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Abstract

After a brief critical review of the basic arguments involved
in the various interpretations of the mechanics on the material
manifold and a short remark on the relationship of that approach
with the late R.Stojanovic’s works, some of the recent advances
in that field of continuum physics are presented. These include
direct consequences in the numerics of solid-mechanics problems,
general applications to the theories of plasticity, growth and mix-
tures, and a nonstandard application to the progress of phase-
transition fronts in solids.

1 General remarks by way of introduction

Any new fashionable theoretical development which aims at some gener-
ality is plagued by two ingredients. One is the multiplicity of notations
introduced for the same objects by different authors. This can be reme-
died by use of some good ”translators”. The second is more obnoxious as
it relates to questions of priority and interpretations. Although priority
matters can sooner or later be discussed and settled in some peaceful
atmosphere (see, however, the Leibniz-Newton controversy about calcu-
lus), the problem of interpretations remains crucial and usually very hot
(see the interpretations of quantum mechanics) while all participants
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Marie Curie Case 162, 4 place Jussieu, 75252 Paris Cedex 05 France (e-mail:
gam@ccr.jussieu.fr)

221



222 G. A. Maugin

may agree on practical aspects of the matter. The situation appears to
be of this kind in the field of continuum physics called the theory of
configurational forces or material forces. First there are those, like the
author, who claim that the theory of material forces is intimately related
to a basic invariance of mathematical physics, the homogeneity or lack of
homogeneity of the material [1]. This is not per se a new law of physics,
but only the expression of the projection, onto the material manifold M 3,
of a well known equation of balance of physics, that of linear momentum.
All applications, known so far, can be related either to the local fully
material expression of this equation when continuous field are involved,
or to the associated jump relation when discontinuous fields are involved
across a singular surface, or else to an associated singular global integral
when some field singularity is involved [2]-[3]. This unity and its broad
range of applications contribute to both the practical strength and the
irresistible beauty of this interpretation. Some strong minds, however,
want to wrongly attach to this a mystic [4] which they attribute to oth-
ers while these ”others” are fully pragmatic. The equations in question
are just canonical projections onto the material manifold of well known
equations. It happens that such projections facilitate the appearance
and view of some effects that were invisible on the classical writing of
the equation (just like taking a photograph from behind a tree obviously
shows the hidden face of that tree - the Moon does equally well as an
example for that). A material force in that sense is less mystical that
the force of gravity - see the first chapter of my book [1]. We can say
that this viewpoint is certainly the one accepted by many prominent
authors in the field (Rogula [5], Herrmann and Kienzler [3], Maugin,
and Trimarco [6], Steinmann [7], etc). Another viewpoint is advocated
by Gurtin [8 ] and some of his co-workers, Podio-Guidugli [9] and Fried
[10]. It consists in viewing the balance of canonical momentum as a
basic principle of physics, independently of the principle of balance of
linear momentum, in a sense a new physical law ! These authors are par-
ticularly interested in the treatment of singular surfaces. Why cannot
we agree with this?

First, there is no need to introduce a new law when everything is still
explainable by the known ones. This is Occam’s razor and Mach’s idea
of scientific economy in a nutshell. Second, like any modern physicist
we believe that every conservation law is associated with an invariance
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principle. In the present context, the classical balance of linear momen-
tum (with components in physical space) is related to the invariance
under space translations in that space (invariance under spatial trans-
lations) in the absence of body forces (e.g., gravity which acts at the
current physical point or placement x). This is called homogeneity of

space (Landau and Lifshitz, [11]). Now, material space, i.e., matter per
se, has no reason to be homogeneous. On the contrary, many materials
are inhomogeneous in a smooth or more irregular or singular way. It is
the canonical material balance of linear momentum which is generated
by this invariance or lack of invariance (invariance under translations
on the material manifold!) An ambiguity arises here because the actual
placement x of a deformable material is in physical space while the usual
space parametrization is the material point X. The two are related by a
time-parametrized mapping, the ”motion” of the material. That is why
one equation can be deduced from the other for pure mechanics and
sufficiently smooth fields. This is not the case when the material body
possesses other properties [2] and other degrees of freedom [12] which
are also parametrized by the material point and time. In that case the
balance of canonical momentum captures all degrees of freedom, just in
the same way as does the balance of energy. Accordingly, the balance of
canonical momentum does not simply relate to a single degree of free-
dom but to them all simultaneously, a fact lightheartedly discarded by
those not aware of the clear distinction between fields and parameters
in a field theory. It is a pity that respectable authors in mechanics and
thermodynamics ignore this elementary fact. This is what led them to
blatantly erroneous statements. This is apparently what happened to
some authors, otherwise talented analysts, who claim not to be able
to understand the deduction of the local balance of canonical momen-
tum in some cases (e.g., electromagnetics bodies - see James [13] versus
Fomethe and Maugin [14]) where the proof is laborious but crystal-clear
and easily repeatable.

Now what happens in a rigid body or in small deformations (when
usually one does not introduce material coordinates)? The material in
a rigid body is still subjected to the balance of canonical momentum
since its properties may vary from one material point to another. In
the deformable case, motion must be treated just like another field, and
no more despite the fact that classical motion has the same geometri-
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cal and physical dimension as the spatial parametrization (in 3d). In
small strains, one must be especially careful to distinguish between the
placement and the coordinate frame as otherwise even the best authors
may make errors of interpretation (see, Peierls [15]). People working in
fluids only are particularly prone to making erroneous interpretations of
equations related to material inhomogeneity (see the discussion by Mau-
gin and Trimarco [16] concerning the case of liquid crystals where it is
argued that even the most deeply involved scientists - Eshelby himself,
Ericksen and Kroener - got confused in this instance).

In the case of a deformable solid exhibiting a singular surface such
as a phase-transition front or a classical shock wave, it is clear that
the material is not the same (or is not in the same phase or state)
on both sides of the discontinuity surface which, therefore, breaks the
translational symmetry on the material manifold. Accordingly, this dic-
tates that the (co-vectorial) equation governing the change of material
(phase) at the interface is none other than the jump relation associated
with the balance of canonical momentum. It is such a method of typi-
cally mathematical-physics gesture than we used in all cases to construct
with success the relevant equation and not an equation issued from some
new physical law as Gurtin would like us to believe. We have tried to
explain this in detail in our review [2] but apparently in vain so narrow
views have some philistines untrained in mathematical physics, not to
speak of those, with bad faith, who want to negate this approach on the
simple example of a phase transition front. Yes, we know that Eshelby
stress is the enthalpy stress tensor, a fact known since Bowen’s theory
of mixtures [17] and Grinfeld’s works [18] - see our comments in [2]. But
what counts above all is the wide landscape covered by the general con-
cepts and more inclusive notions such as the generation of the Eshelby
stress tensor by means of local structural rearrangements (Epstein and
Maugin [19], [20],[21]). In order to substantiate our view we complement
a paper already published in this journal [22] with a brief presentation
of a series of new developments that easily comfort the wellfoundedness
of our approach.
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2 Relationship to R.Stojanovic’s works

In the 1960s-1970s, nobody had the idea to connect the full projection
of continuum mechanics onto the material manifold and the theory of
defects, save perhaps for Zorawski who, in the same volume [23], speaks
about dislocations and the energy-momentum tensor, but without re-
lationship of the present type. Our comment also applies to W.Noll
[24] who introduced powerful ingredients (uniformity maps, connection)
but without the further logical step to a full projection of the Cauchy
equation of motion or equilibrium onto the material manifold M 3. The
decisive step was taken by Epstein and the author [19] who established
that in a continuously inhomogeneous elastic body the bulk equilibrium
equation projected onto M 3 could be written as

divRb = −f inh: = b:Γ (1)

in the absence of given body force. Here the divergence operator is the
referential one, b is the quasi-static material Eshleby stress and Γ is the
material connection based on the uniformity map K so that, according
to these authors

b = −
∂ W̄

∂ K
KT , Γ = K−1. (∇RK)T (2)

or, more classically,

b = W 1R − T.F, W = W (F;X) = W̄ (F;K (X)) , T =
∂ W

∂ F
, (3)

where W is the elastic energy per unit referential volume and T is the
first Piola-Kirchhoff stress. Whenever the skewsymmetric part of Γ is
interpreted as the dislocation density tensor of a continuously dislo-

cated elastic body in the manner of E.Kroener and others, then eqn.(1)
is the equation that relates the notion of dislocation density and the
true material mechanics. R.Stojanovic was very much concerned with
the relationship between dislocation processes and the generalized me-
chanics of continua [25]. In our opinion, the solution of this, especially
for disclinations, also stems from a consideration of generalized contin-
uum mechanics expressed on the material manifold (compare [26], [27]),
something that was clearly out of reach in the times before the untimely
death of R.Stojanovic in 1977.
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3 Body material forces can be computed

and are useful!

In the absence of material inhomogeneities and at any regular material
point, eqn. (1) reduces to

divRb = 0 (4)

a pure identity deduced from the classical equilibrium equation (with
components in physical space in the present configuration)

divRT = 0. (5)

Equation (4) is trivially deduced from (5) by right-composition of
(5) with F and integration by parts on account of the elastic energy
dependency on F, and only on F. A boundary-value problem of nonlin-
ear elasticity is solved on the basis of (5) accompanied by appropriate
boundary conditions at the boundary of the material volume. Once
eqn.(1) is solved numerically by, e.g., a finite-element scheme, eqn.(4)
should be checked. In most cases this is not exactly checked and, as
rewritten in a continuous framework, one shall obtain an equation (4)
with a source term, i.e.,

divRb = −f comp, (6)

where f comp is a spurious ”material force” induced by an incorrect mesh-
ing to the problem (this quantity in fact is computed at the nodes of
the FEM scheme). It provides a directional (since it is a co-vector on
M3) indicator, in direction and intensity, of how the FEM nodes should
be moved to obtain a better approximation. This was first noticed by
Braun [28] and these ideas pursued and put to practice by Maugin [29],
Mueller et al [30], and Steinmann [31]. Moreover, this practice having
shown how easy it is to evaluate these material forces, the computation
of such quantities as the suction force [32] or driving force on the tip of
a crack in general physical circumstances has become a rather easy mat-
ter. That is, the co-vectorial driving force (not a simple scalar such as
the J-integral) can be evaluated numerically on account of the numerical
solution of a complete problem, not only of homogeneous elasticity, but
also in the presence of thermal, anelastic and smooth or abrupt inhomo-
geneity effects. The quasi-static non-collinear progress of a crack being
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attracted by an inhomogenity using a simple kinetic law of progress has
thus been spectacularly illustrated by Mueller and Maugin [33]. Stein-
mann and co-workers (2002, unpublished) have shown the practicality
of such computations in more general thermal-anelastic cases. All these
computations are based on a volume integration of the balance of mate-
rial momentum (generalization of eqn.(1)) and the energy equation, the
first of which reading then (cf. Maugin, [12])

divRb = −
(

f inh + f th + fanel + f inert
)

, (7)

where, in the right-hand-side using a revealing notation, we have contri-
butions from true material inhomogeneities, as well as thermal, anelastic,
and inertial effects, all in the form of ”pseudo-inhomogeneity” material
forces. All these may be computed at each node and at each time step,
although perhaps not so simply. Note that the volume of integration
for (7) evolves with time due to the irreversible progress of the crack in
the material body and this is what brings in the picture, by duality, the
notion of driving force acting on the tip of the crack.

4 Applications to plasticity, growth and

mixtures

Among the most recent advances in the material mechanics of materials,
we should emphasize the applications of some of its concepts (in partic-
ular, that of uniformity map or local structural rearrangement K -see
eqns.(4)-) to various complex behaviors of matter. It was first realized
by Epstein and the author [34] that the Eshelby stress tensor could be
viewed as the (bulk) driving force behind finite-strain plasticity. This
was facilitated by the identification of the second part of the material
tensor b , as the Mandel stress M = T.F of finite-strain anelasticity, per-
haps to be considered in the so-called intermediate configuration. In this
case K is none other than the inverse of the plastic deformation compo-
nent Fp of the celebrated multiplicative decomposition F = Fe.Fp. No
wonder then that the Eshelby stress b may also be used as the resolved
shear stress activating dislocation systems (Kh. Chau Le [35]) Since
material growth is very much akin to plasticity save, obviously, for the
bulk behavior - i.e., it is a special kind of local structural rearrangement
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in which more matter of the same kind is squeezed in at each material
point-, it was natural to develop a ”material” theory of material growth
on the same bases [36], emphasizing the role of the Eshelby stress in such
processes. This receives applications in the biomechanics of soft tissues.
Finally, with a view to study the biomechanics of objects like remodelled
bones it was necessary to envisage a theory of binary mixtures including
both a solid with pores and a fluid saturating the latter. Since the ma-
terial view is essentially one where the most relevant kinematics is that
of the inverse motion X = χ−1 (x,t) instead of the traditional ”direct”
motion x = χ (X,t)- this is clearly seen on the fact that equations such
as (1), (4) or (7) are directly generated by a change in ”particle” X
on the material manifold M 3 rather than by a change in placement x -
which is the case of equations such as (5)-the question naturally arises
of the choice of which material manifold should the motions of several
co-existing media be pulled back to; the answer is simple and logical,
both solid and fluid deformations are pulled back to the solid material
manifold, i.e., on the skeleton in terms of porous-media mechanics. This
is exemplified by the works of S.Quiligotti [37].

5 Application to the progress

of phase-transition fronts

To conclude our ”experimental” proof of the large field of applications
of materials mechanics and material forces, we mention the possibility
to use this formulation in the numerics of the progress phase-transition
fronts, but in a non-standard way. The ”standard way” consists in
complementing the system of field equations valid in any continuous
phase and the system of jump (or transition) relations at the phase
front Σ - a special type of shock waves - by a kinetic relation relating
the local normal propagation velocity of the wave front to the com-
puted driving force at the same singular point. This follows works by
Truskinowsky, Abeyaratne, Knowles and others. But we have shown
[12] within the logics of viewing the presence of the front as a break-

ing of translational symmetry on the material manifold that the surface
driving force fΣ was generally a material co-vector computed from the
jump of the quasi-static Eshelby stress across the front. Again, this in
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general is a directional indicator of the further progress of the front,
which progress should not contradict the second law of thermodynamics
across the front. We have shown that, in fact, for homothermal fronts,
the local dissipation at the front is such that

ΦΣ = fΣ.V̄ ≥ 0 (8)

The usual pure normal-growth kinetic law then is a generally nonlinear
relationship

VN : = V̄.N = f (N.fΣ) (9)

where N is the unit normal to Σ. Such a relation must be provided by
a lower-level description essentially one where the front Σ has a non-
zero thickness across which dissipative processes take place. Then the
progress of the transition front could be treated in an incremental way,
using a finite-element scheme in space. The ”non-standard way” de-
vised by the author and A.Berezovski [38] is based on the initial remark
that the finite-volume element method (for short FVM) - favored in
many problems of fluid dynamics - considers at once all equations of
the continuum problem as balance laws over each cell-volume element.
Furthermore, in its discretization it happens to become identical to the
thermodynamics of so-called Schottky (discrete) thermodynamical sys-

tems, the exchanges with neighboring system being readily identified to
the fluxes at the boundaries of the cells, which boundaries are simple flat
surfaces. Accordingly, a problem of phase-transition front propagation
is numerically treated in this way, the additional co-vectorial balance
equation provided by the balance of canonical momentum (7) in which
the associated flux is none other than the Eshelby stress, being logically
incorporated in the scheme and the change of the components of the
Eshelby stress at the phase change being duly accounted for.

6 Conclusion

We believe that the richness demonstrated by the above briefly reviewed
applications should be enough to convince the less imaginative opponent
of the inclusive value of the ”material mechanics on the material mani-
fold”, both from a unifying theoretical viewpoint and from the practical
necessity of useful and powerful numerical applications.
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Note:

The author has very nice remembrances of the extremely vivid course
he took with R.Stojanovic at the CISM, Udine, 1970. This contribution
is dedicated to the memory of the latter. GAM benefits from a Max
Planck Award for International Co-operation (2001-2005).
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Najnoviji rezultati u M 3 (mehanici na materijalnoj
mnogostrukosti)

UDK 531.01, 536.76, 539.374, 539.421

Posle kratkog kritičkog pregleda osnovnih argumenata uključenih u
različite interpretacije mehanike na materijalnoj mnogostrukosti i jedne
kratke primedbe o relaciji tog pristupa sa radovima pokojnog R. Sto-
janovića neka od najnovijih dostignuća u toj grani fizike kontinuuma
su prikazana. Ona uključuju direktne posledice u numerici problema
mehanike čvrstih tela, opšte primene na teorije plastičnosti, rasta i
mešavina kao i nestandardnu primenu na progres fronta faznog prenosa
u čvrstim telima.


