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Abstract

The motion of the interstitial fluid of a biological tissue is studied
by employing the Darcy-Forchheimer law, a correction to standard
Darcy’s law. The tissue is modelled as a saturated biphasic medium
comprising the fluid and a deformable matrix. The reason for under-
taking this study is that a description of the tissue’s dynamics based
on the Darcy-Forchheimer law might be more complete than the one
based on Darcy’s law, since the former provides a better macroscopic
representation of the microscopic fluid-solid interactions. Through nu-
merical simulations, we analyse the influence of the Forchheimer’s cor-
rection.
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1 Introduction

From the point of view of Mechanics, articular cartilage can be classified
as a fibre-reinforced, composite material in which two principal constituents
can be distinguished: an interstitial fluid, mainly consisting of water, and a
matrix of proteoglycans, reinforced by collagen fibres [45]. The composition
of articular cartilage, as well as the distribution and orientation of the col-
lagen fibres, vary from the upper to the lower strata of the tissue [46, 50],
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thereby rendering its mechanical properties inhomogeneous and anisotropic.
Also the ease with which the fluid moves through the matrix —a property
measured by the tissue’s permeability— is affected by the tissue’s inhomo-
geneity and anisotropy. The influence wielded by the collagen fibres on the
flow properties of the overall tissue was suggested by Maroudas and Bul-
lough [46] on the basis of experimental evidences, and has been recently
investigated, e.g., in [18,19].

The motion of the interstitial fluid of articular cartilage is tightly con-
nected with the stresses and deformations that can be generated in the
tissue [43]. The Theory of Mixtures, formulated for solid-fluid biphasic ma-
terials [9,33,53], offers a quite natural theoretical framework for studying, at
the tissue scale, the coupling between the interstitial fluid and the solid con-
stituents of articular cartilage. In this context, the solid phase can be studied
either as a single-constituent material [36] or as a mixture of solids [6, 40].
Moreover, the solid phase is usually assumed to be incompressible and elas-
tic (or hyperelastic), and the fluid phase is assumed to be incompressible
and macroscopically inviscid.

Within the biphasic models of articular cartilage, the interplay between
the motions of the fluid and the solid phase is usually described constitu-
tively by introducing a deformation-dependent tissue’s permeability [7, 36].
In the isotropic models, this transport property is expressed as a function de-
pending solely on the deformation of the solid phase [36]. In the anisotropic
models, instead, the statistical orientation of the collagen fibres is often ac-
counted for [4,5,30,49], and the evolution of the tissue’s anisotropy is put in
relation with the variation of the tissue’s deformation. These studies, origi-
nally developed in small deformations, have been recently reformulated in a
finite-deformation setting, e.g., in [17], and implemented in Finite Element
software in [52,59]. To this end, generalisations to some hyperelastic models
of monophasic materials (cf., e.g., [15,37,48]) have been elaborated to allow
for statistically oriented collagen fibres [17,20,59].

The model of articular cartilage that we present hereafter is far from
being all-embracing. Rather, it is a simplified model, which does not ac-
count for the tissue’s anisotropy. We follow this path in order to generalise
one targeted aspect of the standard biphasic models which we are aware
of. Indeed, a common feature of these models is the employment of Darcy’s
Law to describe the motion of the interstitial fluid. This choice is justified
because the fluid phase moves slowly enough. Some authors, instead, on
the basis of an extended Hamilton-Rayleigh Principle, consider friction and
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inertial effects and a proper set of boundary conditions at “fluid-permeable
interfaces between dissimilar fluid-filled porous matrices” that are “relative
to volume Darcy-Brinkman and to surface Saffman-Beavers-Joseph dissipa-
tion effects” [14].

In this paper, however, we propose to describe the fluid flow by means
of the so-called Darcy-Forchheimer equation [60]. This is a correction to the
standard Darcy’s Law, which consists of introducing a non-linear relation-
ship between the filtration velocity and the pressure gradient. We adhere
to this modelling choice with the goal of investigating how the switch from
a linear to a non-linear model of the flow can lead to changes in the overall
mechanical response of the whole solid-fluid system. To our knowledge, in
the framework of the Biomechanics of articular cartilage, the Forchheimer’s
correction was mentioned in [41], although both the model and the simula-
tions were performed by means of standard Darcy’s Law.

Many theoretical studies have been performed to motivate the exper-
imental evidence of the Darcy-Forchheimer law [34, 56, 60]. In fact, the
Forchheimer’s correction can be related to the surface integrals of the con-
tact forces exchanged between the fluid and the solid phase at the pore
scale [10, 32, 60]. These integrals, which are computed over the solid-fluid
interface, involve the overall Cauchy stress tensor of the fluid phase and,
partially, the contribution given by the pore scale fluctuations of the fluid
velocity. Thus, both the pore scale inertial effects and the solid-fluid in-
teractions, which become larger when the filtration velocity increases, seem
to be possible contributory causes to the non-linearity of the Forchheimer’s
correction.

2 Mass and momentum balance laws

The biphasic system considered in this paper constitutes the simplest rep-
resentation of hydrated biological tissue, in which the solid phase describes
the tissue’s porous matrix and the fluid phase models the biological fluid
occupying the pores of the matrix. In the following, the fluid phase is also
referred to as interstitial fluid. The theory elaborated hereafter rests on the
fundamental hypothesis that the biphasic system is saturated. This means
that the pore space of the system is entirely filled with the fluid phase.

We refer to the kinematics of biphasic mixtures put forward in [44, 54,
55], and recently adopted in [59] for soft biological tissues. We denote by
Ct and CR the subsets of the three-dimensional Euclidean point space S
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corresponding to the current configuration and the reference configuration
of the mixture, respectively. Here, t denotes a generic instant of time. The
motion of the solid is represented by the one-parameter family of smooth
mappings χ( · , t) : CR → S, such that x = χ(X, t) ∈ S, with X ∈ CR. At
each spatial point x ∈ Ct, the solid and the fluid phase co-exist.

The deformation gradient tensor of the solid phase is denoted by F ,
and the right Cauchy-Green deformation tensor by C = FT.F = FTgF ,
with g being the spatial metric tensor (see [47] for details). In order for χ
to be admissible, the volumetric ratio J := det(F ) must be positive at all
X ∈ CR and at all times. Given the systems of coordinates {x̂a}3a=1 and
{X̂A}3A=1, associated with Ct and CR, respectively, the tensor components
of F and C read F aA = ∂χa/∂XA and CAB = F aAgabF

b
B, with gab being

the components of g. The velocities of the solid and fluid particle passing
through x = χ(X, t) at time t are given by vs(x, t) = χ̇(X, t) and vf(x, t),
respectively, where the superimposed dot means partial differentiation with
respect to time. Finally, we also introduce the relative velocity vfs = vf−vs.

We consider a simplified framework in which no mass exchanges between
the solid and the fluid phase are accounted for. Moreover, we assume that
the macroscopic inertial forces and the external body forces (such as gravity)
acting on the mixture are negligible. These hypotheses, which are commonly
accepted in the biomechanical models of soft tissues, lead to the following
set of equations, which represent the local form of the balance laws of mass
and linear momentum for the solid and fluid phase of the mixture:

∂t(φs%s) + div(φs%svs) = 0 , (1a)

∂t(φf%f) + div(φf%fvf) = 0 , (1b)

div(σs) +ms = 0 , (1c)

div(σf) +mf = 0 , (1d)

ms +mf = 0 . (1e)

The product φα%α (α = s, f) is the apparent density of the αth phase. It
depends on the true mass density %α and the volumetric fraction φα, which
describes the volumetric content of the αth phase in a representative volume
element of the mixture. The second-order tensor σα (α = s, f) represents
the Cauchy stress tensor of the αth phase, and mα is the rate at which
the αth phase exchanges linear momentum with the other one. Finally, the
closure condition (1e) states that linear momentum is neither produced nor
destroyed by the mixture as a whole. The mixture is thus said to be “closed”
with respect to momentum.
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From here on, we assume that %s and %f are given constants (this as-
sumption implies the intrinsic incompressibility of both the solid and the
fluid phase). Moreover, we require the saturation constraint φs + φf = 1,
which has to apply at all points of the mixture and at all times, and in-
voke (1e) to rewrite (1a)–(1d) in the following equivalent form:

Dsφs + φs div vs = 0 , (2a)

div vs + div q = 0 , (2b)

div(σs + σf) = 0 , (2c)

div(σf) +mf = 0 . (2d)

In (2a), Dsφs = ∂tφs + (gradφs)vs is the substantial derivative of φs com-
puted with respect to the solid motion and, in (2b), q = φfvfs is said to be
the filtration velocity.

3 Constitutive theory and dissipation

We assume that the solid phase can be modelled as a hyperelastic material
from the reference configuration CR, which is regarded as unloaded and
stress-free, and that the fluid phase is macroscopically inviscid. Accordingly,
it can be proven that the Cauchy stress tensors σs and σf are given by [9,
17,24,33]

σs = −φsp g
−1 + σsc , σsc =

1

J
F

(
2
∂Ŵ

∂C
(C)

)
FT , (3a)

σf = −φfp g
−1 , (3b)

where p is pressure, σsc is the constitutive part of the solid phase Cauchy
stress tensor, and Ŵ is the strain energy density function of the solid phase
measured per unit volume of CR. Because of the hypothesis of incompress-
ibility of the solid and fluid phase, p has to be understood as a Lagrange
multiplier. Moreover, consistently with the assumption of inviscid fluid, the
Cauchy stress tensor σf is purely hydrostatic. Finally, by exploiting the
results (3a) and (3b), we can rewrite (2c) and (2d) as

div(−p g−1 + σsc) = 0 , (4a)

− φfg
−1grad p+

(
mf − pg−1gradφf

)
= 0 . (4b)
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By Piola-transforming (2a) with respect to the solid phase motion, and
employing the identity J̇ = J div vs, the mass balance law of the solid phase
reads

˙Jφs = 0 . (5)

From (5), we can state that φsR := Jφs, which is the Piola transformation of
φs, is independent of time. From a physical point of view, φsR measures the
volumetric content of the solid phase in a representative volume of the ref-
erence configuration CR. For this reason, it is also referred to as “referential
volumetric fraction” of the solid phase.

In general, φsR is a function of the points X ∈ CR. If φsR is known, then
φs can be univocally determined as a function of the volumetric ratio J , i.e.

φs =
φsR

J
. (6)

The remaining equations (2b), (4a) and (4b) constitute a set of seven scalar
equations in the ten unknowns χ, q, p, and mf . The stress tensor σsc is not
regarded as unknown, since it is prescribed constitutively in (3a). Here, we
postulate that Ŵ (C) is of the Holmes-Mow type [36], i.e.

Ŵ (C) = α0

(
[Î3(C)]−be[α1(Î1(C)−3)+α2(Î2(C)−3)] − 1

)
. (7)

In (7), α0 is a measure of the stiffness of the solid phase, α1, α2 and b are
model parameters satisfying the condition α1 + 2α2 = b, and Î1, Î2 and Î3

are the invariants of C:

I1 = Î1(C) = tr(C) , (8a)

I2 = Î2(C) = 1
2

{
[Î1(C)]2 − tr[C.C]

}
, (8b)

I3 = Î3(C) = det(C) = J2 . (8c)

In order to close the problem, we select χ, q and p as independent un-
knowns, and look for a constitutive law determining mf . In this work,
we deduce such a constitutive law from the Principle of Maximum Dissipa-
tion [31]. For this purpose, we introduce a dissipation function and maximise
it over a suitable set of variables. For the considered biphasic system, and
within a purely mechanical framework, the dissipation function reduces to

D := − 1

φf

{
mf − p g−1gradφf

}
.q ≥ 0 , (9)
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where D is defined per unit volume of the current configuration Ct. Follow-
ing [9, 33,59], we rewrite mf as

mf = mfd + p g−1gradφf , (10)

wheremfd and p g−1gradφf are said to be the dissipative and non-dissipative
contributions to mf , respectively. Hence, by substituting (10) into (9), we
obtain

D = − 1

φf
mfd.q ≥ 0 , (11)

and, by substituting (10) into (4b), the balance of momentum for the fluid
phase becomes

mfd = φfg
−1grad p . (12)

We recall that, due to the saturation constraint, and using (6), φf can be
written as φf = 1 − φs = (J − φsR)/J . Moreover, by choosing F and q as
the independent constitutive variables, we postulate a constitutive law of the
type mfd = m̂fd(F , q). Consistently, D can be rewritten as a constitutive
function of the same set of variables, i.e.

D = D̂(F , q) = − J

J − φsR
m̂fd(F , q).q ≥ 0 . (13)

3.1 Darcy-Forchheimer law

In several problems of engineering relevance, m̂fd is assumed to depend
linearly on q (cf., e.g., [8]), i.e.,

mfd = m̂fd(F , q) = −g−1 r̂(F ) q , (14)

where r = r̂(F ) is a second-order tensor representing the resistivity of the
porous medium to fluid flow (cf., e.g., [33]). By substituting (14) into (12),
and solving for q, we obtain Darcy’s Law, i.e.

q ≡ qD = −k grad p , (15)

where the subscript “D” means that the filtration velocity is computed ac-
cording to Darcy’s Law, and k = k̂(F ) is the hydraulic conductivity of the
porous medium. In this work, both r and k are assumed to be symmetric
and positive definite, and it holds that k = φf r

−1. Moreover, m̂fd(F , qD)
vanishes if, and only if, qD is null. By substituting (14) into (11), we obtain

D = DDarcy =
1

φf
sym(r) : (qD ⊗ qD) ≥ 0 . (16)
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The Piola transformation of qD determines the material form of Darcy’s
law:

QD := JF−1qD = −KGrad p , (17)

with K = JF−1kF−T being the material hydraulic conductivity tensor, i.e.
the Piola transform of k with respect to the solid motion. We notice that,
since K can be expressed constitutively as K = K̂(F ), QD can be written
as:

QD = Q̂D (F ,H) , (18)

where H := Grad p is the material pressure gradient.
Here, however, we adhere to a different constitutive framework, which is

based on the assumption [10,35]

mfd = m̂fd(F , q) = −
(

1 + Â(F )‖q‖
)
g−1r̂(F )q . (19)

The positive-definite quantity A = Â(F ) is referred to as Forchheimer coeffi-
cient (its physical units are [A] = s/m). By substituting the right-hand-side
of (19) into (12), and using the relation φf r

−1 = k, we obtain

(1 +A‖q‖)q = −k grad p ≡ qD . (20)

A direct implication of this result is that the Euclidean norms of qD and q
are related by the equality

(1 +A‖q‖)‖q‖ = ‖qD‖ , (21)

which leads to the following second-order polynomial equation in ‖q‖:

A‖q‖2 + ‖q‖ − ‖qD‖ = 0 . (22)

Since the discriminant of (22) is strictly positive, it admits two real, distinct
solutions. However, the only admissible solution, since it is the positive one,
is given by

‖q‖ =
−1 +

√
1 + 4A‖qD‖
2A

. (23)

This result allows to write q explicitly as a function of qD. Indeed, by
substituting the right-hand-side of (23) into (20), and solving for q, we
find [27]

q = fqD , f ≡ f̄(A‖qD‖) :=
2

1 +
√

1 + 4A‖qD‖
. (24)
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For all possible realisations of A and ‖qD‖, f̄(A‖qD‖) is strictly positive and
smaller than, or equal to, unity. In particular, it holds that f̄(0) = 1, and
f̄(A‖qD‖) ∼ 1 − A‖qD‖, when A‖qD‖ tends towards zero. This behaviour
allows to recover Darcy’s Law for small values of the productA‖qD‖. Finally,
it holds that f̄(A‖qD‖) ∼ (A‖qD‖)−1/2, when A‖qD‖ tends towards infinity.
Clearly, the latter limit is only performed to comprehend the asymptotic
behaviour of f , since too large values of ‖qD‖ have no physical meaning (we
recall, indeed, that Darcy’s Law is valid only for slow fluid flow). Since it
holds true that 0 < f ≤ 1, the magnitude of the filtration velocity computed
by means of the Forchheimer’s correction, ‖q‖, is always a proper fraction
of ‖qD‖.

The Piola transform of q reads

Q := JF−1q = f QD, f = f̄
(
AJ−1

√
I4

)
, (25)

where we used the equality

‖qD‖ = J−1
√
C : (QD ⊗QD) = J−1

√
I4 , (26)

and we introduced the “invariant” I4 := C : (QD ⊗ QD), which couples
the deformation of the matrix with the Darcy’s filtration velocity. Here,
I4 mimics the invariant C : (M ⊗M), which, in anisotropic materials,
accounts for the coupling between the deformation and the local direction of
anisotropy, expressed by the unit vector M (see, e.g., [37]). The result (18)
and the constitutive expression of A allow to rewrite f as

f = f̄
(
AJ−1

√
I4

)
= f̂ (F ,H) . (27)

Therefore, looking at (17) and (27), Q can be re-defined as

Q = Q̂ (F ,H) = −f̂(F ,H)K̂(F )H , (28)

with H = Grad p. Although Q depends on the same list of variables as QD,
the Darcy-Forchheimer filtration velocity Q is highly non-linear both in
the motion and in the material pressure gradient H, whereas QD is linear
in H by definition. A direct consequence of this result is that the Piola
transformation of (2b) transforms the mass balance law for the mixture as
a whole into a highly non-linear partial differential equation in the pressure,
i.e.

J̇ + DivQ = 0 , ⇒ J̇ −Div [fK Grad p] = 0 . (29)
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3.2 Hydraulic conductivity

In this work, we restrict our investigation to the case of a porous medium
characterised by isotropic hydraulic behaviour. The simplest constitutive
law of k complying with isotropy takes on the form [7]

k = k̂(F ) = k̂0(J)g−1 , (30)

where the dependence on F is through the volumetric ratio J . Following
the non-linear isotropic cartilage model by Holmes and Mow [36], the scalar
hydraulic conductivity k̂0 (whose physical units are [k̂0] = m4/(Ns)) can be
defined as

k̂0(J) = k0R

(
J − φsR

1− φsR

)m0

exp
[m1

2
(J2 − 1)

]
, (31)

with m0 and m1 being constant material parameters. In the absence of
deformation, i.e. when J = 1, the identity k̂0(1) = k0R is obtained, which
means that the referential conductivity, k0R, is retrieved. The latter must
describe the hydraulic properties of a porous medium at rest, and for which
the interactions with the fluid flowing throughout it do not lead to defor-
mations of the solid phase.

Even though the assumption of isotropic hydraulic behaviour is main-
tained, there may be cases in which more general constitutive laws for k̂ are
required. For instance, a slight generalisation of (30) could be

k = k0g
−1 + k1b , (32)

where b = F .FT is the left Cauchy-Green deformation tensor, while k0 and
k1 are scalar functions whose constitutive expressions depend on F through
the invariants of C (or, equivalently, of b).

3.3 Summary of the model equations

By introducing the first Piola-Kirchhoff stress tensors

Ps = JσsF
−T = −φsRp g

−1F−T + Psc , (33a)

Pf = JσfF
−T = −(J − φsR)p g−1F−T , (33b)

with Psc = JσscF
−T, the backward Piola-transformation of (4a) leads to

Div
(
−Jp g−1F−T + Psc

)
= 0 . (34)
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The strain energy density function (7) allows to determine Psc as a function
of F , i.e. Psc = P̂sc(F ). Therefore, the overall stress P := Ps + Pf is given
by

P = P̂ (p,F ) = −Jp g−1F−T + P̂sc(F ). (35)

Finally, by virtue of the results (6) and (28), the model equations reduce to

J̇ −Div(fKGrad p) = 0 , (36a)

Div
(
−Jp g−1F−T + Psc

)
= 0 , (36b)

which constitute a closed set of coupled and highly non-linear partial differ-
ential equations in the unknowns χ and p. We remark that the difference
between the standard model, which is based on Darcy’s Law, and the one
elaborated in this paper consists of the presence of the function f multi-
plying QD in (36a). Clearly, the standard model is retrieved in the limit
f → 1. In the following, f is referred to as the “friction factor”. To supply
a constitutive expression for f , it is necessary to assign constitutively the
Forchheimer coefficient A.

4 Forchheimer’s coefficient

In the literature of porous media of both hydrogeological and industrial rel-
evance, the Forchheimer coefficient A is often determined for porous media
that are at rest and undeformable. Moreover, homogeneity and isotropy
are often assumed. Thus, k becomes k0Rg

−1, with k0R being a constant
referential conductivity, and A is defined by

A = %fβk0R , (37)

where β is a parameter evaluated experimentally (we recall that %f , i.e. the
intrinsic mass density of the fluid phase, is constant in the present theory).
Since A represents the inverse of a characteristic filtration velocity, i.e. [A] =
s/m, the physical units of β must be [β] = 1/m, so that β defines the inverse
of a characteristic length scale.

To account for formulations of k that do not necessarily reduce to the
one given in (30), and to allow for the extension of the definition (37) to
deformable, inhomogeneous and anisotropic porous media, we introduce the
equivalent scalar conductivity

keq =
√

1
3tr[k.k] ≡ 1√

3
‖k‖ . (38)
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Hence, we rephrase (37) as

A = %fβkeq . (39)

The equivalent conductivity, keq, depends on the same list of arguments as

k. Thus, we may write keq = k̂eq(F ). Since, in this paper, (30) applies, keq

equals k̂0.

There exist several models that relate the β-factor to peculiar properties
of the porous medium [1, 13, 16, 21, 38, 39, 42, 51, 57, 58]. In the work by
Thauvin and Mohanty [58], these properties are represented by the porosity,
permeability, and tortuosity of the considered porous medium (we recall
that the porosity is equal to φf in the case of saturated porous media). In
general, permeability and tortuosity are second-order tensors. The former is
a measure of the ease with which a fluid permeates the pore space of a given
porous medium, while the latter describes macroscopically the geometry
of the pore space (for a mathematical definition of tortuosity, see, e.g., [8]).
More specifically, it accounts for the fact that the trajectories followed by the
fluid particles, or by particles of substances transported by the fluid, deviate
from straight lines because of the meandrous structure of the pore space.
Since, in a deformable porous medium, tortuosity varies with deformation, it
should be expressed constitutively. In this paper, however, since the medium
is assumed to be isotropic, we regard it as a scalar parameter.

Usually, in the literature dedicated to fluid flow in porous media of hy-
drogeological or industrial interest, the hydraulic conductivity k of a given
porous medium is written as the ratio between the permeability of the
medium, κ, and the viscosity of the fluid, µ [8]:

k =
κ

µ
. (40)

Since κ and µ represent, respectively, a property of the porous medium and
a property of the fluid, they are independent of each other, and both are
needed to determine the hydraulic conductivity, which, instead, is a property
of the pair “porous medium and fluid”. In the simple case of isotropic media
such that κ = κ0g

−1, the factor β is usually written as a power law of the
scalar permeability κ0, φf , and scalar tortuosity τ , i.e.

β = β̄(κ0, φf , τ) = c0 κ
c1
0 φ

c2
f τ

c3 , (41)

where c0 is a real proportionality constant [58], and c1, c2 and c3 are real
numbers. In this formulation, β̄ is independent of viscosity.



The Darcy-Forchheimer Law... 295

A rather different approach is followed in the characterisation of the
flow properties of biological tissues. Indeed, to the best of our knowledge, in
Biomechanics one usually calls “permeability of a tissue” the quantity that
one would call “hydraulic conductivity” in the jargon of porous media, and
the constitutive laws found in the literature typically define k as a single
tissue property, without separating the contribution of the true permeability
from that of the fluid viscosity. For example, in the Holmes-Mow model of
“soft gels and hydrated connective tissues in ultrafiltration” [36], although
the definition of the tissue’s “apparent permeability” does take into account
the fluid viscosity, the experimental values assigned to k̂0R (k0 in the nota-
tion of [36]) refer to a single characteristic quantity, withholding information
about the fluid viscosity. To our understanding, the main advantage of this
formulation is that the constitutive laws for k, which have to be consistent
with the experiments performed on a given tissue, and with the biological
fluid flowing throughout it, do not constrain k to be of the form (40), a
relation obtained for Newtonian fluids [8], thereby allowing for more general
fluid behaviours.

To define the Forchheimer coefficient A for a biological tissue, we need
to know β. However, the only expressions of β which we are aware of are the
power laws assigned in (41), which make use of κ0. Since we have numerical
values only for keq, we introduce the effective permeability κeff := keqµ, and
re-define the factor β as

β = β̄(κeff , φf , τ) = β̄(keqµ, φf , τ) = c0 (keqµ)c1φc2f τ
c3 . (42)

In table 1, each empirical law of the factor β is formulated in terms of
κeff = keqµ. This is done to retrieve the formulation of Thauvin and Mo-
hanty [58], in which all expressions of β were presented in terms of perme-
ability.

We regard the viscosity µ and the tortuosity τ as constant model pa-
rameters. Thus, by noticing that keq depends on the same list of arguments

as k, we can rewrite β = β̂(F ). Finally, if keq is associated with the hy-
draulic conductivity defined by (30) and (31), the constitutive law for β can
be rephrased as β = β̂(J). Hence, since also the constitutive law for the
Forchheimer coefficient, Â, depends on the same list of arguments as β, we
can write A = Â(J). In contrast with the expressions of β supplied in [58],
which are usually defined for non-deformable porous media, we re-defined
here β as a function of the volumetric ratio, J , in order to account for the
variations of permeability and porosity driven by the deformation.
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We remark that the introduction of tortuosity as a free parameter of
the model follows from the use of the expression (41), which has been taken
from [58]. In the following, however, we set τ = 1. This modelling choice,
which could be too restrictive in some cases, is chiefly motivated by our
lack of information about physically sound values or expressions of τ for the
problem at hand. Nevertheless, it could be partially justified by admitting
that the equivalent conductivity keq already accounts for tortuosity in its
own definition.

Table 1: Expressions of β taken, and adapted, from [12, 58]. The effective
permeability κeff has units [κeff ] = m2 and the β-factor has units [β] = m−1.

β-Factor Reference

βTM = 2.6591 · 10−6(κeff)−0.98
(
J−φsR
J

)−0.29
Thauvin & Mohanty [58]

βJ = 4.9659 · 10−8(κeff)−1.55 Jones [39]

βE = 1.419 · 10−2(κeff)−1/2
(
J−φsR
J

)−11/2
Ergun [16]

βG = 1.581 · 10−1(κeff)−1/2
(
J−φsR
J

)−5.5
Geertsma [21]

βJK = 5.8737 · 10−7(κeff)−5/4
(
J−φsR
J

)−3/4
Janicek & Katz [38]

βP = 3.6899 · 10−2 · (κeff)−1.176 Pascal et al. [51]
βT = 2.9956 · 10−4(κeff)−1.2 Tek et al. [57]

βCH = 9.4324 · 10−11(κeff)−1.88
(
J−φsR
J

)−0.449
Coles & Hartman [13]

βLi = 1.1 · 10−3(κeff)−1
(
J−φsR
J

)−1
Li et al. [42]

βA = 3.7595(κeff)−0.85 Aminian et al. [1]

By varying c0, c1, c2 and c3, several expressions of β can be built. To
accomplish this task, we refer to the study conducted by Thauvin and Mo-
hanty [58]. In (42), we adopt the isotropic hydraulic conductivity specified
in (30), which implies keq = k̂0(J), with k̂0(J) being defined in (31). In
this calculation, we consider both the homogeneous case, in which k0R is a
given constant, and the inhomogeneous case, in which k0R depends on X.
Looking at table 1, we notice that, since the values taken by c1 are always
negative, β decreases with increasing κeff . Thus, for a given distribution of
the volumetric ratio J , higher values of k0R lead to smaller β-factors.
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5 The confined compression test

The Forchheimer’s correction manifests itself through the friction factor f .
To evaluate its influence on the hydraulic and mechanical response of a
sample of articular cartilage, we compare the solution to (36a) and (36b)
obtained for 0 < f ≤ 1 with the solution obtained within the Darcy’s ap-
proximation, which is retrieved by setting f = 1 in (36a). This amounts
to replace Q = fQD with the standard Darcy’s filtration velocity QD. For
our purposes, we consider the benchmark problem known as “confined com-
pression test”. This test is, among others, largely used in Biomechanics to
characterise, both in vitro and in silico, the hydraulic and mechanical prop-
erties of articular cartilage. We chose this benchmark problem because of
its particularly simple setting.

5.1 Benchmark description and specific form of deformation

A cylindrical sample of articular cartilage is inserted into a cylindrical com-
pression chamber characterised by an impermeable and rigid lateral wall.
The bottom of the chamber consists of a fixed, impermeable and rigid plate.
At the top, the chamber is delimited by a rigid and permeable plate, which
is free to glide along the axial direction of the chamber.

Since the upper plate is permeable, the fluid contained in the specimen is
allowed to flow out of the chamber during compression, thereby permitting
the deformation of the specimen itself. The permeability of the upper plate
is an essential condition. Indeed, if the upper plate were impermeable, no
deformation could occur, since both the solid and the fluid phase constitut-
ing the sample are regarded as intrinsically incompressible. Furthermore,
since the lateral wall and the lower plate of the chamber are impermeable,
fluid flow is allowed only along the axial direction.

The hypothesis of isotropic and homogeneous material, the geometry of
the specimen, and the prescriptions on the boundaries of the chamber make
the confined compression test an axial-symmetric problem. Consequently,
by employing cylindrical coordinates for parameterising both CR and Ct, the
deformation χ and pressure p can be specified as follows:

r = χr(R,Θ, Z, t) = R ∈ [0, Rc] , (43a)

ϑ = χϑ(R,Θ, Z, t) = Θ ∈ [0, 2π) , (43b)

z = χz(R,Θ, Z, t) ≡ ζ(Z, t) ∈ [0, `(t)] , ∀Z ∈ [0, L] , (43c)

p(R,Θ, Z, t) ≡ ℘(Z, t) . (43d)
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In (43a)–(43c), {r, ϑ, z} and {R,Θ, Z} denote the radial, circumferential
and axial coordinate of the parameterisations of Ct and CR, respectively, Rc

and L are the radius and height of the undeformed specimen, and `(t) is
the deformed height at time t. In (43c) and (43d), the axial component of
deformation χz and pressure p are re-defined as functions depending solely
on the axial coordinate Z and time t. Equations (43a)–(43d) lead to the
following matrix representations of F and C:

[F ]aA = diag{1, 1, ζ ′} = diag{1, 1, J} , (44a)

[C]AB = diag{1, 1, (ζ ′)2} = diag{1, 1, J2} , (44b)

where ζ ′ is the partial derivative of ζ with respect to the axial coordi-
nate Z, and the last equality in (44a) and (44b) follows from the identity
J = det(F ) = ζ ′. Accordingly, also the matrix representation of the consti-
tutive part of the first Piola-Kirchhoff stress tensor of the solid phase, Psc, is
diagonal, and the only component entering the model equations is the axial
one P zZsc . Due to the choice of the strain energy density function in (7), P zZsc

is given by

P zZsc ≡ P̂ zZsc (J) =
Hm

2

J2 − 1

J2b+1
exp{b[J2 − 1]} , (45)

where Hm = 4α0[α1 + 2α2] = 4α0b is the tissue’s aggregate axial modu-
lus [36].

Furthermore, the only non-zero component of the material filtration ve-
locity Q is the axial one, QZ . By using (28) and (30), and recalling that
K = JF−1kF−T = Jk0C

−1, we obtain

QZ = −fk0

J
℘′ , (46)

where k0 = k̂0(J) is specified in (31), ℘′ is the partial derivative of the
pressure ℘ with respect to the axial coordinate Z, and the friction factor f
becomes

f ≡ f̄(A‖qD‖) = f̂(J, ℘′) =
2

1 +

√
1 + 4Ak0|℘′|

J

. (47)

We remark that, due to the considered simple setting, the friction factor f
depends on the absolute value of the material pressure gradient ℘′. Finally,
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the model equations (36a) and (36b) become

J̇ =
∂

∂Z

(
fk0

J

∂℘

∂Z

)
, (48a)

∂℘

∂Z
=
∂P zZsc

∂Z
. (48b)

5.2 Boundary conditions and loading history

In order to determine the unknowns ζ and ℘ that solve the model equa-
tions (48a) and (48b), appropriate boundary conditions must be imposed.
The boundary ∂CR of the reference configuration of the specimen can be
written as ∂CR = ΓL ∪ ΓB ∪ ΓT. The surfaces ΓB and ΓT, determined by
the equations Z = 0 and Z = L, are in contact with the bottom and the
top plate, respectively, while ΓL is in contact with the lateral wall of the
compression chamber. In this paper, we perform the confined compression
test in force control. Hence, we apply the following loading protocol to the
upper plate of the experimental apparatus:

f(t) =

{
fmax

t
Tramp

, t ∈ [0, Tramp] ,

fmax , t ∈ (Tramp, Tend] ,
(49)

where the applied load f(t) grows linearly in time until t = Tramp, and is
then held constant up to t = Tend. The maximum fmax, reached at the end
of the linear ramp, is chosen to be fmax = γg0, where g0 = 9.81 m/s2 is
the gravity acceleration, and γ is a proportionality constant having physical
units of mass. Since the upper plate is permeable, the boundary conditions
that have to be respected on ΓT at all times are:

℘(L, t) = 0 , (50a)

− ℘(L, t) + P zZsc (L, t) = Pb(t) =
f(t)

πR2
c

⇒ P zZsc (L, t) = Pb(t) . (50b)

Since the lateral wall and the lower plate of the apparatus are fixed, rigid
and impermeable, the radial displacement of the specimen and the radial
component of the filtration velocity must vanish on ΓL. Similarly, the axial
displacement and the axial component of the filtration velocity must be
zero on ΓB. These conditions must apply at all times. The form of the
deformation and pressure specified in (43a)–(43d) satisfies automatically
the zero-displacement and no-flow conditions on ΓL. However, to comply
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with the requirements on the lower plate, ζ and ℘ must respect at all times
the following boundary conditions on ΓB:

ζ(0, t) = 0 , (51a)

QZ(0, t) = 0 ⇒ ℘′(0, t) = 0 . (51b)

For the sake of rigour, we recall that the no-flux condition QZ = 0 is equiv-
alent to ℘′ = 0 only when no compaction occurs, i.e. for non-zero hydraulic
conductivity (the friction factor f is always different from zero). Compaction
is reached when J equals its lower bound J = φsR. In this case, k0 is zero
(cf. (31)). We remark, however, that compaction is never reached in the
forthcoming results.

5.3 Solution strategy

It is important to notice that, due to (48b), the pressure gradient ℘′ can be
expressed as a function of J and its partial derivative with respect to the
axial coordinate, J ′, i.e.

℘′ =
∂P zZsc

∂Z
=
∂P̂ zZsc

∂J
(J)J ′ . (52)

Hence, the friction factor f can be rephrased as f = f̂(J, ℘′) ≡ f̃(J, J ′),
cf. (27) and (47). This result allows to condense the set of equations (48a)
and (48b) into the single, scalar, partial differential equation in the unknown
J :

J̇ =
∂

∂Z

(
fk0

J

∂P zZsc

∂Z

)
=

∂

∂Z

(
f̃(J, J ′)k̂0(J)

J

∂P̂ zZsc

∂J
(J)J ′

)
, (53)

which has to be solved jointly with the boundary conditions

∂P̂ zZsc

∂J
(J)J ′ = 0 , on ΓB , (54a)

P̂ zZsc (J) =
Hm

2

J2 − 1

J2b+1
exp{b[J2 − 1]} = Pb(t) , on ΓT . (54b)

Equations (54a) and (54b) are a rewriting of (51b) and (50b), respectively.
The former one makes use of the identity (52), evaluated at Z = 0. Equa-
tion (54b), instead, is a non-linear Dirichlet boundary condition on J . Its ful-
filment requires an iterative linearisation method, at each time step. Equa-
tion (53) can be regarded as a highly non-linear diffusion equation in the
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volumetric ratio, in which

D = D̂(J, J ′) :=
f̃(J, J ′)k̂0(J)

J

∂P̂ zZsc

∂J
(J) (55)

plays the role of a non-linear diffusion coefficient depending on J and its
derivative J ′. A similar result has been recently discussed in [25, 26], in
which, however, only Darcy’s law was considered. The main difference be-
tween D in (55) and the diffusion coefficient obtained in [25, 26] is that D

depends also on the derivative of the volumetric ratio. This is a consequence
of the Forchheimer’s correction that does not arise in the Darcian case.

Once J is computed, the axial deformation ζ and pressure ℘ can be
determined a posteriori by invoking (51a), (50a) and (50b):

ζ ′(Z, t) = J(Z, t) ⇒ ζ(Z, t) =

∫ Z

0
J(Y, t)dY , (56a)

∂℘

∂Z
=
∂P zZsc

∂Z
⇒ ℘(Z, t) = P zZsc (Z, t)− Pb(t) . (56b)

6 Numerics

The particularly simple form of the problem (53), along with the boundary
conditions (54a) and (54b), and the initial condition J(Z, 0) = 1, makes it
convenient to search for solutions by employing Finite Difference schemes.
The spatial discretisation of the interval [0, L] is performed via the partition
0 = Z1 < Z2 < . . . < Zj < . . . < ZM = L. For simplicity, the size of the
spatial grid, ∆ = Zj+1 − Zj = L/M > 0, is assumed to be constant for all
j = 1, . . . ,M − 1, so that (M − 1) subintervals [Zj , Zj+1] of equal length
are determined. For the discretisation in space of (53), we adapted to the
problem at hand the second-order Finite Difference scheme used in [25, 26]
for the purely Darcian case. Indeed, the introduction of the Forchheimer’s
correction necessitates the numerical evaluation of the friction factor, which,
at each time step, requires to compute the Darcy’s filtration velocity before
computing J at the subsequent time instant. To this end, we used the
following first-order discrete scheme, for j = 2, . . . ,M ,

QZD(Zj , t) = −k0(Zj , t)

J(Zj , t)

(
℘(Zj , t)− ℘(Zj−1, t)

∆

)
(57)

= −k0(Zj , t)

J(Zj , t)

(
P zZsc (Zj , t)− P zZsc (Zj−1, t)

∆

)
.
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We remark that, in (57), the space discrete version of (46), for f = 1, has
been used. With QZD(Zj , t), and the corresponding hydraulic conductivity
k0(Zj , t), one can compute the friction factor f(Zj , t), and solve the following
set of ordinary differential equations in time

J̇(Zj , t) =
1

∆2

[
f(Zj+1, t)k0(Zj+1, t)

J(Zj+1, t)

(
P zZsc (Zj+1, t)− P zZsc (Zj , t)

)
(58)

−f(Zj , t)k0(Zj , t)

J(Zj , t)

(
P zZsc (Zj , t)− P zZsc (Zj−1, t)

) ]
,

in which j = 2, . . . , (M−1) enumerates all the internal points of the interval
[0, L]. The boundary conditions (54a) and (54b) are discretised as

J(Z2, t)− J(Z0, t)

2∆
= 0 , (59a)

Hm

2

J(ZM , t)
2 − 1

J(ZM , t)2b+1
exp{b[J(ZM , t)

2 − 1]} = Pb(t) , (59b)

where Z0 is a fictitious node introduced to approximate the zero-Neumann
condition (54a). Equation (59b) is a non-linear Dirichlet boundary condi-
tion, which has to be satisfied at all times by J(ZM , t). For this purpose,
we used a Newton-Raphson procedure.

Table 2: Parameters used in the simulations.

b 1.105 [36]
Hm 0.407 · 106 MPa
L 2 · 10−3 m
m0 0.0848
m1 4.638
Rc 2.5 · 10−3 m
Tend 100 s
Tramp 10 s
γ 0.2 kg
µ 2 · 10−3 Pa · s
φsR 0.2
%f 1000 kg/m3

The set of ordinary differential equations given in (58) is discretised in
time by means of a Backward Differentiation Formula (BDF), which can
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arrive up to the fifth order. To solve (58), we chose a stiff Matlab R© solver
(ode15s). All the numerical parameters used in the numerical simulations
are reported in table 2.

7 Results and discussion

In table 3, we report the values of each β-factor, which has been obtained
by setting k0R = 1 ·10−15 m4/(Ns). In table 4, instead, we report the results
obtained by choosing k0R = 1 · 10−13 m4/(Ns). These results are obtained
by averaging β and f both in space and in time.

Table 3: Mean values in time and space of β and f , computed for k0R =

1 · 10−15 m4/(Ns), i.e. 〈β〉 = 1
Tend

∫ Tend
0

(
1
L

∫ L
0 β(Z, t)dZ

)
dt and 〈f〉 =

1
Tend

∫ Tend
0

(
1
L

∫ L
0 f(Z, t)dZ

)
dt.

β 〈β〉 m−1 〈f〉
βTM 6.79 · 1011 ≈ 1
βJK 1.01 · 1016 0.9997
βT 5.69 · 1017 0.9866
βE 2.33 · 107 ≈ 1
βG 3.72 · 108 ≈ 1
βP 8.19 · 1019 0.9073
βLi 7.54 · 1014 ≈ 1
βJ 1.41 · 1020 0.9028
βCH 2.03 · 1023 0.8659
βA 4.44 · 1015 ≈ 1

The factors βTM, βG, βE, βLi, βA that are smaller than the threshold
value βth = 1 · 1016 1/m, are not expected to produce relevant results.

The order of magnitude of the friction factor f is related to those quan-
tities of the model that come into play in its definition (mainly the Darcy’s
filtration velocity qD and the hydraulic conductivity keq). To have a rele-
vance in the model, the β-factor must balance both filtration velocity and
hydraulic conductivity in such a way that smaller permeabilities should be
balanced by higher β. Conversely, for instance, for higher flow rates (i.e.
‖qD‖ = O(10−5) m/s), even a smaller β can be weighty.
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Figure 1: (a) Mean (in time and space) friction factor variation with k0R.
(b) Mean (in time and space) variation (semi-logarithmic scale) of βT with
k0R.
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By comparing table 3 with table 4, another peculiarity of the model
can be observed. Namely, although the mean value of β diminishes with
increasing keq, i.e. with increasing k0R, the friction factor f also diminishes,
thereby supplying a greater contribution of the Forchheimer’s correction to
the model. This seems to be a contradiction with what stated above, when
we wrote that the β-factors below the threshold value βth do not contribute
appreciably to the Forchheimer’s correction. This apparent contradiction
can be resolved by recalling that, beyond β, a key-role in the determination
of f is also played by k0R and ‖qD‖. Indeed, by increasing k0R, also ‖qD‖
increases, which lowers the value of the friction factor f . Therefore, we
conclude that a delicate balance among all these quantities reveals how
physically relevant the Forchheimer’s correction is.

Table 4: Mean values in time and space of β and f , computed for k0R =

1 · 10−13 m4/(Ns), i.e. 〈β〉 = 1
Tend

∫ Tend
0

(
1
L

∫ L
0 β(Z, t)dZ

)
dt and 〈f〉 =

1
Tend

∫ Tend
0

(
1
L

∫ L
0 f(Z, t)dZ

)
dt.

β 〈β〉 m−1 〈f〉
βTM 1.22 · 1010 ≈ 1
βJK 5.55 · 1013 0.9955
βT 3.72 · 1015 0.7930
βE 2.27 · 106 ≈ 1
βG 2.97 · 107 ≈ 1
βP 4.17 · 1017 0.3321
βLi 1.13 · 1014 0.9991
βJ 1.47 · 1017 0.3755
βCH 3.68 · 1019 0.2847
βA 1.34 · 1014 0.9890

In the following, we shall mainly refer to Tek’s formula β = βT. As it
can be deduced from tables 3 and 4, βT is one of those that confirm the
difference between the Darcy’s model and the Forchheimer’s one, although
it is not the one that is expected to give the most significant influence of
the Forchheimer’s correction to the flow.
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Figure 2: Filtration velocity vs time at the upper boundary of the computa-
tional domain for k0R = 1 · 10−15 m4/(Ns) (a) and k0R = 1 · 10−13 m4/(Ns)
(b).
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Figures 1(a) and 1(b) show, respectively, the variation of the friction fac-
tor f and the corresponding β-factor as a function of the reference hydraulic
conductivity k0R. We notice that both f and β decrease with increasing k0R.
In particular, the decrease of f leads to a stronger influence of the Forch-
heimer’s correction on the flow.

In Figures 2(a) and 2(b), we report the trend of the filtration velocity
at the upper boundary of the computational domain (i.e. at the surface
through which the fluid escapes from the specimen) for the reference hy-
draulic conductivities k0R = 1 · 10−15 m4/(Ns) and k0R = 1 · 10−13 m4/(Ns),
respectively. The filtration velocity grows with increasing k0R, as expected.

Another effect related to the introduction of the Forchheimer’s correc-
tion is given by an increase of the characteristic time needed by the system
to approach the stationary state, i.e. the state in which J̇ = 0. Indeed,
the Darcy’s filtration velocity decreases more steeply than that computed
by means of the Forchheimer’s correction (see Figures 2(a) and 2(b)). This
result is independent of the choice of β. However, the curves of the filtra-
tion velocities corresponding to βP, βJ and βCH remain below the Darcy’s
curve for the all duration of the simulation, whereas the curve correspond-
ing to βT “touches” the Darcy’s curve for k0R = 1 · 10−15 m4/(Ns), and
intersects it at about one half of the observation time (Tend = 100 s) for
k0R = 1 · 10−13 m4/(Ns).

Looking at (53), we note that the stationary state is achieved when the
pressure tends to zero at all points of the sample, or equivalently, when the
stress P zZsc becomes uniform along the specimen and tends pointwise to be
equal to the applied load. Within the constitutive framework adopted in
this paper, this result leads to a uniform distribution of the volumetric ratio
J along the specimen, as shown in Figure 3.

In Figures 3(a) and 3(b), we show the spatial trend of P zZsc and J at the
end of the loading ramp, t = 10 s, and at the final instant of observation,
t = 100 s, for both the Darcy’s and the Forchheimer’s case, respectively.
The arrows indicate the direction of ascending hydraulic conductivity k0R.
We notice that, at t = 100 s, increasing the hydraulic conductivity brings
the system closer to its stationary state, as it is confirmed by the higher
uniformity of the curves of stress and volumetric ratio reported in the right
columns of Figures 3(a) and 3(b). It is important to remark that, at t =
100 s, the uniformity of the stress and volumetric ratio in the Darcy’s
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Figure 3: (a) P zZsc and J computed according to Darcy’s law. (b) P zZsc and J
computed accounting for the Forchheimer’s correction (with β = βT). The
curves are evaluated at t = 10 s and t = 100 s. The arrows indicate the
direction of ascending k0R.
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model is more evident than that characterising the Forchheimer’s one. In-
deed, in the first ten seconds of the loading ramp, and with reference to
the curves representing the Forchheimer’s case, the main variations in space
of P zZsc and J remain confined to the upper part of the sample, while, in
the Darcy’s model, P zZsc and J vary smoother in the whole sample with
increasing k0R. At t = 100 s, and for the biggest value of the refer-
ential hydraulic conductivity, i.e. k0R = 1 · 10−13 m4/(Ns), we obtain
P zZsc (0, 100) ≈ −8 ·104 Pa in the Darcy’s case, and P zZsc (0, 100) ≈ −6 ·104 Pa
in the Forchheimer’s case. Furthermore, at the same instant of time and for
the same k0R, we find that J is slightly smaller than 0.84 in the Darcy’s
case, and approximately equal to 0.86 in the Forchheimer’s one.
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Figure 4: Time variation of P zZsc (left) and J (right) at Z = 0. The arrows
indicate the direction of ascending k0R.

In Figure 4, we show the time behaviour of P zZsc and J . Each curve has
been evaluated at the same point Z = 0, for different values of k0R. To
observe the difference with which both P zZsc and J approach the correspond-
ing stationary solutions, we chose Tend = 500 s for these simulations. Our
results demonstrate that the Forchheimer’s correction has the effect of di-
minishing the rapidity with which the system tends to the stationary state.
In particular, keeping in mind that the Pascal factor βP is one of the biggest
factors in Table 4, we notice that the system, for β = βP (see first row of
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Figure 4), approaches the stationary state too slowly. Indeed, the interval of
time over which the curve P zZsc versus time is concave is much longer than in
the other two cases (i.e. in the pure Darcy’s case and in the Forchheimer’s
model with β = βT).

In all the results reported so far, we considered a homogeneous perme-
ability model. If we switch to an inhomogeneous model [59], the Forch-
heimer’s contribution becomes higher.

In Figure 5(b), we see that the filtration velocity obtained in the case of
the inhomogeneous (depth-dependent) permeability model is always greater
than the one obtained with a constant k0R. In the latter case, the friction
factor (see Figure 5(a)) is higher than the one obtained in the first case.

8 Conclusions

In this work, we used the Darcy-Forchheimer law to describe fluid flow in
a sample of articular cartilage undergoing a confined compression test, and
modelled as a biphasic, solid-fluid mixture. The Forchheimer’s correction is
reflected by the friction factor f , which relates the Darcy’s filtration velocity,
qD, to the filtration velocity q obtained within a second-order approxima-
tion of the solid-fluid interactions (cf. (24)). This approximation accounts
for pore scale inertial effects [10]. Since f is strictly greater then zero and
smaller than —or at most equal to— one, the magnitude of the filtration
velocity computed by means of the Darcy-Forchheimer law, ‖q‖, is always
a proper fraction of ‖qD‖.

In some of our numerical simulations, the Forchheimer’s correction af-
fects significantly the behaviour of the whole solid-fluid system by influenc-
ing the filtration velocity, pressure, constitutive stress and volumetric ratio.
For example, for all those β factors that produced significant results, the
magnitude of the filtration velocity was reduced of a percentage depending
on the value of f , and the peak attained at the end of the loading ramp
(see Figures 2(a) and 5(b)) was smaller than that obtained by using Darcy’s
law. Moreover, when the effect of the Forchheimer’s correction was strong
enough, the pressure computed by using the Forchheimer’s correction was
higher than that predicted by Darcy’s law and, consequently, the solid-fluid
system reached the stationary state more slowly than in the pure Darcian
case. Indeed, since the pressure must be zero at the stationary state (this is,
indeed, the only constant solution to (48a) that complies with the boundary
condition ℘(L, t) = 0), higher pressures necessitate longer time to vanish at
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Figure 5: (a) Space average 〈f〉 for the depth-dependent hydraulic conduc-
tivity model and for the constant hydraulic conductivity model. (b) Filtra-
tion velocities vs time for the Darcy’s case and the Forchheimer’s case, with
β = βT, for the inhomogeneous and the homogeneous hydraulic conductivity
models.
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all points of the sample.
According to our calculations, the effectiveness of the Forchheimer’s cor-

rection depends substantially on k0R, β, and the magnitude of the pressure
gradient. Indeed, since the influence of the Forchheimer’s correction be-
comes stronger when f diminishes, and since f is a decreasing function of
k0R, β and |℘′|, increasing one of these quantities (or the three of them)
turns into a more evident deviation of our results from those predicted by
the standard Darcy’s law. To emphasise this fact, we notice that, looking
at (47), the efficacy of the Forchheimer’s correction is related to the term

4A
k0|℘′|
J

= 4%fβ(k0R)2|℘′| 1
J

(
J − φsR

1− φsR

)2m0

exp
[
m1(J2 − 1)

]
.

This confirms that k0R, β and |℘′| are the parameters which one has to
play with, and shows that β and |℘′| should compensate for the small-
ness of (k0R)2, which —in some of the cases studied in this paper— has
order of magnitude 10−30 m4/(Ns). We visualised this behaviour by run-
ning numerical simulations for different values of k0R, which ranged between
k0R = 1·10−15 m4/(Ns) and k0R = 1·10−13 m4/(Ns). The smallest value has
the same order of magnitude as the one in [36]. The biggest value, instead, is
one order of magnitude smaller than the experimental data reported in [11],
in which the mean hydraulic conductivity reaches k̄0R = 1.3 ·10−12 m4/(Ns),
a value referring to the superficial layers of articular cartilage. To discuss
the role of the pressure gradient, we recall that the most recurrent appli-
cations of non-linear constitutive laws for mfd, i.e. the dissipative part of
the momentum exchange rate, are the ones in which a fluid flows at rel-
atively high velocity through the matrix of a porous medium. For fixed
values of the referential hydraulic conductivity, these situations require high
pressure gradients. In these cases, the corresponding friction factors can
be sufficiently smaller than one, thereby leading to effective Forchheimer’s
corrections, even for rather small β-factors. Finally, we remark that, by
raising k0R, both f and β decrease. However, while the diminishing of f
plays in favour of the Forchheimer’s correction, the diminishing of β plays
against it. For small values of k0R, the predominant contribution to the
Forchheimer’s correction is given by the β-factor, while, for big values of
k0R, the magnitude of the pressure gradient prevails.

Finally, we studied the effect of the inhomogeneity of the hydraulic con-
ductivity on the strength of the Forchheimer’s correction. For this purpose,
we used the model presented in [59], where a depth-dependent hydraulic
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conductivity is considered, and compared the results with those obtained
by employing a homogeneous hydraulic conductivity. We found that adopt-
ing a depth-dependent hydraulic conductivity enhances the effectiveness of
the Forchheimer’s correction for all the chosen values of k0R and indepen-
dently on the order of magnitude of the filtration velocity.

A comparison of the results discussed in this paper with experimental
data available in the literature should be done in order to choose —or to fit—
β-factors with a clearer biomechanical meaning, to determine their ranges
of variation, e.g., with the age and health of a real sample of tissue, and to
investigate in more detail the true physical relevance of the Forchheimer’s
correction in modelling articular cartilage.

The study done in this work ought to be generalised to consider the pres-
ence of collagen fibres, along with their influence on both the elastic and the
hydraulic properties of articular cartilage. A possible way of pursuing this
goal is the inclusion of the Forchheimer’s correction into the anisotropic
and inhomogeneous model of articular cartilage recently presented in [59].
This could be useful to assess the interplay between the tissue’s structural
anisotropy, which supplies guidance to the flow due to the presence of the
collagen fibres, and the non-linearities arising from a better approximation
of the fluid filtration velocity. Moreover, it could be interesting to consider
also the presence of growth and remodelling [2, 3, 22–24,28,29].
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Nomenclature

Latin symbols Description

A Forchheimer’s coefficient

b Material parameter of the Holmes-Mow strain energy

ci Parameters defining the β-factor (i = 1, 2, 3)

C Right Cauchy-Green deformation tensor

CR, Ct Reference and current configurations

f Friction factor

f Applied load

fmax Maximum applied load

Hm Aggregate axial modulus

H Material pressure gradient

Ii Invariants of C (i = 1, 2, 3)

I4 Invariant-like quantity defined in (26)

k Spatial hydraulic conductivity

k0 Scalar hydraulic conductivity

keq Equivalent hydraulic conductivity

k0R Referential hydraulic conductivity

K Material hydraulic conductivity

`(t) Height of the deformed specimen at time t

L Height of the undeformed specimen

m0, m1 Parameters characterising the hydraulic conductivity

mα Momentum exchange rate of the α-th phase (α = f, s)

mfd Dissipative part of mf

p Pore pressure

Pα First Piola-Kirchhoff stress of the α-th phase (α = f, s)

Psc Constitutive part of Ps

℘ Pore pressure as a function of the axial coordinate

q Darcy-Forchheimer’s filtration velocity

qD Darcy’s filtration velocity

Q Material Darcy-Forchheimer’s filtration velocity

QD Material Darcy’s filtration velocity

r Resistivity of the porous medium

Rc Radius of the undeformed specimen

Tend Final time of the simulation

Tramp End of the loading ramp
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vα Velocity of the α-th phase (α = f, s)

Ŵ Strain energy density of the solid phase

Greek symbols Description

α0, α1, α2 Material parameters of the Holmes-Mow strain energy

β β-factor

γ Proportionality constant of the load

ΓB, ΓL, ΓT Bottom, top and lateral boundaries of the specimen

ζ Displacement as a function of the axial coordinate

κ0 Scalar permeability

κeff Effective permeability

κ Permeability

µ Dynamic viscosity of the fluid

%α True mass density of the α-th phase, α = f, s

σα Cauchy stress tensor of the α-th phase

σsc Constitutive part of σs

τ Tortuosity

φα Volumetric fraction of the α-th phase (α = f, s)

φsR Piola transform of φs, i.e. φsR = Jφs

χ Motion of the solid phase
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Darcy-Forchheimer-ov zakon za modeliranje fluidnog tečenja
u biološkim tkivima

Kretanje intersticijalnog fluida nekog biološkog tkiva se proučava primenom
Darcy-Forchheimer-ovog zakona, koji je popravka standardnog Darcy-jevog
zakona. Tkivo se modelira kao zasićena dvofazna sredina koja sadrži fluid
i deformabolnu matricu. Razlog za preduzimanje ovog proučavanja je da
opis dinamike tkiva zasnovanog na Darcy-Forchheimer-ovom zakonu može
da bude potpuniji nego onaj zasnovan na Darcy-jevom zakonu, jer ovaj
prvi obezbedjuje bolju makroskopsku reprezentaciju mikroskopskog med-
judejstva fluid-čvrsto telo. Numeričkim simulacijama analiziran je uticaj
Forchheimer-ove popravke.
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