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Abstract

In the spirit of modern continuum mechanics, global balance
laws for momentum, angular momentum, energy and pseudomo-
mentum are formulated for an elastic body in the presence of a
moving crack. Upon localization, the corresponding balance equa-
tions in the bulk and at the crack tip are simultaneously obtained.
The proposed framework is convenient for the derivation of the
well-known formula, which relates the crack propagation velocity,
the global material force and the energy release rate.

1 Introduction

This work aims at the formulation of global balance laws for an elastic
body in the presence of a propagating crack through it. The standard pro-
cedure of the continuum mechanics, according to which, all the relevant
equations can be produced by postulating global balance laws for mass,
momentum, angular momentum and energy (in dissipative processes the
second law is considered, in addition) is well-known. These laws are pos-
tulated to hold for any arbitrary part (subset) of the body, a requirement
that is strong enough to provide the local equations.

Naturally, the situation in a cracked elastic solid is quite different
because (i) the involved fields are not continuous across the crack and,

∗Department of Mathematics, Division of Applied Mathematics and Mechanics,
University of Ioannina, Greece (e-mail: vkalpak@cc.uoi.gr)

205



206 V. K. Kalpakides, E. K. Agiasofitou

particularly, they have a singularity at the crack tip (ii) new quantities
are needed to describe completely the phenomenon (iii) the underlying
kinematics is much more complicated due to the presence of the propa-
gating crack. In the literature of fracture mechanics, sparse reports to
equations, which can be considered as global balance laws for a fractured
body, are appeared [1, 2, 3, 4, 5] but, to the best of our knowledge, there
is not a complete and consistent formulation in the spirit of the modern
continuum mechanics.

As in any standard text of continuum mechanics, the balance laws for
momentum, angular momentum and energy are formulated. Moreover,
a balance for an additional quantity, the pseudomomentum, is proposed.
Although the crack propagation in a deformable body is a dissipative
phenomenon, in this paper no mention is made to the second law of
thermodynamics and to the subsequent discussion about constitutive re-
lations. The analysis is based on the finite two-dimensional elasticity and
on the framework of the so–called configurational (material) mechanics
[1, 2, 6].

In Section 2, a properly formulated kinematics for a cracked elastic
body is discussed. In Section 3, an abstract global balance law is postu-
lated and its consequences (the local equations) are extracted in a general
manner. The application to the physical fields, related to the problem
under study, is made in Section 4. Finally, in Section 5, the obtained
results are used to derive the relation between the energy release rate and
the global material force.

2 Kinematics

Let BR be the reference configuration containing a crack which is de-
scribed by a smooth, non-intersecting curve CR with its end point Z0

(the crack tip)(Fig.1). We consider that the crack evolves (not nesessar-
ily in straight direction) following the ”motion” of the crack tip within the
body. Thus at the time t, the crack is interpreted by a smooth curve C(t)
belonging to a material configuration Bt, t ∈ I ⊂ IR, where I denotes a
time interval. The only difference between the reference configuration BR

and the material configurations Bt lies in the different curve they contain.
Certainly, it is required for t1 > t2 to imply C(t2) ⊂ C(t1).
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We focus now on the end point of the crack at time t, Z(t). We con-
sider that Z(t) is a smooth, time dependent mapping, hence its derivative

V(t) =
dZ

dt
(1)

provides the propagation velocity of the crack.
Taking the standard view of fracture mechanics, we consider a (tip)

disc of radius r centered at the crack tip Z(t) for any time t, denoted by
Dr(t):

Dr(t) = {X ∈ Bt : |X − Z(t)| ≤ r}. (2)

At the time t0, the tip disc is given by:

Dr0
= {Y ∈ BR : |Y − Z0| ≤ r}.

Thus, we can establish an imaginary motion of the tip disc by a mapping
of the form

X = ỹ(Y, t), X ∈ Dr(t), Y ∈ Dr0
, t ∈ I ⊂ IR.

Also, notice that Dr0
⊂ BR and Dr(t) ⊂ Bt.

Without any loss of generality, we assume that the ”motion” of the
tip disc is a simple translation which follows the crack tip evolution, that
is

ỹ(Y, t) = Y + Z(t) − Z0, for all Y ∈ Dr0
. (3)

It is obvious that every point of Dr0
”moves” with the velocity of the

crack tip, i.e.,

∂ỹ

∂t
(Y, t) =

dZ

dt
= V(t), for all Y ∈ Dr0

. (4)

Let us assume an extension y(Y, t) of ỹ in the whole body BR as follows:

y(BR, t) = Bt, y|Dr0
= ỹ,

∂y

∂t
= 0, for all Y ∈ BR \ Dr0

. (5)

Consider now the deformational motion

x = χ(X, t), x ∈ Bt, X ∈ Bt, t ∈ I ⊂ IR, (6)
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which is a twice-differential and one-to-one mapping for all X ∈ Bt \C(t).
As usual, with F(X, t) = ∂χ(X, t)/∂X is denoted the deformation gradi-
ent.
We have to compose the mappings y and χ to interpret the ”total mo-
tion”, i.e., to interpret both the crack evolution and the motion of the
body in the physical space (Fig. 1). This composition is given by the
mapping

χ̃ = χ ◦ y, x = χ̃(Y, t) = χ(y(Y, t), t).

After all these considerations, we take

◦

x=
dχ

dt
=

∂χ

∂X
(X, t)

∂y

∂t
(Y, t) +

∂χ

∂t
(X, t), (7)

where the differential operator d/dt denotes the total derivative with re-
spect to time. Taking into account eqs. (4) and (5), eq. (7) takes the
form

◦

x= F(X, t)V(t) + ẋ(X, t) =: Ṽ(X, t), (8)

for all X ∈ Dr(t) \ (Dr(t) ∩ C(t)), where ẋ(X, t) = ∂χ(X, t)/∂t.
For later use, taking the view of Gurtin et al [1, 3], we assume the existence
of a time–dependent function U such that

lim
X→Z(t)

Ṽ(X, t) = U(t), uniformly in I. (9)

3 The balance law in general form

We now proceed to the formulation of an abstract balance law. Let Ω
be any smooth domain of the body in the material configuration Bt. If
the crack tip Z(t) is an interior point of Ω, then there exists a radius r
such that Dr(t) ⊂ Ω. In this case, we will denote with Ωr the subset of
Ω which is defined as follows (Fig. 2),

Ωr(t) = Ω \ Dr(t) or Ω = Ωr(t) ∪ Dr(t). (10)

Notice that ∂Ωr = ∂Ω ∪ ∂Dr(t). Also, the parts of the crack C(t) con-
tained in Ωr and Ω will be denoted by γr and γΩ, respectively , that
is

γr = C(t) ∩ Ωr(t), γΩ = C(t) ∩ Ω.
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In standard continuum mechanics, one has the freedom to formulate
a global balance law either in the reference configuration or in the cur-
rent configuration. In the proposed framework, there are three distinct
configurations (Fig. 1). We choose to work on a material configuration
Bt, in which all the relevant fields should be defined. Let Φ(X, t) be a
scalar valued function defined in Bt, representing some physical quantity,
sufficiently smooth away from the crack tip and up to the crack C(t) from
either side. Let also f and h, are the flux and the source of Φ, respec-
tively, which are also smooth away from the crack tip and the crack C(t).
Moreover, we consider a time dependent function g(t) representing the
source of Φ due to the crack evolution. One can write the global balance
law for the quantity Φ as follows:

d

dt

∫

Ω

Φ(X, t) dV =

∫

∂Ω

f(X, t) · n dS +

∫

Ω

h(X, t) dV + g(t), (11)

where n is the outward unit normal to the boundary ∂Ωr.
According to the above considerations, the transport theorem takes the
following form

d

dt

∫

Ωr

Φ(X, t) dV =

∫

Ωr

∂Φ

∂t
dV −

∫

∂Dr

Φ(V · n) dS. (12)

Similarly, the divergence theorem, for the problem under study, becomes

∫

Ωr

Div f(X, t) dV =

∫

∂Ω

f(X, t) · n dS −

∫

∂Dr

f(X, t) · n dS

+

∫

γr

[f(X, t)] · m dl, (13)

where m is the unit normal to the crack. Also, [f ] denotes the jump of
the vector field f across the crack.
Recalling eqs. (10) and (12), we can write

d

dt

∫

Ω

Φ(X, t) dV =
d

dt

∫

Ωr

Φ(X, t) dV +
d

dt

∫

Dr

Φ(X, t) dV

=

∫

Ωr

∂Φ

∂t
dV −

∫

∂Dr

Φ(V · n) dS +
d

dt

∫

Dr

Φ(X, t) dV. (14)
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In virtue of eqs. (10), (13) and (14), the balance law (11) can be written

∫

Ωr

∂Φ

∂t
dV −

∫

∂Dr

Φ(V · n) dS +
d

dt

∫

Dr

Φ(X, t) dV =

∫

Ωr

Div f(X, t) dV +

∫

∂Dr

f(X, t) · n dS −

∫

γr

[f(X, t)] · m dl

+

∫

Ωr

h(X, t) dV +

∫

Dr

h(X, t) dV + g(t). (15)

Without giving here the necessary details1, we assume that the following
convergences hold

lim
r→0

∫

Ωr

∂Φ

∂t
dV =

∫

Ω

∂Φ

∂t
dV,

lim
r→0

∫

Ωr

Div f(X, t) dV =

∫

Ω

Div f(X, t) dV,

lim
r→0

d

dt

∫

Dr

Φ(X, t) dV = 0,

lim
r→0

∫

Ωr

h(X, t) dV =

∫

Ω

h(X, t) dV,

lim
r→0

∫

γr

[f(X, t)] · m dl =

∫

γΩ

[f(X, t)] · m dl,

lim
r→0

∫

Dr

h(X, t) dV = 0.

Consequently, we obtain, for the global balance law given by eq. (15),
the following

∫

Ω

(
∂Φ

∂t
− Div f(X, t) − h(X, t)

)
dV +

∫

γΩ

[f(X, t)] · m dl −

lim
r→0

∫

∂Dr

(Φ(V · n) + f · n)dS − g(t) = 0, (16)

for all Ω containing the crack tip.
We remark that in the case where Ω does not contain the crack tip and

1For an extensive discussion see the references [1, 3]
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any part of the crack, the equation (16) takes the simpler form

∫

Ω

(
∂Φ

∂t
− Div f(X, t) − h(X, t)

)
dV = 0. (17)

Thus, due to the arbitrariness of Ω, we conclude that

∂Φ

∂t
− Div f(X, t) − h(X, t) = 0, for all t ∈ I, X ∈ Bt \ C(t). (18)

Similarly, we can consider Ω containing a part of the crack apart from
the crack tip. In this case, the global balance law takes the form

∫

Ω

(
∂Φ

∂t
− Div f(X, t) − h(X, t)

)
dV +

∫

γΩ

[f(X, t)] · m dl = 0. (19)

With the aid of eq. (18), we obtain the local form of eq. (19)

[f(X, t)] · m = 0, for all t ∈ I, X ∈ C(t) \ {Z(t)}. (20)

In the same line of argument, we obtain the localization of the balance
law at the crack tip as follows:

g(t) = lim
r→0

∫

∂Dr

(Φ(V · n) + f · n)dS, for all t ∈ I, at Z(t). (21)

In conclusion, the requirement that the balance law (11) holds for all
Ω ∈ Bt implies the local equations (18), (20) and (21).

4 The balance laws for the physical fields

and the pseudomomentum

In this section, we are going to apply the procedure described in the last
Section. That is, we have to substitute the relevant physical quantities at
the position of the abstract function Φ. Following standard ideas, we con-
sider the balances for momentum, angular momentum and energy. But
this does not exhaust all the relevant quantities involved in our problem.
We must further formulate a balance for pseudomomentum. We start
with the momentum balance.
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4.1 The balance of momentum

In this case, we put the physical momentum ρẋ instead of the function
Φ in the general equation (11). The flux is given by Tn, where T is the
Piola–Kirchhoff stress tensor. Thus, we have

d

dt

∫

Ω

ρẋ dV =

∫

∂Ω

Tn dS, ∀Ω ∈ Bt. (22)

Notice that we do not consider source term (the body force for the case
under discussion) and also we do not consider source term due to the crack
propagation. The latter means that there is no production of physical
momentum due to the crack propagation. The localization of eq. (22),
according to the procedure described in the last section (see eqs. (18),
(20) and (21)), provides

∂

∂t
(ρẋ) − DivT = 0, for all X ∈ Bt \ C(t), (23)

[T] · m = 0, for all X ∈ C(t) \ {Z(t)}, (24)

lim
r→0

∫

∂Dr

(ρẋ(V · n) + Tn) dS = 0, at Z(t). (25)

As we all know, eq. (23) is the equation of physical momentum, which
holds in the bulk of the body. Eq. (24) represents the jump condition
for the Piola-Kirchhoff stress tensor along the crack. Notice that this
condition is derived, not assumed, by the general postulation we have set
for the global balance law. Finally, eq. (25) is the equation of physical
momentum at the crack tip and we will see later on that it is useful in
the proof of the relation between the energy release rate and the global
material force.

4.2 The balance of angular momentum

The global balance law for angular momentum is postulated to be of the
form

d

dt

∫

Ω

(x − 0) × ρẋ dV =

∫

∂Ω

(x − 0) × Tn dS, ∀Ω ∈ Bt, (26)
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where x − 0 is the position vector of x. Upon localization, eq. (26)
provides

TFT = FTT , for all X ∈ Bt \ C(t), (27)

lim
r→0

∫

∂Dr

(x − 0) × (ρẋ(V · n) + Tn) dS = 0, at Z(t). (28)

Eq. (27) gives the symmetry of the Cauchy stress tensor t = J−1
F TFT ,

where JF = detF. Also, eq. (28) represents the balance of angular mo-
mentum at the crack tip. We remark that the jump condition associated
with the balance of angular momentum is given by 2

[x × T] · m = 0.

However, the above condition holds identically due to the continuity 3 of
the motion χ(X, t) along the curve C(t) and the jump condition (24).

4.3 The balance of energy

The energy balance is the most interesting case among the physical fields,
because the crack propagation process has an influence on it. More specif-
ically, one expects some portion of the energy to be consumed by the cre-
ation of the new part of the crack. Hence, an energy source term at Z(t),
described here by G(t), must be considered. Thus, the global balance law
for energy can be postulated as

d

dt

∫

Ω

(W + K) dV =

∫

∂Ω

Tn · ẋ dS − G, for all Ω ∈ Bt, (29)

where W is the elastic energy density and K is the kinetic energy density.
Localizing eq. (29), we obtain

∂

∂t
(W + K) − Div(TT ẋ) = 0, for all X ∈ Bt \ C(t), (30)

[TT ẋ] · m = 0, for all X ∈ C(t) \ {Z(t)}, (31)

G = lim
r→0

∫

∂Dr

((W + K)(V · n) + TT ẋ · n)dS, at Z(t). (32)

2
x × T = eijkxjTkA

3We assume that the crack faces are in perfect contact.
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It is obvious that eqs. (30) and (31) are the energy equation in local form
and the associated jump condition along the crack, respectively. Also,
eq. (32) is nothing else but the well–known, in fracture literature, energy
release rate G.

4.4 The balance of pseudomomentum

The pseudomomentum (material momentum) P concerns changes within
the material structure. Thus, it does not make sense in classical elasticity,
where only the motion in physical space is studied in the absence of any
rearrangement of the material configuration. Actually, this is the first ad-
ditional balance law that must be considered when one studies any kind
of evolution of stuctural defects. From this point of view, it is a configu-
rational balance law. The corresponding flux is the well–known Eshelby
stress tensor, which will be denoted by b, [7]. The source term will be
the so–called material forces. Here, we consider source terms distributed
throughout the body (body material forces), produced by the material
inhomogeneities [2] and will be denoted by f̃ . Moreover, we consider a
pseudomomentum source term produced by the crack evolution. This
source term is called by Maugin global material force and it is denoted by
F [4]. Actually, in [4], we have met for the first time the idea of a global
balance law for pseudomomentum. The expressions for the pseudomo-
mentum vector field and the Eshelby stress tensor are given through the
relations [1, 2, 7]

P = −ρFT ẋ, (33)

b = W −
1

2
ρẋ2 − FTT. (34)

Finally, we postulate for pseudomomentum

d

dt

∫

Ω

P dV =

∫

∂Ω

bn dS +

∫

Ω

f̃ dV −F , ∀Ω ∈ Bt. (35)

The local equations obtained by eq. (35) are given as follows

∂P

∂t
− Divb − f̃ = 0, for all X ∈ Bt \ C(t), (36)

[b] · m = 0, for all X ∈ C(t) \ {Z(t)}, (37)

F = lim
r→0

∫

∂Dr

(P(V · n) + bn) dS, at Z(t). (38)
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Eq. (36) is the equation of pseudomomentum, which holds in the smooth
part of the body and eq. (37) is the associated jump condition. In
addition, eq. (38) represents the material force at the crack tip, which
drives the crack evolution. Thus, one can reasonably expect that this
quantity, i.e., F should be directly related to the energy release rate, G.
This is the object of the next section.

5 The energy release rate and the global

material force

In this section, we derive an already known relation (see [2, 3, 4]) by
means of the kinematics formulated in Section 2 of this paper. Here, the
interesting point is that a relation between the energy release rate, from
the one side, and the global material force and the crack propagation
velocity from the other one, can be established. It is a relation which
strongly resembles the relation between the power and the corresponding
classical force and velocity. This means that the notion of the global
material force can reasonably be considered as the dual quantity of the
crack propagation velocity. We start with the energy release rate (eq.
(32)):

G = lim
r→0

∫

∂Dr

((W + K)(V · n) + TT ẋ · n)dS.

Recalling the relation (8) and the assumption (9), we can write for the
last term of G

lim
r→0

∫

∂Dr

TT ẋ · n dS = lim
r→0

∫

∂Dr

TT
(
Ṽ(X, t) − FV(t)

)
· n dS

= U(t) · lim
r→0

∫

∂Dr

Tn dS − lim
r→0

∫

∂Dr

TTFV(t) · n dS.

Similarly, the term of G concerning the kinetic energy can be written

lim
r→0

∫

∂Dr

ρ(ẋ · ẋ)(V · n) dS = lim
r→0

∫

∂Dr

ρẋ ·
(
Ṽ(X, t) − FV(t)

)
(V · n) dS

= U(t) · lim
r→0

∫

∂Dr

ρẋ(V · n) dS − lim
r→0

∫

∂Dr

(ρẋ · FV(t))(V · n) dS.
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By virtue of the last calculations, the energy release rate becomes

G = lim
r→0

∫

∂Dr

((W + K)(V · n) + TT ẋ · n)dS =

lim
r→0

∫

∂Dr

V · (
(
(W − K)I − FTT

)
n −

(
ρFT ẋ · V

)
(V · n)) dS +

U(t) · lim
r→0

∫

∂Dr

(ρẋ(V · n) + Tn)dS,

where I is the identity tensor.
Taking into account eq. (25), we obtain

G = V · lim
r→0

∫

∂Dr

(
(
(W − K)I − FTT

)
n − ρFT ẋ(V · n)) dS.

Finally, using eqs. (33), (34) and (38), we conclude

G = V · lim
r→0

∫

∂Dr

(bn + P(V · n))dS = V · F ,

which is the required relation.

6 Conclusions

The main aim of this paper was the formulation of global balance laws for
a fractured elastic body. To this end, we proposed a unified framework
for physical and configurational balance laws. The proposed formulation
gave us the possibility to obtain, at the same time, the local equations
which hold in the bulk of the body, the associated jump conditions along
the crack C(t) and the balance equations at the crack tip. We note that
some important technicalities were omitted. In a future work, we intend
to treat more rigorously the proposed framework. Moreover, we are going
to apply these ideas to additional configurational balance laws.
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Konfiguracione jednačine balansa za dinamički lom

UDK 531.01, 539.421

U duhu moderne mehanike kontinuuma, globalne jednačine balansa
za količinu kretanja, pseudo količinu kretanja, energiju i zamah su for-
mulisane za neko elastično telo u prisustvu pokretne prsline. Po lokalizaciji
odgovarajuće jednačine za osnovni materijal i vrh prsline su jednovre-
meno dobijene. Preloženi okvir je podesan za izvodjenje dobro poznatih
formula koje povezuju brzinu prostiranja prsline, globalnu materijalnu
silu i brzinu oslobadjanja energije.
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Figure 1: The configurations
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Figure 2: The ”motion” of the tip disc


