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Abstract

The flow of a viscous incompressible electrically conducting fluid

on a continuous moving flate plate in presence of uniform trans-

verse magnetic field, is studied. The flat plate which is contin-

uously moving in its own plane with a constant speed is consid-

ered to be isothermally heated. Assuming the fluid viscosity as

an inverse linear function of temperature, the nature of fluid ve-

locity and temperature in presence of uniform magnetic field are

shown for changing viscosity parameter at different layers of the

medium. Numerical solutions are obtained by using Runge-Kutta

and Shooting method. The coefficient of skin friction and the rate

of heat transfer are calculated at diffferent viscosity parameter and

Prandtl number.

1 Introduction

Ostrach [1] first discussed the combined natural and forced flow of a
viscous incompressible fluid through a rigid surface. Later on Grief
et al. [2], Gupta et al. [3] and Soundalgekar et al. [4] studied the
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incompressible flow over a fixed that plate. But this type of flow be-
comes different when the flow is caused by the motion of the flat plate
or rigid surface. Sakiadis [5] discussed the viscous flow of an incom-
pressible fluid due to the motion of rigid surface. Many authors like
Gorla [6], Revenkar [7], Igham [8] and Pop [6] discussed the problem
of incompressible fluid on a continuous moving flat plate. Both types
of flow behave differently-particularly when the fluid viscosity varies
with temperature. The fluid properties especially the viscosity depends
linearly and inversely to the temperature (see Herwig and Gersten [9]);
therefore to characterize the nature of flow and heat transfer, one must
consider the variation of fluid viscosity with temperature.

Pop et al. [10] studied the problem of viscous variation for a mov-
ing flat plate in an incompressible fluid. In this paper, an attempt is
made to study the effect of variable viscosity on the flow of an incom-
pressible electrically conducting fluid on a continuous moving flat plate
in presence of a uniform magnetic field. The solutions and results are
obtained by similarity transformation.

2 Formulation of the problem

We consider laminar flow of a viscous incompressible electrically con-
ducting fluid on a continuous moving flat plate along x−axis. The plate
is moving in its own a constant speed U0 in quiescent fluid. A uniform
magnetic field B0 is applied transversely i.e. along y-axis. The fluid
properties except fluid viscosity (µ) are assumed to be isotropic and
constant, and the viscosity is inverse linear function of temperature
(see Lai and Kulachi [11]) as

1

µ
=

1

µ
∞

[1 + γ (T − Tw)] (1)

=
1

a
(T − Tr) , (2)

where

a =
µ
∞

γ
and Tr = T∞ −

1

γ
, (3)
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both a and Tr being constant. Their values depend in the reference
state and the thermal property of the fluid (γ). In general, a > 0 for
liquid and a < 0 for gasses.

3 Assumptions

In order to derive the governing equations of the problem the following
assumptions are made.

(i) The fluid is finitely conducting and the viscous dissipation and
the Joule heat are neglected

(ii) Hall effect and polarization effect are negligible

(iii) The flat plate which is maintained at a constant temperature (Tw)
is moving with uniform velocity and the fluid viscosity varies with
temperature only, therefore all the physical variables are assumed
to be time independent

(iv) The perturbation technique which is used for small values of the
magnetic parameter (m) depending on the magnetic field. The
second order term is due to the effect of the magnetic field

4 Governing equations

The governing equations of the problem for the fluid medium having
small conductivity are given as

∂u

∂x
+

∂v

∂y
= 0, (4)
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where u, v are the fluid velocities along x, y−axes respectively. The
boundary conditions of equations (4-6) of the problem, are as

u = U0, v = 0, T = Tw at y = 0, (7)

u → 0, T → T∞ as y → ∞. (8)

Using stream function ψ where

u =
∂ψ

∂y
and v = −

∂ψ

∂x
, (9)

we get from the equations (4-6)

∂2ψ

∂x∂y
−

∂2ψ

∂y∂x
= 0, (10)
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−
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+mu0
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1
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∂y

∂2ψ

∂y2
− µ

∂3ψ

∂y3
= 0, (11)

∂ψ
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∂T

∂x
−

∂ψ

∂x

∂T

∂y
− α

∂2T

∂y2
= 0, (12)

where (σB2

0
u) /ρ

∞
= mu0, m being the magnetic parameter.

The boundary conditions of the equations (10-12) can be written
as

∂ψ

∂y
= U0, ψ = 0, T = Tw at y = 0, (13)

∂ψ

∂y
→ 0, T → T∞ as y → ∞. (14)

Using the relations (1-3), the equations (10-12) can be written as

(θ − θr)
2
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mx
∂F

∂η

]
−

∂θ

∂η

∂2F

∂η2
+ (θ − θr)

∂3F

∂η3
= 0, (15)
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x
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(16)

where (Re is Reynolds number, θr−viscosity parameter and α− ther-
mal diffusivity):

ψ = v∞
1/2

ReF (η) , η =
y

x

1/2

Re, Re =
U0x

v∞
(17)

θ (η) = (T − T∞) / (Tw − T∞) , θr = (Tr − T∞) / (Tw − T∞) , (18)

γ = 1/ (T∞ − Tr) . (19)

The boundary condition (13, 14) are now as follows

∂F

∂η
= 1, F (η) = 0, θ(η) = 1 at η = 0, (20)

∂F

∂η
→ 0, θ(η) → 0 as η → ∞. (21)

The following expansions for F (η) and θ(η) are assumed:

F (η, x) = f0(η) +mx f2(η) + (mx)2 f4(η) + ... (22)

θ(η, x) = θ0(η) +mx θ2(η) + (mx)2 θ4(η) + ... (23)

These expansions are valid for small values of magnetic parameter
(m), which show the degree of magnetic field interactions to the flow
and the temperature of the fluid. Using the expansions (22), (23) in the
equations (15) and (16), we have different sets of non-linear equations
according to the degree of magnetic parameter (m) as given below.
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System(I )
The first pair of equations which is independent of m, gives the ve-

locity and temperature distribution in absence of magnetic field. These
equations are

f ′′′

0
(η)−

θ0(η)− θr
2θr

f0(η) f
′′

0
(η)−

1

θ0(η)− θr
f ′′

0
(η) = 0, (24)

θ′′′

0
(η)−

Pr

2
f0(η) θ

′

0
(η) = 0. (25)

System(II )
The second pair of equations for the first degree of magnetic inter-

action are
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0
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1

θ2(η)− θr
[θ′

0
(η)f ′′

2
(η) + θ′

2
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0
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1

Pr
θ′′

2
(η) +

3

2
θ′

0
(η)f2(η) +

1

2
θ′

2
(η)f0(η)− f ′

0
(η)θ2(η) = 0, (27)

where the prime denotes differentiation with respect to η.
The corresponding boundary conditions are

f0(η) = f2(η) = f4(η) = . . . = 0,

f ′

0
= 1, f ′

2
= f ′

4
= . . . = 0 at η = 0,

(28)

θ0(η) = 1, θ2(η) = θ4(η) = . . . = 0 at η = 0, (29)

f ′

0
(η) → 0, f ′

2
(η) = f ′

4
(η) = . . . = 0 as η → ∞, (30)

θ0(η) → 0, θ2(η) = θ4(η) = . . . = 0 as η → ∞. (31)
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5 Skin Friction and Rate of Heat transfer

The physical quantities of this problem are the Skin friction coefficient
(Cf ) and the Nisselt number (Nu) which are defined by

Cf =
2τw
ρU 2

0

and Nu =
xqw

K (Tw − T∞)
, (32)

where

τw = µw

(
∂u

∂y

)
y=0

and qw = −K

(
∂T

∂y

)
y=0

(33)

and K is the thermal conductivity of the fluid.

Using relations (2), (17) and (18), (Cf) and (Nu) are written as

Cf =
1/2

Re

[
2θr

θr − 1
(f ′′

0
+mxf ′′

2
+ . . . )

]
(34)

= Cf,1 + Cf,2 + . . . (35)

and

Nu = −
1/2

Re (θ′

0
+mxθ′

2
+ . . . ) (36)

= Nu,1 +Nu,2 + . . . (37)

where (Cf,1) , (Nu,1) are meant for skin friction and the rate of heat
transfer in absence of magnetic field respectively and (Cf,2) , (Nu,2) are
meant for the same in the presence of the field.
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Table (I) Table (II)

f ′′

2
(η = 0) θ′

2
(η = 0)

θr Pr = 0.71 Pr = 10.0 Pr = 0.71 Pr = 10.0

-10.0 0.7679 0.8356 0.2120 0.2129

-8.0 0.7700 0.8472 0.2100 0.2151

-6.0 0.7737 0.8660 0.2069 0.2188

-4.0 0.7821 0.9021 0.2008 0.2259

-2.0 0.8132 0.9991 0.1852 0.2454

-1.0 0.8934 1.1819 0.1626 0.3020

-0.1 3.9084 4.5587 0.0385 0.8446

6 Results and Discussion

The physical quantities of our interest are f2, (Cf,2) and θ2, (Nu,2) which
are the first degree magnetic interaction to the flow and the heat trans-
fer respectively. Numerical solutions are obtained using Runge-Kutta
and Shooting method of the non-linear equations of the system (II)
from two different values of Prandtl number (Pr ∈ {0.71, 10.0}). The
variation of viscosity parameter θr means the variation of fluid viscosity
with respect to the fluid temperature, and our aim is to show the nature
of fluid velocity and temperature in the presence of uniform magnetic
field under the action of variable viscosity. Figures (1-4) are plotted for
f2 and θ2 against the viscosity parameter θr. Further negative values
of viscosity parameter make (Tw − T∞) negative, and (Tw − T∞) is al-
ways negative for an incompressible fluid therefore we have calculated
f ′′

2
and θ′

2
for negative values of θr varying from −10.0 to −0.10. The

values of f ′′

2
(η) and θ′

2
(η) which are the factors for skin friction and

rate heat transfer respectively of our problem are given in the tables
(I, II).

Following are the results obtained from the figures and the tables:

1. (i) Figures (1,2) show the variation of f2 against θr at different
values of η. It is observed that the change of f2 with the
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increase of θr from −10 to −0.1 is negligibly small within
the boundary layers (η ∈ (0, 1) approximately), after which
it increases steadily for θr ∈ (−1, 0). At constant θr, f2
increases with the increase of η.

(ii) Figure (3) shows variation of f2 with the increases of η at
constant θr. It is observed that when θr remains unchanged,
f2 increases with the increases of η and almost vanishes for
η = 0 (i.e. at the plate). For all values of η ≤ 1 approx-
imately.), the magnitude of f2 remains same for different
values of θr ∈ (−10,−1) and for all values of η > 1 approxi-
mately.) the magnitude of f2 decreases with the increase of
θr.

2. Figure (4) shows the variation of θ2 with η at constant values of
θr . It is seen that θ2 rises from a minimum value (∼= 0) with the
increase of η , attains maximum and then gradually decreases to
minimum value.

3. The tables (I) and (II) show the values of f ′′

2
and θ′

2
which are

the factors for skin friction and rate of heat transfer respectively
at η = 0 for Pr = 0.71 and 10.0. It has been observed that the
magnitude of f ′′

2
increases with the increase of θr; on the other

hand, θ′

2
decreases for Pr = 0.71 and increases for Pr = 10.0 as

θr changes from −10 to −0.1 . The variation in the values of θ′

2

is negligibly small as Pr changes from 0.71 to 10.0 when θr is
small (θr ∼ −10).

7 Conclusions

From the above discussions we can draw the following conclusions..

(a) The effect of viscosity parameter change in the range (−10, 1)
on the fluid velocity is insignificant within the boundary layers
η ∈ (0, 1), while the outside (η > 1) the fluid velocity gradually
decreases with the increase of viscosity parameter.
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Figure 1: Variation of f2 with θr for Pr = 0.71
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Figure 2: Variation of f2 with θr for Pr = 10.0
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Figure 3: Velocity distribution (f2) for θr = (−1.0,−5.0,−10.0)
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Figure 4: Variation of θ2 with η for θr = (−10.0,−5.0,−1.0) and
Pr = 0.71
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(b) The fluid temperature gradually decreases with the increase of
viscosity parameter (from −10 to −1).

(c) The skin friction increases with the increase of viscosity parame-
ter (from −10 to −1).

(d) The heat transfer decreases with the increase of viscosity pa-
rameter at small value of Prandtl number (i.e. Pr = 0.71) and
increases at high value of Prandtl number (Pr = 10.0). At small
values of the viscosity parameter, the heat transfer is less depen-
dent on Prandtl number.
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Uticaj promenljive viskoznosti na laminarnu konvekciju
tečenja elektroprovodnog fluida u uniformnom magnetnom

polju

UDK 532.13; 537.84

Proučava se tečenje viskoznog nestišljivog elektroprovodnog flu-
ida na neprekidnoj pokretnoj ravanskoj ploči u prisustvu uniformnog
poprečnog magnetnog polja. Smatramo da se ravanska ploča, koja
se neprekidno konstantnom brzinom kréce u svojoj sopstvenoj ravni,
izotermski zagreva. Pod pretpostavkom da je viskoznost fluida inverzna
funkcija temperature, na različitim slojevima sredine su prikazane viskoznost
i temperatura fluida u prisustvu uniformnog magnetnog polja. Numer-
ička rešenja su dobijena koriš́cenjemmetoda Runge-Kutta i Shooting-a.
Koeficijent trenja površinskog sloja i brzina prenosa toplote su izraču-
nati pri različitim vrednostima parametra viskoznosti i Prandtl-ovog
broja.


