interaction problem in terms of
exponential integrals is derived. Three special cases are discussed in detail.

2 Coupled bulk-surface/interface elasticity

2.1 The bulk elasticity

We assume that subscripts i,j,k = 1,2,3 and we sum over repeated indices.
In the absence of body forces, the equilibrium equations and the constitutive
relations describing the deformations of a linearly elastic, homogeneous and
isotropic bulk solid are given by

σij,j = 0, σij = 2µεij + λεkkδij , εij =
1

2
(ui,j + uj,i), (1)

where λ and µ are the Lame constants of the material, σij and εij are the
components of the stress and strain tensors, respectively, ui is the ith com-
ponent of the displacement vector u in ℜ3 and δij is the Kronecker delta.

For plane-strain deformations of an isotropic elastic material, the non-
trivial stresses, displacements and stress functions φ1, φ2 can be expressed
in terms of two analytic functions ϕ(z) and ψ(z) of the complex variable
z = x1 + ix2 as [16]

σ11 + σ22 = 2
[
ϕ′(z) + ϕ′(z)

]
,

σ22 − σ11 + 2iσ12 = 2 [z̄ϕ′′(z) + ψ′(z)] ,

2µ(u1 + iu2) = κϕ(z)− zϕ′(z)− ψ(z),

φ1 + iφ2 = i
[
ϕ(z) + zϕ′(z) + ψ(z)

]
,

(2)
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where κ = λ+3µ
λ+µ = 3− 4ν with ν (0 ≤ ν ≤ 1/2) being the Poisson’s ratio. In

addition, the stresses are related to the stress functions through [21]

σ11 = −φ1,2, σ12 = φ1,1,

σ21 = −φ2,2, σ22 = φ2,1.
(3)

For the boundary value problem discussed in this work, it is more conve-
nient to use the following two analytic functions [20]

Φ(z) = ϕ′(z), Ω(z) = [zϕ′(z) + ψ(z)]′. (4)

2.2 The surface/interface elasticity

The equilibrium conditions on the interface incorporating interface/surface
elasticity can be expressed [5]-[7],[17]:

[σαjnjeα] + σsαβ,βeα = 0, (tangential direction)

[σijninj ] = σsαβκαβ , (normal direction)
(5)

where α, β=1,3; ni is the unit normal vector to the interface, [∗] denotes the
jump of the quantities across the interface, σsαβ is the surface stress tensor
and καβ is the curvature tensor of the surface. In addition, the constitutive
equations on the isotropic interface are given by

σsαβ = σ0δαβ + 2(µs − σ0)ε
s
αβ + (λs + σ0)ε

s
γγδαβ + σ0(∇su)αβ , (6)

where εsαβ is the surface strain tensor, σ0 is the surface tension, λs and µs

are the two surface Lame parameters and ∇s is the surface gradient.

3 Singularities interacting with a bimaterial inter-
face incorporating surface elasticity

We consider the plane-strain deformations of two bonded dissimilar isotropic
half-planes. The upper half-plane x2 > 0 is occupied by isotropic material 1
and the lower half-plane x2 < 0 is occupied by a second isotropic material
2. A pointwise singularity is located at z = s, Im {s} = d > 0 in the upper
half-plane. The singularity can be a point load, a point moment, an edge
dislocation or a circular Eshelby inclusion [20]. Throughout the paper, the
subscripts 1 and 2 (or the superscripts (1) and (2)) will be used to identify the



270 Xu Wang, Peter Schiavone

respective quantities in the upper and lower half-planes. Our task below is to
derive Φ1(z),Ω1(z) defined in the upper half-plane and Φ2(z),Ω2(z) defined
in the lower half-plane.

By utilizing Eqs. (5) and (6) and assuming a coherent interface (εsαβ =

ε
(1)
αβ = ε

(2)
αβ), the boundary conditions on the bimaterial interface x2 = 0 and

−∞ < x1 < +∞ are given by

u
(1)
1 + iu

(1)
2 = u

(2)
1 + iu

(2)
2 ,

σ
(1)
12 + iσ

(1)
22 − (σ

(2
12) + iσ

(2)
22 )

= −J0u(2)1,11 − iσ0u
(2)
2,11,

 x2 = 0, −∞ < x1 < +∞, (7)

where J0 = λs + 2µs − σ0 ≥ 0 ([11]-[12]). The first condition in Eq. (7)
indicates that the displacements are continuous across the interface, and the
second condition in Eq. (7) can be equivalently expressed into

σ
(1)
12 + iσ

(1)
22 − (σ

(2)
12 + iσ

(2)
22 )

= −J0 + σ0
2

(u
(2)
1,11 + iu

(2)
2,11)−

J0 − σ0
2

(u
(2)
1,11 − iu

(2)
2,11). (8)

The continuity condition of displacements across the bimaterial interface in
Eq. (7)1 can be expressed in terms of the four analytic functions in the
bimaterial as

1

2µ1

[
κ1Φ

+
1 (z)− Ω̄−

1 (z)
]
=

1

2µ2

[
κ2Φ

−
2 (z)− Ω̄+

2 (z)
]
, Im {z} = 0. (9)

It readily follows from the above expression that

Φ1(z) = − Γ
κ1
Ω̄2(z) + Φ0(z) +

1
κ1
Ω̄0(z),

Ω̄1(z) = −Γκ2Φ2(z) + κ1Φ0(z) + Ω̄0(z),
(10)

where Γ = µ1/µ2 and Φ0(z) and Ω0(z) are the known complex potentials for
a singularity located at z = s, Im {s} = d > 0 in an infinite homogeneous
plane of material 1 and are specifically given by

Φ0(z) =
M∑

m=1

Am

(z − s)m
, Ω0(z) =

M∑
m=1

Bm

(z − s)m
, (11)
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where the coefficients Am and Bm may depend on s [20]. The specific ex-
pressions of Φ0(z) and Ω0(z) for a point force, a point moment, an edge
dislocation and a circular Eshelby inclusion are presented in [20].

The interface condition in Eq. (8) can also be expressed in terms of the
four analytic functions in the bimaterial as

i
[
Φ+
1 (z) + Ω−

2 (z)
]
− i
[
Φ−
2 (z) + Ω+

2 (z)
]

= −J0 + σ0
4µ2

[κ2Φ
′
2 − (z)− Ω

′+
2 (z)]

− J0 − σ0
4µ2

[κ2Φ
′+
2 (z)− Ω′−

2 (z)],

Im {z} = 0.

(12)

Substituting Eq. (10) into Eq. (12) and eliminating Φ+
1 (z) and Ω̄−

1 (z), we
can obtain the following expression

− i(Γκ2 + 1)Φ−
2 (z) +

κ2(J0 + σ0)

4µ2
Φ′+
2 (z)

− J0 − σ0
4µ2

Ω′−
2 (z) + i(1 + κ1)Φ0(z)

=
i(Γ + κ1)

κ1
Ω
+
2 (z) +

J0 + σ0
4µ2

Ω
′+
2 (z) (13)

− κ2(J0 − σ0)

4µ2
Φ
′+
2 (z)− i(1 + κ1)

κ1
Ω0(z),

Im {z} = 0.

By applying Liouville’s theorem, we arrive at the following set of coupled
first-order differential equations for Φ2(z) and Ω2(z)[

Γκ2 + 1 0

0 Γ+κ1
κ1κ2

] [
Φ2(z)
Ω2(z)

]
+

i

4µ2

[
κ2(J0 + σ0) −(J0 − σ0)

−(J0 − σ0)
J0+σ0
κ2

] [
Φ′
2(z)

Ω′
2(z)

]

=

[
(1 + κ1)Φ0(z)
(1+κ1)
κ1κ2

Ω0(z)

]
,

Im {z} < 0.

(14)
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In order to solve the coupled differential equations in Eq. (14), we first
consider the following eigenvalue problem:

[
κ2(J0 + σ0) −(J0 − σ0)

−(J0 − σ0)
J0+σ0
κ2

]
v = 4dµ2λ

[
Γκ2 + 1 0

0 Γ+κ1
κ1κ2

]
v, (15)

where λ is the eigenvalue and v the associated eigenvector. It is pointed

out that the 2×2 matrix

[
κ2(J0 + σ0) −(J0 − σ0)

−(J0 − σ0)
J0+σ0
κ2

]
is real, symmetric and

positive semi-definite; the 2×2 matrix

[
Γκ2 + 1 0

0 Γ+κ1
κ1κ2

]
is real, symmetric

and positive definite. The two eigenvalues λ1, λ2 and the two eigenvectors
v1, v2 of Eq. (15) can be explicitly determined as

λ1 =
[κ2(Γ + κ1) + κ1(Γκ2 + 1)] (J0 + σ0) +

√
R

8dµ2(Γ + κ1)(Γκ2 + 1)
≥ 0,

λ2 =
[κ2(Γ + κ1) + κ1(Γκ2 + 1)] (J0 + σ0)−

√
R

8dµ2(Γ + κ1)(Γκ2 + 1)
≥ 0,

(16)

and

v1 =

[
J0 − σ0

κ2(J0 + σ0)− 4dµ2λ1(Γκ2 + 1)

]
,

v2 =

[
J0 − σ0

κ2(J0 + σ0)− 4dµ2λ2(Γκ2 + 1)

]
.

(17)

where

R ≡ [κ2(Γ + κ1)− κ1(Γκ2 + 1)]2 (J0+σ0)
2+4κ1κ2(Γ+κ1)(Γκ2+1)(J0−σ0)2.

It is seen from Eq. (16) that λ1 and λ2, (λ1 ≥ λ2 ≥ 0) are both dimensionless
and are termed interface parameters which are controlled by the distance from
the singularity to the bimaterial interface. The interface becomes perfect
when λ1 = λ2 → 0. In addition, the following orthogonal relationships can
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be simply derived from Eq. (15)

[
vT
1

vT
2

][
Γκ2 + 1 0

0 Γ+κ1
κ1κ2

] [
v1v2

]
=

[
δ1 0

0 δ2

]
[
vT
1

vT
2

][
κ2(J0 + σ0) −(J0 − σ0)

−(J0 − σ0)
J0+σ0
κ2

] [
v1v2

]
= 4dµ2

[
δ1λ1 0
0 δ2λ2

]
(18)

where

δ1 = vT
1

[
Γκ2 + 1 0

0 Γ+κ1
κ1κ2

]
v1 = (Γκ2 + 1)(J0 − σ0)

2

+
(Γ + κ1) [κ2(J0 + σ0)− 4dµ2λ1(Γκ2 + 1)]2

κ1κ2
> 0,

δ2 = vT
2

[
Γκ2 + 1 0

0 Γ+κ1
κ1κ2

]
v2 = (Γκ2 + 1)(J0 − σ0)

2

+
(Γ + κ1) [κ2(J0 + σ0)− 4dµ2λ2(Γκ2 + 1)]2

κ1κ2
> 0.

(19)

Now we introduce two new analytic functions Y1(z) and Y2(z) defined by

[
Φ2(z)

Ω2(z)

]
=
[
v1 v2

] [ Y1(z)
Y2(z)

]
. (20)

Substituting the above into Eq. (14), pre-multiplying both sides by

[
vT
1

vT
2

]
and utilizing the orthogonal relationships in Eq. (18), we can finally arrive
at the following two decoupled first-order differential equations

Y1(z) + idλ1Y
′
1(z) =

M∑
m=1

Cm
(z−s)m ,

Y2(z) + idλ2Y
′
2(z) =

M∑
m=1

Dm
(z−s)m ,

(21)
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where the coefficients Cm and Dm are related to Am and Bm through

Cm =
(1 + κ1)(J0 − σ0)

δ1
Am

+
(1 + κ1) [κ2(J0 + σ0)− 4dµ2λ1(Γκ2 + 1)]

δ1κ1κ2
Bm,

Dm =
(1 + κ1)(J0 − σ0)

δ2
Am

+
(1 + κ1) [κ2(J0 + σ0)− 4dµ2λ2(Γκ2 + 1)]

δ2κ1κ2
Bm.

(22)

The solutions to Eq. (21) can be concisely expressed in terms of the expo-
nential integrals as

Y1(z) =
M∑

m=1

imCm
(dλ1)m

exp
[
i(z−s)
dλ1

] [
i(z−s)
dλ1

]1−m
Em

[
i(z−s)
dλ1

]
,

Y2(z) =
M∑

m=1

imDm
(dλ2)m

exp
[
i(z−s)
dλ2

] [
i(z−s)
dλ2

]1−m
Em

[
i(z−s)
dλ2

]
,

(23)

where the exponential integral Em(z) is defined by

Em(z) =

∫ ∞

1

exp(−zt)
tm

dt = zm−1

∫ ∞

z

exp(−t)
tm

dt, m ≥ 1. (24)

In addition, Em(z) satisfies the following recurrence relations

E′
m(z) = −Em−1(z),

mEm+1(z) = exp(−z)− zEm(z).
(25)

It is seen from Eq. (23) that Em(z) should be an ingredient of the solution
for a pole of order m. Consequently, the original four analytic functions
Φ2(z), Ω2(z) defined in the lower half-plane and Φ1(z), Ω1(z) defined in the
upper half-plane can be further obtained from Eqs. (10) and (20) as[

Φ2(z)

Ω2(z)

]
= v1

M∑
m=1

imCm

(dλ1)m
exp

[
i(z − s)

dλ1

] [
i(z − s)

dλ1

]1−m

Em

[
i(z − s)

dλ1

]

+ v2

M∑
m=1

imDm

(dλ2)m
exp

[
i(z − s)

dλ2

] [
i(z − s)

dλ2

]1−m

Em

[
i(z − s)

dλ2

]
,

Im {z} < 0,

(26)
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Φ1(z) = − Γ

κ1

(
[κ2(J0 + σ0)− 4dµ2λ1(Γκ2 + 1)]

×
M∑

m=1

−imC̄m

(dλ1)m
exp

[
−i(z − s̄)

dλ1

] [
−i(z − s̄)

dλ1

]1−m

× Em

[
−i(z − s̄)

dλ1

]
+ [κ2(J0 + σ0)− 4dµ2λ2(Γκ2 + 1)]

×
M∑

m=1

(−i)mD̄m

(dλ2)m
exp

[
−i(z − s̄)

dλ2

] [
−i(z − s̄)

dλ2

]1−m

× Em

[
−i(z − s̄)

dλ2

])
+

1

κ1
Ω̄0(z) + Φ0(z),

Ω1(z) = −Γκ2(J0 − σ0)

(
M∑

m=1

(− i)mC̄m

(dλ1)m
exp

[
−i(z − s̄)

dλ1

]

×
[
−i(z − s̄)

dλ1

]1−m

Em

[
−i(z − s̄)

dλ1

]

+

M∑
m=1

(−i)mD̄m

(dλ2)m
exp

[
−i(z − s̄)

dλ2

] [
−i(z − s̄)

dλ2

]1−m

× Em

[
−i(z − s̄)

dλ2

])
+ κ1Φ̄0(z) + Ω0(z),

Im(z) > 0.

(27)

It is verified that when λ1 = λ2 → 0 for a perfect bimaterial interface (J0 =
σ0 = 0) or for a singularity far from the interface (d→ ∞), the results in Eqs.
(26) and (27) reduce to those by Suo [20]. The stress field can be determined
by substituting the analytic functions Φ2(z), Ω2(z) and Φ1(z), Ω1(z) into
the following

σ11 + σ22 = 2
[
Φ(z) + Φ(z)

]
,

σ22 + iσ12 = Φ(z) + Ω(z) + (z̄ − z)Φ′(z).
(28)

It is seen that the stress fields in the two half-planes are dependent on
the two interface parameters λ1 and λ2.
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4 Discussion of special cases

In this section, we discuss three special cases: (i) σ0 = 0 and J0 > 0; (ii)
J0 = 0 and σ0 > 0; (iii) J0 = σ0 > 0.

Case 4.1. σ0 = 0 and J0 > 0
When the surface tension is zero (σ0 = 0) and J0 > 0, the two eigenvalues

λ1, λ2 and the two eigenvectors v1, v2 of Eq. (15) are now given by

λ1 =
J0 [κ2(Γ + κ1) + κ1(Γκ2 + 1)]

4dµ2(Γ + κ1)(Γκ2 + 1)
> 0, λ2 = 0, (29)

and

v1 =

[
1

−κ1(Γκ2+1)
Γ+κ1

]
, v2 =

[
1
κ2

]
. (30)

In addition, the following orthogonal relationships are valid[
vT
1

vT
2

][
Γκ2 + 1 0

0 Γ+κ1
κ1κ2

] [
v1v2

]
=

[
δ1 0

0 δ2

]
,

[
vT
1

vT
2

][
κ2 J0 −J0
−J0 J0

κ2

] [
v1v2

]
= 4dµ2

[
δ1λ1 0
0 0

]
,

(31)

where

δ1 = vT
1

[
Γκ2 + 1 0

0 Γ+κ1
κ1κ2

]
v1

=
(Γκ2 + 1) [κ1(κ2 + 1) + Γκ2(κ1 + 1)]

κ2(Γ + κ1)
> 0,

δ2 = vT
2

[
Γκ2 + 1 0

0 Γ+κ1
κ1κ2

]
v2

=
κ1(κ2 + 1) + Γκ2(κ1 + 1)

κ1
> 0.

(32)

The following two decoupled first-order differential equations can then be
finally derived

Y1(z) + idλ1Y
′
1(z) =

M∑
m=1

Cm
(z−s)m ,

Y2(z) =
M∑

m=1

Dm
(z−s)m ,

(33)
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where Y1(z) and Y2(z) have been defined in Eq. (20), Cm and Dm are related
to Am and Bm through

Cm = 1+κ1
δ1

Am − (1+κ1)(Γκ2+1)
δ1κ2(Γ+κ1)

Bm,

Dm = 1+κ1
δ2

Am + 1+κ1
δ2κ1

Bm.
(34)

In fact, Eq. (33) contains only a single differential equation for Y1(z) and
the function Y2(z) is given simply by Eq. (33)2 since λ2 = 0. In this case,
the stresses in the bimaterial are dependent on the surface parameter λ1.
Furthermore, if µ1 = 0 (or Γ = 0), λ1 in Eq. (29) becomes

λ1 =
J0(κ2 + 1)

4dµ2
, (35)

which is found to be consistent with the result by Yoon et al. [27].

Case 4.2. J0 = 0 and σ0 > 0
When J0 = 0 and σ0 > 0, the two eigenvalues λ1, λ2 and the two eigen-

vectors v1, v2 of Eq. (15) are

λ1 =
σ0 [κ2(Γ + κ1) + κ1(Γκ2 + 1)]

4dµ2(Γ + κ1)(Γκ2 + 1)
> 0, λ2 = 0, (36)

and

v1 =

[
1

κ1(Γκ2+1)
Γ+κ1

]
, v2 =

[
1

−κ2

]
. (37)

In addition, the following orthogonal relationships hold[
vT
1

vT
2

] [
Γκ2 + 1 0

0 Γ+κ1
κ1κ2

] [
v1 v2

]
=

[
δ1 0
0 δ2

]
,

[
vT
1

vT
2

] [
κ2σ0 σ0
σ0

σ0
κ2

] [
v1 v2

]
= 4dµ2

[
δ1λ1 0
0 0

]
,

(38)

where the expressions of δ1 and δ2 are identical to those in Eq. (32).
The form of the resulting two decoupled first-order differential equations

is similar to Eq. (33). Now Cm and Dm should be redefined as

Cm = 1+κ1
δ1

Am + (1+κ1)(Γκ2+1)
δ1κ2(Γ+κ1)

Bm,

Dm = 1+κ1
δ2

Am − 1+κ1
δ2κ1

Bm.
(39)

In this case, the stresses in the bimaterial are also dependent on the surface
parameter λ1.
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Case 4.3. J0 = σ0 > 0
In the case of J0 = σ0 > 0, the two differential equations in Eq. (14) are

in fact decoupled and can be explicitly written into

Φ2(z) +
iκ2σ0

2µ2(Γκ2 + 1)
Φ′
2(z) =

1 + κ1
Γκ2 + 1

Φ0(z),

Ω2(z) +
iκ1σ0

2µ2(Γ + κ1)
Ω′
2(z) =

1 + κ1
Γ + κ1

Ω0(z),

Im {z} < 0.

(40)

Thus the two interface parameters λ1 and λ2 are

λ1 = max

{
κ2σ0

2dµ2(Γκ2 + 1)
,

κ1σ0
2dµ2(Γ + κ1)

}
> 0,

λ2 = min

{
κ2σ0

2dµ2(Γκ2 + 1)
,

κ1σ0
2dµ2(Γ + κ1)

}
> 0.

(41)

5 Conclusions

In this work, we address the interaction problem associated with a singularity
near a bimaterial interface under plane strain deformations. In contrast to
previous studies, the surface elasticity of the interface is incorporated via a
version of the Gurtin-Murdoch model. The original boundary value problem
is reduced to a set of two coupled first-order differential equations in Eq.
(14) for the two analytic functions Φ2(z) and Ω2(z) defined in the lower
half-plane which is free of the action of the singularity. Two independent
first-order differential equations have been obtained in Eq. (21) by using a
decoupling strategy, and are solved analytically using exponential integrals
Em(z), m ≥ 1.

The obtained solutions can be further used to study, for example, a crack
with surface elasticity interacting with a bimaterial interface which also in-
corporates the effects of surface elasticity. In this case, both edge dislocation
and point force solutions are needed to simulate the crack [26].

Acknowledgements
This work is supported by the National Natural Science Foundation of

China (Grant No: 11272121) and through a Discovery Grant from the Natural
Sciences and Engineering Research Council of Canada (Grant No. RGPIN
155112).



Singularities interacting with interfaces incorporating... 279

References

[1] T. Chen, G.J. Dvorak and C.C Yu, Size-dependent elastic properties of
unidirectional nano-composites with interface stresses. Acta Mech. 188,
(2007), 39-54.

[2] P. Chhapadia, P. Mohammadi and P. Sharma, Curvature-dependent sur-
face energy and implications for nanostructures. J. Mech. Phy. Solids 59,
(2011), 2103-2115.

[3] H.L. Duan, J. Wang, Z.P. Huang and B.L. Karihaloo, Size-dependent
effective elastic constants of solids containing nano-inhomogeneities with
interface stress. J. Mech. Phys. Solids 53, (2005),1574-1596.

[4] X. Gao, Z. Huang, J. Qu and D. Fang, A curvature-dependent inter-
facial energy-based interface stress theory and its applications to nano-
structured materials:(I) General theory. J. Mech. Phy. Solids 66, (2014),
59-77.

[5] M.E. Gurtin and A. Murdoch, A continuum theory of elastic material
surfaces. Arch. Ration. Mech. An. 57, (1975), 291-323.

[6] M.E. Gurtin and A. Murdoch, Surface stress in solids. Int. J. Solids
Struct. 14, (1978), 431-440.

[7] M.E. Gurtin, J. Weissmuller and F. Larche, A general theory of curved
deformable interface in solids at equilibrium, Philos. Mag. A 78, (1998),
1093-1109.

[8] Z.P. Huang and L. Sun, Size-dependent effective properties of a hetero-
geneous material with interface energy effect: from finite deformation
theory to infinitesimal strain analysis. Acta Mechanica 182, (2006), 195-
210.

[9] C.I. Kim, C.Q Ru and P. Schiavone, A clarification of the role of crack-
tip conditions in linear elasticity with surface effects. Math. Mech. Solids
18, (2013), 59−66.

[10] C.I. Kim, P. Schiavone and C.Q Ru, The effects of surface elasticity on
an elastic solid with mode-III crack: complete solution. ASME J. Appl.
Mech. 77, (2010), 021011-1−021011-7.



280 Xu Wang, Peter Schiavone

[11] C.I. Kim, P. Schiavone and C.Q Ru, Analysis of plane-strain crack prob-
lems (mode I and mode II) in the presence of surface elasticity. J. Elas-
ticity 104, (2011) 397−420.

[12] C.I. Kim, P. Schiavone and C.Q Ru, Effect of surface elasticity on an
interface crack in plane deformations. Proc. Roy. Soc. Lond. A 467,
(2011) 3530-3549.

[13] C.I. Kim, P. Schiavone and C.Q. Ru, The effect of surface elasticity on
mode-III interface crack. Arch. Mech. 63, (2011), 267−286.

[14] V.A. Lubarda, Energy analysis of dislocation arrays near bimaterial in-
terfaces, Int. J. Solids Struct., 34, (1997) 10531073.

[15] P. Mohammadi, L.P. Liu, P. Sharma and R.V. Kukta, Surface energy,
elasticity and the homogenization of rough surfaces. J. Mech. Phy. Solids,
61, (2013), 325-340.

[16] N.I. Muskhelishvili, N.I., Some Basic Problems of the Mathematical The-
ory of Elasticity. P. Noordhoff Ltd., Groningen, 1953.

[17] C.Q. Ru, Simple geometrical explanation of Gurtin-Murdoch model of
surface elasticity with clarification of its related versions. Sci. China 53,
(2010), 536-544.

[18] P. Sharma and S. Ganti, Size-dependent Eshelby’s tensor for embedded
nano-inclusions incorporating surface/interface energies. ASME J. Appl.
Mech. 71, (2004), 663-671.

[19] P. Sharma, S. Ganti and N. Bhate, N., Effect of surfaces on the size-
dependent elastic state of nanoinhomogeneities. Appl. Phys. Lett. 82,
(2003), 535-537.

[20] Z. Suo, Singularities interacting with interfaces and cracks. Int. J. Solids
Struct. 25, (1989), 1133-1142.

[21] T.C.T. Ting, Anisotropic Elasticity-Theory and Applications. Oxford
University Press, New York 1996.

[22] G.F. Wang and T.J. Wang, Deformation around a nanosized elliptical
hole with surface effect. Appl. Phys. Lett. 89, (2006), 161901.



Singularities interacting with interfaces incorporating... 281

[23] X. Wang and P. Schiavone, Interaction of a screw dislocation with a
nano-sized arbitrary shaped inhomogeneity with interface stresses under
anti-plane deformations Proc. Roy. Soc. Lond. A (2014) (In press).

[24] X. Wang and P. Schiavone, A screw dislocation interacting with an
anisotropic elliptical nano-inhomogeneity with interface stresses in anti-
plane elasticity J. Elasticity, (2014), (In press).

[25] X. Wang and P. Schiavone, Two circular inclusions with arbitrarily var-
ied surface effects Acta Mech., (2014), (In press).

[26] X. Wang and P. Schiavone, Interaction between an edge dislocation and
a crack with surface elasticity ASME J. Appl. Mech., 82, 021006-1 -
021006-8 Feb 2015.

[27] J. Yoon, C.Q. Ru and A. Mioduchowski, Effect of a thin surface coating
layer on thermal stresses within an elastic half-plane. Acta Mech. 185,
(2006), 227−243.

Submitted in December 2014.



282 Xu Wang, Peter Schiavone

Medjudejstvo singulariteta i medjupovrši koje uključuje

elastičnost površi pri ravanskoj deformaciji

Razmatramo probleme koji uključuju singularitete kao što su: koncentrisane
sile, koncentrisane momente, ivičnu dislokaciju i kružni Eshelby-jev uključak
u izotropnim dvomaterijalima u prisustvu medjupovrši uključujućo elastičnost
površi / medjupovrši pri ravanskoj deformaciji. Pritom izvodimo elementarna
rešenja eksponencijalnim integralima. Mehanika površi je ugradjena koristeći
model površi / medjupovrši u kontinuumu zasnovanog Gurtin-om i Murdoch-
om. Rezultati pokazuju da naponi u dve poluravni zavise od dva parametra
medjupovrši.
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