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Abstract

The paper deals with some fundamental issues essential for
constitutive modelling of plastic behaviour of metals. Geometric
and kinematic aspects of intragranular as well as intergranular
plastic deformation of polycrystals are discussed. Homogeneous
grain strains are composed into the resulting behaviour of rep-
resentative volume element (RVE ). A homogenization of total,
plastic and elastic strains has been done. Constitutive equations
by a self consistent method have been discussed. A simplest case
of higher gradient theory is discussed. Elastic strain is covered
by the effective field homogenization method inside a RVE. It is
underlined that plastic stretching and plastic spin are not inde-
pendent.

1 Introduction

The principal objective of this work is to find a simplest yet realistic
way of description of polycrystal behaviour of metals. In such a problem
grains of diverse orientations meet at their boundaries where most dislo-
cations are concentrated. Intergranular and intragranular plastic sliding
must be accompanied by thermoelastic straining in order to preserve
continuity of the body. Even without external forces residual stresses
exist and due to discontinuous change of orientation of neighbouring
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grain lattices it is natural to expect also couple stresses. Of special
interest would be to connect material constants for stress and couple
stress achieving their minimal number to be calibrated from specially
designed experiments. Another issue of great importance is the ques-
tion how to insert a grain larger than its available “hole” in the material
of the considered body. The usual answer to this question is obtained by
the so-called self-consistent methods. Again the question arises to which
part of strain to apply such an approach. The third issue which must
analyzed is proper geometry of the considered thermo-inelastic strain
history for such a polycrystalline body.

The exposition in this paper gives first geometrical analysis of finite
thermo-inelastic strains of polycrystalline bodies. Here issue of micro
and macro-rotations is especially considered. Then conditions for homo-
geneous total and/or elastic and plastic strains are formulated leading
to balance laws. The same analysis has been applied to materials ho-
mogenized in such a way that deformation gradient, elastic and plastic
distortion are linear functions of relative position inside RVE. Constitu-
tive equations for stress and its moment are formulated by the effective
field method. Finally, a brief account to evolution equations following
mainly [18] is given. The interdependence between evolution equations
for plastic stretching (often named by experimentalists as plastic strain
rate tensor) and plastic spin is underlined.

2 Preliminaries

As a prerequisite, a correct geometric description of an inelastic defor-
mation process analyzed is necessary. Consider a polycrystalline body
in a real configuration (k(t)) with dislocations and an inhomogeneous
temperature field T (X, t) (where t stands for time and X for the consid-
ered particle of the body) subject to surface tractions. Corresponding
to (k(t)) there exists, usually, an initial reference configuration (k(t0))
with (differently distributed) dislocations at a homogeneous tempera-
ture T0 without surface tractions. Due to these defects such a config-
uration is not stress-free but contains an equilibrated residual stress (
often named as ”back-stress” ). It is generally accepted that linear map-
ping function F(., t) : (k(t0)) → (k(t)) is compatible second rank total
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deformation gradient tensor. Here time t as scalar parameter allows for
family of deformed configurations (k). In the papers dealing with con-
tinuum representations of dislocation distributions configuration (k(t))
is imagined to be cut into small elements denoted by (n(t)), these being
subsequently brought to the temperature of (k(t0)) free of neighbors.
The deformation tensor FE(t) (., t) : (n(t)) → (k(t)) obtained in such
a way is incompatible and should be called the thermoelastic distortion
tensor whereas (n(t))-elements are commonly named as natural state
local reference configurations (cf. for instance [8, 13]). Of course, the
corresponding plastic distortion tensor

FP (., t) := FE (., t)−1F (., t), (1)

is not compatible, whereas F is found by comparison of material fibres
in (k(t0)) and (k(t)) while FE is determined by crystallographic vectors
in (n(t)) and (k(t))1 Multiplying above formula from the left hand side
by FE (., t) we reach at original Kröner’s decomposition rule which is
often wrongly named as Lee’s decomposition formula.

It is worthy of note that curlFE (., t)−1 6= 0 and this incompati-
bility(cf. [13]) is commonly connected to an asymmetric second order
tensor of dislocation density.

For further considerations let us introduce vectors dx ∈ (k(t)), dξ ∈
(n(t)) and dx0 ∈ (k(t0)) connecting two infinitesimally adjacent parti-
cles:

dx = Fdx0, dx = FEdξ, dξ = FPdx0. (2)

2.1 Micro and macro rotations of RVE

In order to reduce an excessive use of indices and in accord with notation
used in classical references like [25] we will use also synonyms Φ ≡ FE

and Π ≡ FP to denote elastic and plastic distortions. All these tensors
are represented by double tensor fields (cf. [25, 13])

F = F k
. Kgk ⊗ gK

0 , Φ = Φk
. λgk ⊗ hλ, Π = Πλ

. Khλ ⊗ gK
0 , (3)

1Another more natural approach by [22] with FP (., t) :=
FE (., t)−1F (., t)FE (., t0) is less convienent for further analysis than the defi-
nition (1). In fact, the formula (1)is slightly modified in [22] to account for the
initial value of FE (., t) comparing (n(t0)) and (n(t)) local configurations.
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where a tacit dependence on spatial gk, structural hκ and material g0K

base vectors has been taken into account.

Following [18] let us imagine that a typical (n)− element (called
in the sequel representative volume element and denoted by RV E) is
composed of N monocrystal grains, such that each Λ-th grain has Ns

slip systems AαΛ ≡ sαΛ ⊗ nαΛ, α ∈ {1, Ns}. For instance, for FCC
crystals Ns = 12. Here sαΛ is the unit slip vector and nαΛ is the unit
vector normal to the slip plane. For convenience, let us introduce a third
unit vector zαΛ normal to the considered slip plane (cf. [1]) with dyads
A1

αΛ ≡ nαΛ ⊗ zαΛ and A2
αΛ ≡ zαΛ ⊗ sαΛ useful when either cross-slip or

climb of dislocations has to be taken into account.

Let structural vectors attached to lattices of grains in the configura-
tion n(t) be denoted by

hα
. Λ(t) = RΛΠ(t) hα(t), (4)

where α ∈ {1, 3} and Λ ∈ {1, N} . Suppose that a RVE has the volume
∆V =

∑

Λ ∆VΛ. Then introducing grain concentration factors cΛ ≡
∆VΛ/∆V for whole RVE the mean structural vector equals to

hα(t) :=
∑

Λ

cΛhα
. Λ(t). (5)

Clearly, the tensors RΛΠ, (Λ ∈ {1, N}) describe relative plastic micro-
rotations of all grains with respect to average orientation of RVE. For
monocrystal each of these vectors reduces to unit tensor. Similar for-
mulae hold true for RVE in the initial natural state configuration n(t0).

By comparing a RV E in (n(t)) and (n(t0)) we may write a formula
analogous to (1) for the micro-plastic distortion tensor

ΠΛ := ΠΛE ΠΛP , (6)

whose components are the residual micro-elastic distortion tensor ΠΛE

and micro-plastic distortion tensor ΠΛP . Having in mind that unit slip
vectors satisfy the relationships:

sαΛ(t) = Sα
Λβh

β
. Λ(t), nαΛ(t) = Nα

Λβh
β
. Λ(t), (7)
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where Sα
Λβ = const and Nα

Λβ = const we may write a representation for
the micro-plastic distortion as follows:

ΠΛP = 1 + RΛΠ(t)

[

∑

α

γαΛS
α
ΛβN

α
Λγh

β(t) ⊗ hγ(t))

]

RT
ΛΠ(t) (8)

On the other hand, assuming that residual micro-elastic rotation
is negligibly small (cf. also [18]) 2 i.e. that by means of the polar
decomposition ΠΛE = Ures

ΛE = Vres
ΛE we may finally write

ΠΛ(t) = Vres
ΛE(t)RΛΠ(t)

[

1 +
∑

α

γαΛS
α
ΛβN

α
Λγh

β(t) ⊗ hγ(t))

]

RT
ΛΠ(t)

(9)
It is natural to connect macro (for RVE ) and micro (for individual

grains) plastic distortions by means of spatial averaging

Π(t) = 〈ΠΛ(t)〉 ≡
∑

Λ

cΛΠΛ(t). (10)

Let us apply the polar decomposition Π = RPUP to the macro plas-
tic distortion introducing the macro-plastic rotation tensor RP which is
arbitrary (according to Zorawski [28]) and might be fixed either to be
a unit tensor or to have the Mandel’s isoclinicity property (cf. [15] for
details). For a definition of isoclinicity we should have to find average
crystal directions in RV E(t) and RV E(t0) and to make them equal.
The first choice i.e. RP = 1 seems more appropriate for polycrystals.

Remark 1 (Plastic rotations) In this way all the necessary ingredi-
ents for a discussion on micro and macro rotations are prepared. The
two mentioned approaches are very useful to fix macro plastic rotations:

1. The first way of eliminating macro plastic rotation

Π = UP = C
1/2
P (11)

where CP ≡ ΠTΠ greatly simplifies macro-plastic spin issue [15,
18].

2This does not mean that all the elastic residual rotations are exhausted since
macro elastic residual rotation has not been discussed until now.
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2. The second way could be called Mandel’s average macro isoclinicity
by the identification:

hα(t) = hα(t0), (12)

which approximately aligns plastically deformed RVE-elements in
(n(t)) and (n(t0)). For instance, average structural vectors could
be aligned to base gK

0 if such an identification is accepted.

However, for both approaches relative micro-plastic rotations must
not be eliminated unless further tearing of RVE-elements is performed
to size of monocrystal grains which is, by assumption, much smaller than
typical dimension of RVE .

Joining RVE -elements in (n(t)) into a continuous body requires for
each grain micro-elastic distortion ΦΛ. Again polar decomposition al-
lows: ΦΛ = RΛEUΛE. Here the right micro-elastic stretch UΛE does
not include the left micro-residual stretch Vres

ΛE.
Recalling the Kröner’s decomposition ( 1 ) we could make a new

grouping of terms in the following way3

FΛ = RΛE UΛE Vres
ΛE ΠΛP ≡ ΦΛE ΠΛP (13)

Here ΦΛE encompasses rotation of RVE -element in (k(t))-configuration
and residual as well as external forces induced elastic stretches whereas
ΠΛP includes pure plastic distortion and relative micro-plastic rotations.

2.2 Few notes on inelastic strains

If the micro-plastic deformation tensors for individual grains are (cf.
(8))

CΛΠ = ΠT
ΛPΠΛP ≡ 1 + RΛΠ

[

∑

α

γαΛ

(

AαΛ + AT
αΛ

)

]

RT
ΛΠ +

RΛΠ

[

∑

α

γαΛAT
αΛ

][

∑

β

γβΛAβΛ

]

RT
ΛΠ. (14)

3The following decomposition differs from the approach in [18] where micro-plastic
distortion contains also micro-residual elastic strains.
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then their volume average named macro-plastic deformation tensor CP

has the following form:

CP = 〈CΛΠ〉 =
〈

ΠT

Λ
ΠΛ

〉

≡
∑

Λ

cΛΠT

Λ
ΠΛ 6= ΠTΠ (15)

and is different from product of averages of plastic distortions. This
must be taken into account in all the subsequent derivations.

Suppose that we accept macro-isoclinicity assumption. Then taking
hα(t) = hα(t0) = const and by making use of the relation ṘΛΠRT

ΛΠ =
ΩΛΠ for relative plastic micro-spin the relation (8) gives:

Π̇ΛP = RΛΠ

∑

α

AαΛ γ̇αΛRT
ΛΠ +

ΩΛΠ (ΠΛP − 1) + (ΠΛP − 1)ΩT
ΛΠ. (16)

Then velocity gradient at Λ−grain may be expressed by means of :

LΛ = Φ̇ΛE Φ−1
ΛE + ΦΛEΠ̇ΛPΠ−1

ΛPΦ−1
ΛE ≡ LΛE + ΦΛELΛPΦ−1

ΛE. (17)

such that the product ΦT
ΛELΛΦΛE may be split into symmetric and

antysymmetric parts as follows:

ΦT
ΛELΛΦΛE = ĖΛE + E(n)ωΛE + (2EΛE + 1)LΛP , (18)

where E(n) = Eαβγhα ⊗hβ⊗hγ is Ricci tensor related to (n (t))− config-
uration, ωΛE is the elastic micro spin and 2EΛE = ΦT

ΛEΦΛE − 1 is the
micro-elastic strain tensor.

On the other hand, if we accept eliminating macro plastic rotation,
then obviously

2 DP = U̇P U−1
P + U−1

P U̇P , 2 WP = U̇P U−1
P − U−1

P U̇P , (19)

i.e. macro-plastic stretching and spin are not independent. The above
relations will be used in subsequent sections.
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3 Balance laws

3.1 Low order polycrystals

Let us introduce a mass distribution function by means of

ϕ(x′) = {ϕΛ(x′)|x′ ∈ ∆V,Λ ∈ {1, N}}, (20)

with
ϕΛ(x′) = {

1,x′ ∈ ∆VΛ

0, otherwise.

Then positions of grain centers and RVE-center are determined by
∫

∆V

ϕ(x′)x′dm′ = x∆m,

∫

∆VΛ

ϕΛ(x′

0)x
∗

0dm
′ = x∗

0Λ∆mΛ, (21)

where notation x′ ≡ x + x∗ will be used in the sequel.

Assumption 1 Suppose that individual grains have the same density
and are subject to homogeneous micro-strains.

Such materials are called in this paper low order micromorphic poly-
crystals. Moreover, let center of a RVE -element be occupied in (k(t0))
and (k(t)) by the same material point. According to this assumption
deformation gradient is split into its average value and fluctuations as
follows:

F′= 〈F′〉 + F∗ ≡ F+ϕ
Λ
(x′)F

∗

Λ, (where x′ ∈ ∆VΛ) . (22)

Then momentum, moment of momentum and kinetic energy of such
an element read:

v∆m=

∫

∆V

ϕ(x′)ẋ′dV ′ = ẋ∆m, (23)

∆lO =

∫

∆V

ϕ(x′)x′ × ẋ′dV ′ =

(

r × v+E :
∑

Λ

cΛFΛJ0ΛḞT
Λ

)

∆m, (24)

2∆T =

∫

∆V

ϕ(x′)ẋ′ẋ′dV ′ =

(

vv+
∑

Λ

cΛtr
{

ḞΛJ0ΛḞT
Λ

}

)

∆m, (25)
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Here the material grain micro-inertia tensor (cf. also [25]) for a Λ-th

grain equals to:

J0Λ∆mΛ :=

∫

∆VΛ

ϕΛ(x′

0)x
∗

0 ⊗ x∗

0dm
′. (26)

Remark 2 (Non-proportionality) It is interesting to note here that
due to symmetry properties of J0Λ and antysymmetry of Ricci tensor
E = Eijkg

i ⊗ gj⊗gk the second term in (24) disappears for propor-

tional strain paths whenever FΛ and ḞΛ have same directions i.e. when
ḞΛ = αFΛ, α ∈ <. It should be noted that in general non-proportionality
in strain histories affects very much experimental results for character-
ization of inelastic behaviour of metals (cf. e.g.. [16]).

Consider now stresses and their moments in a RVE-element. Al-
though Assumption 1 does not require homogeneity of grain distortions
but only deformation gradient of a grain inside the considered RVE we
will assume that for x′ ∈ ∆VΛ their homogeneity

Φ′= 〈Φ′〉 + Φ∗ ≡ Φ+ϕ
Λ
(x′)Φ

∗

Λ, Π′= 〈Π′〉 + Π∗≡ Π+ϕ
Λ
(x′)Π

∗

Λ (27)

also holds. At x′ ∈ ∆VΛ let second Piola-Kirchhoff ((n(t))-related) and
Cauchy stress be related by means of Φ′S′Φ′T = T′ detΦ′. Then Hooke’s
law at such a point has the form

S′ = D
′ : E′

E =
1

2
ϕ

Λ
(x′)DΛ :

(

ΦT
ΛEΦT

ΛE − 1n

)

≡ ϕ
Λ
(x′)SΛ (28)

and the macro-stress of RVE is obtained by the averaging4

S = 〈S′〉 =
∑

Λ

DΛ : EΛE. (29)

In our case of low order micromorphic polycrystals the forth rank tensor
of elasticity has the form DΛ = D0

αβγδ hα
. Λ⊗hβ

. Λ⊗hγ
. Λ⊗hδ

. Λ withD0
αβγδ =

const. Let us introduce the notation (RΛΠ)αγβδ := (RΛΠ � RΛΠ)αγβδ ≡

4Even in the case of macro-homogeneous elastic distortion throughout the RVE
due to different orientations of grain structures macro-elastic constants differ from
their micro-elastic counterparts.
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(RΛΠ)αβ (RΛΠ)γδ. With respect to average RVE -base in (n)-configuration
we have the equivalent of (29) as follows:

S =
∑

Λ

(

RΛΠ : D
0 : R

T
ΛΠ

)

: EΛE. (30)

Remark 3 (Hill-Mandel ) In this and subsequent sections so-called
Hill-Mandel principle of macrohomogeneity ([6, 12]) would be of great
practical use allowing replacement of average of a product by the corre-
sponding product of averages. To our regret there is not much justifica-
tion for its application. Kröner calls it also ergodicity property in [6].
In statistical theories it is widely applied.

The vector of stress moments for RVE is given by :

∆mO =

∫

∂∆V

ϕ(x′)x′ × T′n′ds′ =

∫

∆V

ϕ(x′)div (x′ × T′) dV ′ =

∆V (x × divT − τ) +
∑

Λ

∆SΛ (x∗ × [[T∗

Λ]] nΛ) |∂∆VΛ
(31)

Here again we have splitting T′ = 〈T′〉+T∗ = T+ϕΛ(x′)T∗

Λ for
x′ ∈ ∆VΛ. and dT∗

Λe denotes jump of the fluctuation of Cauchy stress
on boundaries of Λ-th grain (cf. also [12]). The average Cauchy stress
is here divided into its antysymmetric and symmetric parts by means of

τ =
1

2
E : T, Ta = Eτ ≡

1

2

(

T − TT
)

, Ts =
1

2

(

T + TT
)

≡ σ. (32)

In the same way the mechanical working done by micro-stresses
throughout RVE equals to:

∆P =

∫

∂∆V

ϕ(x′)ẋ′T′n′ds′ =
∑

Λ

∆SΛ (x∗ × [[T∗

Λ]] nΛ) |∂∆VΛ
+

∆V

(

T :gradẋ + ẋdivT+
∑

Λ

cΛT∗

Λ:gradẋ∗

Λ

)

. (33)

Now we are ready to write balance equations for typical RVE. First,
balance of momentum leads to the traditional non-polar equation by
means of:

D

Dt

∫

∆V

ϕ(x′)ẋ′dV ′ =

∫

∂∆V

ϕ(x′)T′n′ds′ ⇒ ρẍ =divT, (34)
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whereas balance of moment of momentum D∆lO/Dt = ∆mO gives the
antysymmetric part of Cauchy stress as follows:

2τ = −ρE :
∑

Λ

cΛFΛJΛF̈T
Λ +

1

∆V

∑

Λ

∆SΛ (x∗ × [[T∗

Λ]] nΛ) |∂∆VΛ
. (35)

Looking at the above formula we may draw the conclusion that for
low order micromorphic polycrystals stress is symmetric only if the two
following conditions are satisfied:

Condition 1 (Intergranular continuity) stress vector is continuous
on grain boundaries and

Condition 2 (Proportional paths) deformation gradient of each grain
follows a proportional path.

The second condition is approximately satisfied also when higher
order inertial terms (i.e. first sum on RHS of the above equation) are
negligibly small.

The last balance low is the first law of thermodynamics which for
the RVE reads:

∆Ṫ + ∆Ė = ∆P + ∆Q, (36)

where ∆Ė is time rate of internal energy, while ∆P and ∆Q are me-
chanical and non-mechanical working which includes thermal effects. If
the average velocity gradient tensor L ≡gradẋ is split into its symmetric
and antysymmetric parts:

ω =
1

2
E : L, La = Eω ≡

1

2

(

L − LT
)

, D =
1

2

(

L + LT
)

≡ Ls, (37)

then the energy conservation low may be written in the following way:

2τω+
∑

Λ

cΛ (σ∗

Λ: D∗

Λ
+2τ ∗Λω

∗

Λ) +
1

∆V

∑

Λ

∆SΛ (ẋ∗ [[T∗

Λ]] nΛ) |∂∆VΛ
−

1

2
ρ
∑

Λ

cΛtr
{

F̈ΛJΛḞT
Λ + ḞΛJΛF̈T

Λ

}

= ρ ė− σ : D. (38)
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3.2 A comment on homogenization

Let us describe now approximately grain behaviour by some smooth
functions. The easiest way to do that is to suppose that deformation
gradient and distortions are linear functions of position throughout the
considered RVE, i.e.

F̄′= F̄+Fx∗

0, Φ̄′= Φ̄ + x
∗
FE, Π̄′= Π̄+FPx∗

0. (39)

Now, the approximating “constants” F̄ and F are found by mini-
mization of the functional

I =
1

∆V

∫

∆V

∥

∥F̄′ − F′
∥

∥

2
dV ′ . (40)

which means that I has the role of so called chi-square function:

min
(F̄,F)

I ⇒
(

F̄,F
)

.

Taking the inner product as a means to form the above norm we get:

F̄ = F as well as F = 〈F∗ ⊗ x∗

0〉 〈J0〉
−1 . (41)

In the same way we obtain approximating “constants” for the dis-
tortions: 5

Π̄ = Π as well as FP = 〈Π∗ ⊗ x∗

0〉 〈J0〉
−1 . (42)

Φ̄ = Φ as well as FE = 〈J〉−1 〈x∗ ⊗ Φ∗〉 , (43)

where the spatial grain micro-inertia tensor has the following form:

JΛ∆mΛ :=

∫

∆VΛ

ϕΛ(x′)x∗ ⊗ x∗dm′. (44)

Remark 4 (Dislocation densities) Antysymmetric parts of FE and
FP are third order true spatial and material dislocation density tensors
(cf. [24, 26, 13]):

AE =E : FE, AP =FP : E0. (45)

5Although we apply the same type of approximation functions for F′ and Φ′,Π′

it would be possible to have F = 0, but FP 6= 0,FE 6= 0 for instance.
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where Ricci permutation tensor in material coordinates E0 = EKLMgK
0 ⊗

gL
0 ⊗gM

0 is used in the second relationship. The two representations of
dislocation density are connected by:

AE detΦ = APFT .

It must be noted that early papers of Kondo, Bilby, Kröner, Stojanović
and their collaborators on non-Euclidean geometry of natural state space
are so pregnant that the subject would require a separate analysis. Of
special interest is here non-Euclidean geometry of oriented materials like
Cosserat media. A lot of other important remarks about non-Euclidean
aspects of geometry of deformation could be made (cf. e.g.. [13]) but
have to be omitted for the sake of brevity.

For further analysis of constitutive equations we will need balance
laws for such a smoothed RVE. On the other hand the moment of mo-
mentum becomes (with a synonymous DF/Dt ≡ Ft ):

∆lO
∆m

=
1

∆m

∫

∆V

ϕ(x′)x′ × ẋ′dV ′ = r × v + (46)

E :
(

FJ0Ḟ
T + FJ0 : FT

t + F : J0Ḟ
T + F : J0 : FT

t

)

,

where higher order inertia moments are given by (cf. also [6] ):

J0 :=

∫

∆V

ϕ(x′

0) x∗

0⊗x∗

0⊗x∗

0 dm
′, J0 :=

∫

∆V

ϕ(x′

0) x∗

0⊗x∗

0⊗x∗

0⊗x∗

0 dm
′.

The balance equation for momentum has the same form as (34) while
the balance equation of moment of momentum with the above linear
approximation becomes:

2τ ∆V −
∑

Λ

∫

∂∆VΛ

(x∗ × [[T∗

Λ
]] nΛ) dS ′

Λ = −ρE :
(

FJ0F̈
T +

F : J0 : FT
tt

)

− ρE :
D

Dt

(

FJ0 : FT
t + F : J0Ḟ

T
)

. (47)

The expression for kinetic energy of RVE is obtained in the same
way:

2
∆T

∆m
=

1

∆m

∫

∆V

ϕ(x′)ẋ′ẋ′dV ′ = vv + tr
(

ḞJ0Ḟ
T
)

+

tr
(

ḞJ0 : FT
t + Ft : J0Ḟ

T + Ft : J0 : FT
t

)

. (48)
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In order to obtain an expression for mechanical working we sup-
pose that velocity gradient L′ is also a linear function throughout RVE -
element:

D′ = D + x∗gradD, ω′ = ω + x∗gradω, (49)

such that (with notation A ◦ B = AabcB abc):

∆P

∆V
− ẋ divT − σ : D = 2τω+M◦ gradD+2M : gradω+ (50)

1

∆V

∑

Λ

∫

∂∆VΛ

(ẋ [[T∗

Λ
]] nΛ) dS ′

Λ,

where moments of the symmetric and antysymmetric stress are respec-
tively:

M ∆V =

∫

∆V

σ∗ ⊗ x∗ dV ′, M ∆V =

∫

∗

∆V

τ ∗ ⊗ x∗ dV ′, (51)

and vanish for homogeneous stress inside RVE -element. Finally, by
means of relations (48) and (50) energy conservation equation (36) for
RVE obtains the following form (by q the average heat flux vector is
denoted i.e. q = 〈q′〉):

ρ ė− σ : D− divq =

ρ D
Dt
tr
(

ḞJ0 : FT
t + Ft : J0Ḟ

T + Ft : J0 : FT
t

)

+

2τω+M◦ gradD+2M : gradω+ρ D
Dt

tr
{

ḞJ0Ḟ
T
}

+

1
∆V

∑

Λ

∫

∂∆VΛ

(ẋ [[T∗]] n) dS ′

Λ.

(52)

4 Evolution and constitutive equations

4.1 Constitutive equations for stress and its mo-
ment

For the analysis in this section it is useful to express the energy equation
(52) in terms of intermediate local reference configuration. Moreover
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let us suppose that Condition 1 is fulfilled i.e. that stress vector is
continuous on grain boundaries.

Recalling the definition of S′ we denote its symmetric and antysym-
metric parts by σ′

S and τ ′S, while elastic stretching is nothing but Ė′

E

and antysymmetric part of elastic “velocity gradient”, denoted by L′

E :=
Φ̇′ (Φ′)−1 , is given by the vector ω′

E. Then the energy conservation equa-
tion may be transformed into:

ρ0 ė−Divq(n) = ρ0
D

Dt
tr
(

ḞJ0 : FT
t + Ft : J0Ḟ

T + Ft : J0 : FT
t

)

+

σS : ĖE + MS ◦GradĖE +

2τSωE + 2MS : GradωE +

ρ0
D

Dt
tr
{

ḞJ0Ḟ
T
}

+R
(

Π̇,GradΠ̇
)

, (53)

where the last term on RHS is linear in material time rates of plastic
distortion and plastic distortion gradient tensors whereas

q(n) =
〈

(Φ′)
−1

q′ detΦ′

〉

is the average heat flux vector related to (n (t)) , Grad (•) := Φgrad (•) ,
ρ0 = ρ detΦ and

MS ∆V0 =

∫

∆V

σ∗

S ⊗ ξ∗ dV ′

0 , MS ∆V0 =

∫

∗

∆V

τ ∗S ⊗ ξ∗ dV ′

0 . (54)

We want to exploit the above energy equation in order to get some
constitutive restrictions for stresses and their moments. First the inter-
nal energy function must be analyzed in order to see on which arguments
it depends. Let us start with start with Hooke’s law for each grain and
compose them into RVE. For an arbitrary point inside RVE we obtain
by means of (28) the following expression:

2e′ = E′

E : D
′ : E′

E = (EE + E∗

E) : (D + D
∗) : (EE + E∗

E) . (55)

where again D′ = R′

Π : D0 : R
′T
Π = ϕ

Λ
(x′)DΛ depends on grain orienta-

tions. Averaging the above relation ship leads to:
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2e = 2eHM +
(

J(n)GradEE : DT
0

)

◦GradEE+

EE : 〈D∗ ⊗ ξ∗〉 ◦ (GradEE)T +

GradEE ◦ 〈ξ∗ ⊗ D∗〉 : EE+

GradEE ◦ 〈ξ∗ ⊗ D∗ ⊗ ξ∗〉 ◦ (GradEE)T

(56)

with notations J(n) ≡ 〈ξ∗ ⊗ ξ∗〉 and (GradEE)T
λαβ = (GradEE)αβλ. Here

by 2eHM = EE : D0 : EE we denote the Hill-Mandel approximation of
our internal energy function. It is worthy of note that above expression
contains also third order products (cf. last term on RHS).

Suppose that inertial higher order terms in () are negligible. Now,
our averaged internal energy function contains only elastic strain and
its gradient. Its differentiation and replacement into (53) leads to con-
stitutive restrictions for symmetric part of stress tensor and its moment
as follows:

1
ρ0
σS = ∂e

∂EE

=

D0 : EE + 〈D∗ ⊗ ξ∗〉 ◦ (GradEE)T ,
(57)

1
ρ0
MS = ∂e

∂GradEE

=

J(n)GradEE : DT
0 + 〈ξ∗ ⊗ D∗〉 : EE+

〈ξ∗ ⊗ D∗ ⊗ ξ∗〉 ◦ (GradEE)T .

(58)

As already remarked antysymmetric stress and its gradient are negligible
if higher order inertial terms can be disregarded. Two special cases of
the above constitutive relations are of special interest to us.

Remark 5 (Isotropic grains) Suppose that each grain is elastically
isotropic which means D′ = D0 (λ, µ) , or, equivalently, D∗ = 0. Then

2e = λ (trEE)2 + 2µ tr (E2
E)J(n)+

λJ(n) : [Grad (trEE) ⊗Grad (trEE)] +

2µ
(

J(n)GradEE

)

◦GradEE.
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The main advantage of this expression is that it does not need any new
material constant. The micro-inertia tensor may be calculated explicitly
and in the special case when tessellation of RVE into grains is by means
of cubes we would have its diagonal terms equal to 1/12 whereas its off-
diagonal terms would be 1/16. For instance, in the paper of Lubarda and
Markenscoff (cf. [11] formula (42)) they have one additional constant
and an unknown scaling length. As another example, Fleck and Hutchin-
son in [3] have five additional material constants and apply so-called
J2-theory in discussing their influence on overall inelastic behaviour of
RVE.

Remark 6 (Small grain rotations) The second case of interest is slight
disorder in Kröner’s terminology (cf. [7]). In order words unlike Kröner’s
perfect disorder here relative grain rotations R′ = 1+ R∗ are so small
that higher order products of R∗ in D′ may be neglected. Then D′αβγδ =
Dαβγδ

0 +R∗α
·κ Dκβγδ

0 +R∗β
·κ Dακγδ

0 +R∗γ
·κ Dαβκδ

0 +R∗δ
·κ Dαβγκ

0 . In this case
an approximate symmetry of the whole RVE may be established around
average structural vectors. Of special interest would be here to make
inquiry about so-called defective invariants with respect to such average
directions.

4.2 Hooke’s law by self-consistent method

In the paper [18] effective field approach was applied in deriving consti-
tutive equation for stress related to (n (t)) . In homogenization theories
for composites with particulate inclusions this approach is based on as-
sumption that each inclusion (in our case grain) behaves approximately
as isolated and situated into the matrix with elasticity constants DM

while influence of neighboring inclusions is taken into account by means
of the effective field Eeff acting on the considered inclusion [9].

Applying previous geometric considerations we may write Hooke’s
law for the Λ−grain in the form SΛ = DΛ : EΛE. Then its volume
averaging throughout the RV E gives the familiar equation of homoge-
nization approach

〈SΛ〉 = DΛ : 〈EΛE〉 , i.e. S = Deff : EE. (59)
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In the paper [10] the author proposed the approach that for poly-
crystals the considered grain is understood as an inclusion in the matrix
composed by all the other grains applying in this way the effective field
approach. If instead of an infinite medium we employ this reasoning
to the considered RV E then a direct application of the Levin’s expres-
sion for the effective elastic moduli fourth rank tensor may be written
as follows (index ”M” stands for matrix while the notation 〈•〉ω means
averaging by orientation only):

Deff = DM + [D] (I − 〈AP〉ω [D] )−1 〈A〉ω , where DM ≡ 〈D〉ω . (60)

Here (I)abcd = δacδbd + δadδbc is the unit fourth rank tensor and

PΛ=S
−1
Λ DM ≡ −

∫

∆VΛ

K(x− x′) dV ′, with (K)abcd = (∂a∂dGac)(ab) ,

AΛ = (I + P∆ [D] )−1 , with [D] = DΛ − DM .

In the above SΛ is the Eshelby’s tensor and G is the Green’s function for
the considered anisotropic crystal. The above expressions mean in fact
application of Levin’s formulae to our geometrical scheme. They may
be used for an analytical determination of the effective elastic constants.
What is really needed here is their extension to strain gradient case and
comparison with formulae derived in previous section.

4.3 Evolution equation

According to the principle of inelastic memory introduced in [15] the
second Piola-Kirchhoff stress is given by a very general functional ac-
counting for plastic strain as well as plastic strain rate history as follows:

S(t) = F∞

τ=0 [εP (t− τ), ε̇P (t− τ)], (61)

where the macro-plastic strain tensor could be for instance εP = UP −1.
When this functional may be represented by a nonlinear function of
plastic strain and plastic strain rate the plastic material is of differential
type (cf. [15]). Solving such an equation in plastic strain rate we would
obtain the following evolution equation

ε̇P = ε̇P (S,εP ) (62)



Low order inelastic micromorphic polycrystals 253

in its standard form. By means of tensor representation theory [23, 15]
it can be explicitly written as follows (MacAuley bracket < f > = 1 if
plastic deformation takes place and < f >= 0 inside each elastic range):

U̇P = < f > [ d1(χ)1 + d2(χ)UP + d3(χ)U2
P +

d4(χ)S + d5(χ)S2 + d6(χ)(SUP + UPS)+

d7(χ)(S2UP + UPS2) + d8(χ)(SU2
P + U2

PS) ].

(63)

Let us apply in the sequel the assumption of absence of macro-plastic
rotations. Then from (19) immediately follows interconnexion between
macro-plastic stretching and macro-plastic spin. Such a conclusion may
be derived for average macro-isoclinicity (cf.[15] for details) but the pro-
cedure is much more tedious..

Remark 7 (Experiments) In the paper [16] the authors derived from
experimental evidence the following very simple evolution equation for
macro-plastic stretching tensor

DP = σ̇eq J(0)πβ
[

c1Sd + c2(S
2
d)d

]

(64)

under the assumption that the loading function type normality derived by
Rice in [20] holds i.e. that DP = Λ ∂SΩ holds. It should be mentioned
that the equation is a special case of (63).

In the above formulae π̇ = ‖DP‖ is the so called equivalent plastic
strain rate, Sd is the deviatoric part of the Piola-Kirchhoff stress S,
σeq ≡ ‖Sd‖ denotes the equivalent Mises stress, whereas the integral
kernel J of the integral equation

π(t) =

∫ t

0

J(t− t′) σ̇eq(t
′) dt′ (65)

is dependent on the initial equivalent stress rate as follows:

J(t− t′) =

{

0, t′ ≥ t∗,
exp(−M), t′ < t∗.

(66)

Here it is assumed that plastic straining initiates at a time t∗ when the
equivalent stress reaches the critical stress rate dependent initial yield
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stress Y0 (σ̇eq) , such that σeq(t
∗) = Y0 [σ̇eq(t

∗)] . At first sight the evolu-
tion equation for plastic stretching seems rate independent since it can
be transformed into an incremental equation if it is multiplied by an in-
finitesimal time increment. However, the rate dependence appears in
the trigger stress rate dependent value of the initial yield stress. A spe-
cial attention deserves the assumed normality (64) and a detailed dis-
cussion on it as well as on non-locality is given in [18] criticizing the
normality assumption. Anyway, the very simple equation (64) with just
three material constants namely, c1, c2, β and one universal constant M
[16] showed high agreement with multiaxial experiments from very low
(Dπ ∼ 0.001 s−1) to very high strain rates (Dπ ∼ 1000 s−1).

Let the specific free energy of the considered body be of the form

f = fE (EE, T ) + fP (λ, T ) (67)

where λ is the isotropic hardening parameter given by

λ̇ := T : D − S : ĖE = (68)
1

2
S :
(

CEU̇PU−1
P + CEU−1

P U̇P

)

≡ SU : U̇P ,

having the meaning of plastic power. By means of the dissipation
appearing in the second law of thermodynamics, namely ϑ ≡ ρ ṡ +
div(q/T ) ≥ 0 Since the free energy is assumed in the form (67) we have
Tϑ = (1 − ρ∂λf) λ̇. By making use of this dissipation Vakulenko intro-
duced a concept of thermodynamic time [27] by the following hereditary
function

ζ(t) :=

∫ t

0

ψ[Tϑ(t′)] dt′ (69)

where T is the absolute temperature and s - the specific entropy. The
function ζ(t) is piecewise continuous and nondecreasing in the way that
ζ̇(t) = 0 within elastic ranges and ζ̇(t) > 0 when plastic deformation
takes place. Splitting the whole time history into a sequence of infinites-
imal segments Vakulenko claimed that a superposition and causality ex-
ists such that the plastic strain tensor (for instance, εP = UP − 1) is a
functional of stress and stress rate history such that:

εP (ζ) =

∫ ζ

0

Φ
[

ζ − ξ,S(ξ), Ṡ(ξ), π(ξ)
]

dξ. (70)
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In [18] the accumulated plastic strain π(ζ) ≡
∫ ζ

0
‖ε̇P (ξ)‖ dξ is added

extending in such a way Vakulenko’s arguments. Of course, this inte-
gral equation is adopted to our case of finite macro-plastic strains and
absence of macro-plastic rotation. Differentiation of (70) with respect
to the thermodynamic time gives:

∂ζεP = Φ
[

0,S(ζ), Ṡ(ζ), π(ζ)
]

+
∫ ζ

0

∂ζΦ
[

ζ − ξ,S(ξ), Ṡ(ξ), π(ξ)
]

dξ. (71)

When the tensorial kernel in (70) is chosen in such a way that

Φ
[

ζ − ξ,S(ξ), Ṡ(ξ), π(ξ)
]

=

J(ζ − ξ) ∂ξσeq(ξ)Φ1 (S(ξ), π(ξ)) + Φ2 (S(ξ), π(ξ))
(72)

and ∂ζ J(ζ − ξ) = 0 (cf. (66)), then the integral on the right hand side
of (70) vanishes. If, moreover the function in (69) is of the power type
i.e. ψ[Tϑ] = (Tϑ)a, then a multiplication of (71) by ζ̇ transforms this
equation into

U̇P = Φ1J(0) σ̇eq + Φ2ζ̇ . (73)

Its multiplication by SU allows further λ̇ = i1J(0) σ̇eq + i2 (1 − ρ∂λf)a λ̇a

where iα = SU : Φα, α ∈ {1, 2}. The explicit solution of this equation
i.e. λ̇ = λ̇( σ̇eq, i1, i2) depends on the value of the exponent a. If value
a = 1 suggested in [27] is taken, then the correction introduced by
means of the tensor Φ2 seems unnecessary apart from the stress rate
dependent kernel J(ζ − ξ) (cf. (66)). However, taking a different from
Vakulenko’s value i.e. a 6= 1 the difference becomes significant. For
example a < 1 may be named decelarated ageing whereas a > 1 would
define accelarated ageing. By such a classification the value a = 1 might
be termed as steady ageing. Nonsteady ageing is analyzed in detail in
[18] with special account of values a = 1/2 and a = 2. According to [18]
the case of steady ageing is not able to describe stress dependent creep
process.

If Φ2 is negligibly small, then evolution equation (71) obtains the
form of (64). Accordingly, the evolution equation (64) belongs to the
class of hereditary equations with thermodynamic time introduced by
Vakulenko.
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5 Concluding remarks

The following general conclusions might be drawn from the above anal-
ysis:

A) Geometrical analysis of thermo-inelastic polycrystal strains has
been given.

B) Balance laws as well as constitutive equations with minimal num-
ber of material constants have been derived with special account on
confrontation of homogeneous grain strains and a linear smoothing ho-
mogenization results.

C) Although successfully compared with experimental results evo-
lution equations based on Vakulenko’s concept of thermodynamic time
and tensor representation theory have to be connected to inelastic slip
micromechanisms following the same approach as for constitutive equa-
tions for stress and moment stress.
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Neelastični mikromorfni polikristali niskog reda

UDK 531.01, 536.76, 539,32, 539.374

Posmatraju se neke osnovne postavke esencijalne za konstitutivno
modeliranje plastičnog ponašanja metala. Geometrijski i kinematski
aspekti intragranularne kao i intergranularne plastične deformacije po-
likristala su diskutovane. Pritom su homogene deformacije zrna kom-
ponovane u rezultujuće ponašanje reprezentativnog zapreminskog ele-
menta (RVE ). Izvedena je homogenizacija totalne, plastične i elastične
deformacije. Diskusija konstitutivnih jednačina je izvršena samousagla-
šavajućim metodom. Najprostiji slučaj teorije vǐsih gradijenata je prikazan.
Elastična deformacija je propisana homogenizacionim meto-dom efek-
tivnog polja unutar RVE. Naglašeno je da brzina plastične deformacije
i plastični spin nisumedjusobno nezavisni.


