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Abstract

Different physical properties of anisotropic porous/microcracked
materials - the elastic and the conductive ones, in particular - can
be explicitly related to one another. The practical usefulness of
such relations lies in the fact that one physical property (say, elec-
tric conductivity) may be easier to measure than the other (say,
full set of anisotropic elastic constants). Man-made microstruc-
tures designed for the optimal combined elastic/conductive per-
formance constitute yet another application. These relations, de-
rived from the micromechanical considerations, are confirmed by
experiments on several heterogeneous materials. It is also shown
that the anisotropic yield surface for a porous ductile material can
be constructed from measurements of the effective electric con-
ductivities. The derived cross-property correlations are sensitive
to pore aspect ratios and Poisson’s ratio of the virgin material.

1 Introduction

Correlations between the effects of microcracks, pores and various inho-
mogeneities on different physical properties - elastic and conductive, for
example - constitute one of the most challenging problems in materials
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science. This task is quite challenging: not only the governing equa-
tions of elasticity and conductivity are different, but even the tensors
that characterize the mentioned properties are of different ranks (fourth
rank tensor of elastic moduli vs second rank tensor of conductivity), so
that the cross-property correlations should interrelate different numbers
of independent components.

Cross-property relations between various effective properties of het-
erogeneous materials have been examined in several works. The most
relevant for the present work is the classical paper of Bristow [1] in which
an explicit connection between the effective conductivity and effective
elastic moduli of a solid with cracks was derived. The derivation was
done in the framework of the non-interaction approximation and for the
case of random crack orientations (overall isotropy).

The conductivity - elasticity correlations were further investigated
in [2] for the two-phase composites, where the cross-property bounds
(that are narrower than the classical Hashin-Shtrikman’s ones) were es-
tablished. These cross-property bounds were substantially advanced
by Gibiansky and Torquato [3-5], who narrowed them under additional
restrictions on the composite microgeometry and on the properties of
constituents. Practical needs of materials science, however, call for the
cross-property connections that, preferably,

• have the explicit form;

• can be applied to strongly anisotropic microstructures;

• remain accurate at high contrast between the phases (materials
with pores or microcracks)

Relations of this kind were recently obtained in recent works [6-10].
They explicitly interrelated full sets of anisotropic elastic and conductive
constants of heterogeneous materials that contain inhomogeneities of
diverse shapes and orientations.

The elasticity conductivity relations allow one to go further. In the
present paper, it is shown that the anisotropic yield surface for a porous
ductile material can be constructed from measurements of the effective
electric conductivities. Experimental determination of the yield surface
of a ductile material usually requires multiple tests and involves inaccu-
racies. The procedure is particularly cumbersome in the cases of plastic
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anisotropy. The derived yield-conductivity relations allow one to sim-
plify this procedure significantly.

For ductile porous materials, the yield surface was earlier constructed
explicitly in terms of the porous space geometry [11], under the following
two conditions - restrictions that apply to the present work as well:

• The matrix (”dense”) material has a clearly identifiable yield point,
followed by a horizontal plateau.

• The porosity does not exceed levels of the order of 15% (beyond
this point, the stress-strain curve may lose a clearly identifiable
yield point).

However, the information on the porous space required for such a
construction - distributions of pore shapes and orientations - may not
be readily available (for example, the information on details of the ori-
entational distribution of pores, like the orientational scatter about a
certain preferential orientation). The present work expresses the yield
surface in terms of conductivities. In particular, this suggests a conve-
nient methodology to construct a (generally anisotropic) yield surface
of a porous metal.

It should also be mentioned that correlation between other pairs of
effective properties were considered in a number of works. Levin [12]
interrelated the effective bulk modulus and the effective thermal ex-
pansion coefficient of the two phase isotropic composites. Milton [13]
established cross-property bounds for the transport and the optical con-
stants of isotropic composites. Similar bounds for the electrical and the
magnetic properties were given by Cherkaev and Gibiansky [14]. The
general approach to establishing various cross-property correlations was
outlined in [15, 16].

2 Property contribution tensors

of an inclusion

In this section we briefly outline the results derived in [7, 17]. We
consider a certain reference volume V of an infinite three-dimensional
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medium with an inclusion of volume V ∗- a region possessing elastic/con-
ductive properties different from the ones of the surrounding material.
The properties of the inclusion and of the matrix will be denoted by an
asterisk and by ”0”, respectively.

2.1 Compliance contribution tensors

The compliance contribution tensor H of an inclusion is defined by the
following relation for the overall strain per volume V :

εij = S0
ijklσkl +Hijklσkl (2.1)

where the second term represents the strain change ∆εijdue to the pres-
ence of the inclusion. H - tensor depends on the inclusion shape and
its elastic properties. (S0 is the matrix compliance tensor and σ is the
”remotely applied” stress, assumed to be homogeneous in the absence
of the inclusion). H - tensor is related to Eshelby’s tensor s as follows
[7]:

H =
V∗
V

[
C0 : (J − s)

]−1
(2.2)

For a general ellipsoid, components Hijkl are expressed in terms of
elliptic integrals. They reduce to elementary functions for the ellipsoid of
revolution (spheroid). Our analysis requires explicit analytic inversions
of fourth rank tensors. Such inversions can be done by representing these
tensors in terms of a certain ”standard” tensorial basis T(1), ...,T(6) [18]
(see Appendix):

H =
V∗
V

6∑

k=1

hkT
(k); (2.3)

so that finding these tensors reduces to calculation of factors hk. Us-
ing the representations for tensors of elastic stiffness, Eshelby’s tensor
and unit tensor in terms of this basis (Appendix) yields the following
relations for the coefficients: Compliance contribution tensor:

h1 =
(κf0 − f1)

2G0(4κ− 1) [2 (κf0 − f1) − (4κ− 1) f 2
0 ]

;

h2 =
1

2G0 [1 − (2 − κ) f0 − f1]
;



Correlation between mechanical and conductive properties... 293

h3 = h4 =
− (2κf0 − f0 + 2f1)

4G0 (4κ− 1) [2 (κf0 − f1) − (4κ− 1) f 2
0 ]

; (2.4)

h5 =
4

4G0 [f0 + 4f1]
;

h6 =
4κ− 1 − 6κf0 + 2f0 − 2f

4G0 (4κ− 1) [2 (κf0 − f1) − (4κ− 1) f 2
0 ]

Hereafter the following notations are used:

κ =
1

2 (1 − ν0)
, f0 =

γ2 (1 − g)

2 (γ2 − 1)
,

f1 =
κγ2

4 (γ2 − 1)2

[(
2γ2 + 1

)
g − 3

]
(2.5)

where the shape factor g is expressed in terms of aspect ratioγ as follows

g(γ) =







1

γ
√

1−γ2
arctan

√
1−γ2

γ
, oblate shape (γ < 1)

1

2γ
√

γ2−1
ln

γ+
√

γ2−1

γ−
√

γ2−1
, prolate shape (γ > 1)

(2.6)

In the case of the overall transverse isotropy, the change in the elastic
compliance tensor due to an inhomogeneity has the structure

S − S0 ==
V∗
V E0

[W1II +W2trJ+ (2.7)

W3 (Inn + nnI) +W4 (J · nn + nn · J) +W5nnnn]

where coefficients Wi are expressed in terms of coefficients hi as follows:

W1 = h1 − h2/2; W2 = h2; W3 = 2h3 + h2 − 2h1

W4 = h5 − 2h2; W5 = h6 + h1 + h2/2 − 2h3 − h5 (2.8)



294 I. Sevostianov

2.2 Resistivity contribution tensors

Utilizing the same approach as the one for the elastic problem, resistivity
contribution tensors HC can be expressed in terms of Eshelby’s tensor
for conductivity problem sC as follows:

HC =
V ∗

V

1

k0

(
I − sC

)−1
(2.9)

In the case of the spheroidal pore, tensor sC has the following form:

sK = f0 (γ) (I − nn) + (1 − 2f0 (γ))nn (2.10)

where f0 (γ)is given by (2.9). Substituting this result into (4.2) yields
the following expression for HC

HC =
V ∗

V0

1

k0

{A1I + A2nn} (2.11)

where factors A1 and A2 are as follows

A1 =
1

1 − f0 (γ)
, A2 =

1 − 3f0 (γ)

2f0 (γ) [1 − f0 (γ)]
(2.12)

In the case of overall transverse isotropy the change in conductivity
due to a pore can be obtained as

K−1 − K−1
0 =

V ∗
V

1

k0

(IA1 + A2nn) (2.13)

3 Correlation between elastic and electric

properties of porous metals

Establishing the sought cross-property correlations crucially depends on
the possibility to express, with sufficient accuracy, the compliance con-
tribution tensor of a pore in terms of a certain second rank tensor. The
following two issues should be addressed in this context.

(A) For a solid with one pore, we identify the inclusion shapes for
which the characterization by H tensor can be reduced, with sufficient
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accuracy, to one in terms of a certain second rank symmetric tensor Ω:

H = 1
E0

V∗

V



B1II +B2J
︸ ︷︷ ︸

isotropic terms

+

B3 (ΩI + IΩ) +B4 (Ω · J + J · Ω)] ,

(3.1)

where Bi are scalar coefficients that depend on the inclusion shape and
on the matrix-inclusion elastic contrast. The ”isotropic terms” in (3.1)
are expressed in terms of the second rank and fourth rank unit tensors
(Iij = δij and 2Jijkl = δikδjl + δilδjk) and, thus, do not depend on the
inclusion orientation.

(B) For a solid with many pores (analyzed in the framework of the
non-interaction approximation) a similar structure should be established
for the sum

∑
H(k).

In the case of axial symmetry of the pore shape (spheroid, for ex-
ample), the representation (3.1) implies the following restrictions on
coefficients hi:

h6 + h1 + h22−2h3 − h5 = 0. (3.2)

With the trivial exception of a sphere, representations (3.1) do not
hold exactly. But condition (3.2) is satisfied, with good accuracy, for
spheroids within several ranges of parameters that, being sufficiently
wide, are relevant for realistic matrix composites. Indeed, one can con-
struct a fictitious compliance contribution tensor Ĥ, with coefficients ĥi

in the tensorial basis that are obtained from hi by multiplication of hi

by either (1 + δ) or (1 − δ), and choose δ in such a way that condition
(3.2) is satisfied exactly for ĥi:

ĥ1 = h1 (1 − δ sign h1) , ĥ2 = h2 (1 − δ sign h2) ,

ĥ3 = h3 (1 + δ sign h3) , ĥ5 = h5 (1 + δ sign h5)

ĥ6 = h6 (1 − δ sign h6) ,

(3.3)

where

δ =
h6 + h1 + h2/2 − 2h3 − h5

|h6| + |h1| + |h2| /2 + 2 |h3| + |h|5
. (3.4)
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Then we find that the error of this approximation, as estimated

by the norm maxijkl,Hijkl 6=0

∣
∣
∣

(

Hijkl − Ĥijkl

)

/Hijkl

∣
∣
∣, is equal to |δ|. The

choice of this norm, as the measure of accuracy of representation (3.1),
corresponds to the requirement that strain responses to all stress states
of the actual and of the fictitious inclusions are close if the norm is small.
Fig 1 illustrates dependence of |δ|on the pore aspect ratio and Poisson’s
ratio of the matrix.

Thus, we obtain the following expressions for coefficients Bi:

B1 = E0

(

ĥ1 − ĥ2/2
)

; B2 = E0ĥ2

B3 = E0

(

2ĥ3 + ĥ2 − 2ĥ1

)

; B4 = E0

(

ĥ5 − 2ĥ2

)

(3.5)

Fig 2, illustrate these coefficients as functions of the inclusion’s aspect
ratio and of the matrix Poisson’s ratio.

For a solid with many pores, we seek to approximate the sum (over
all inclusions) by the expressions

∑

H(k) =
1

E0

[

pb1II + pb2J
︸ ︷︷ ︸isotropic terms

+ (3.6)

b3 (ωI + Iω) + b4 (ω · J + J · ω)]

where p is the volume concentration of pores and bi, are scalar coef-
ficients that depend on the average inclusion shapes, as well as on the
Poisson’s ratio of the matrix ν0.

Note that representation (3.1) for one inclusion constitutes a neces-
sary, but not a sufficient condition for representation (3.6) to hold (with
an important exception of the case when all the inhomogeneities have
identical shapes). This is due to the fact that, for mixtures of diverse
shapes, coefficients Bi entering (3.1) are different for different inhomo-
geneities. The analysis below shows that, nevertheless, representation
(3.6) holds for a wide range of realistic microstructures.

Remark 1 Aside from being a key point in establishing the cross-property
correlations, representation (3.6) (when it is possible) has far reaching
implications, as follows [6].
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1. It implies that a solid with pores is approximately orthotropic (or-
thotropy being coaxial with the principal axes of ω). We emphasize
that the orthotropy holds for any orientational and aspect ratio
distributions of pores, including cases when the orthotropic sym-
metry does not seem to agree with intuition (like several families
of parallel cracks inclined at arbitrary angles to each other).

2. Moreover, the orthotropy due to inclusions is of a special, simpli-
fied type. This is due to the fact that the effective compliance
tensor S can be expressed in terms of a symmetric second rank
tensor ω.

For a solid with many inclusions, we obtain (in frames of non-interaction
approximation), utilizing relations (3.6) and (2.13), the following effec-
tive compliances and conductivities:

S = S0 +
1

E0

1

V

[

II
∑

i

(V ∗B1)
(i) + J

∑

i

(V ∗B2)
(i)+ (3.7)

+

(

I
∑

i

(V ∗B3nn)(i)

)

symm

+

(

J·
∑

i

(V ∗B4nn)(i)

)

symm





K−1 − K−1
0 =

1

V k0

{

I
∑

i

(V ∗ A1)
(i) +

∑

i

(V ∗ A2nn)(i)

}

(3.8)

where coefficients Bi and Ai are given by (3.5) and (2.12), respectively
and the subscript ”symm” refers to the symmetrization appropriate for
the elasticity tensors.

These formulae apply to an arbitrary mixture of pores of diverse
aspect ratios and orientations and contain factors Ai and Bi that de-
pend on the pore shapes. Since these factors are different for different
inclusions, tensors

∑
(V ∗Binn) and

∑
(V ∗A2nn) entering S and K, re-

spectively, cannot, generally, be expressed in terms of each other and
may not even be coaxial.

However, if pores’ aspect ratios are not correlated with either orien-
tations of the pores or their volumes (note that volumes and orientations
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may be correlated), coefficients Bi and Ai can be replaced by their av-
erages and taken out of the summation signs (if all the inclusions have
the same orientation n, this requirement reduces to the condition that
the distributions over shapes and over volumes of the inclusions are
uncorrelated). This important case appears to be relevant for realistic
microstructures.

Then two tensors S and K are expressed in terms of the same second
rank symmetric tensor (”porosity tensor”):

ω =
1

V

∑

k

(V∗nn)(k) (3.9)

Note that its trace trω = (1/V )
∑
V∗ is the volume fraction of pores p.

Thus,

S = S0 +
1

E0

p (b1II + b2J)+
1

E0

[b3 (ωI + Iω) +b4 (ω · J + J · ω)] (3.10)

K−1 − K−1
0 =

1

k0

{a1cI + a2ω} (3.11)

Coefficients bi and ai- average shape factors for the elasticity problem
and for the conductivity problem, respectively - are averages (over all
the cavities) of coefficients Bi and Ai:

bi =

∞∫

0

Bi (γ)λ (γ) dγ, ai =

∞∫

0

Ai (γ)λ (γ) dγ (3.12)

where λ (γ) is the shape distribution density. Functions Bi (γ) and
Ai (γ), given by (3.5) and (2.12), are illustrated in Figs 2,3.

Remark 2 The possibility to express elasticity tensor S in terms of
symmetric second rank tensor ω has interesting physical implications.
Besides implying the overall elastic orthotropy for any orientational dis-
tribution of pores, it also implies that the orthotropic elastic tensors are
coaxial with ω and, therefore, are coaxial with the overall conductivity
tensor K. The accuracy of these statements is determined by the accu-
racy of representation of S in terms ω.
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We now return to cross-property correlations. Expressing porosity
tensor ω in terms of K from (3.11) and substituting it into (3.10) yields
a cross-property correlation - a closed form expression of the effective
compliance tensor in terms of the effective conductivity tensor:

E0 (S − S0) =
[

b1a2−2b3a1

a2(a2+3a1)
II + b2a2−2b4a1

a2(a2+3a1)
J
]

[tr (k0K
−1) − 3] +

+ b3
a2

[(k0K
−1 − I) I + I (k0K

−1 − I)] +

+ b4
a2

[(k0K
−1 − I) · J + J · (k0K

−1 − I)] .

(3.13)

The expression (3.13) is approximate (due to the approximate char-
acter of representations (3.6) of the elasticity tensor in terms of a sec-
ond rank tensor). The derived cross-property correlation contains four
shape factors - combinations of ai and bi- that depend on the average
pore shapes. Their presence reflects the fact that the influence of pore
shapes on the elastic and on the conductive effective properties is some-
what different (otherwise, the cross-property correlations would have
been inclusion shape-independent).

The utility of the explicit cross-property correlation (3.13) can be
viewed as follows. If the effective conductivity tensor K is known, then
the only additional information needed to find the full set of anisotropic
effective elastic constants is the knowledge of average pore shapes - fac-
tors bi and ai and not the orientational distribution. Without the cross-
property correlation, tensor S can be expressed in terms of the porosity
tensor ω. However, its knowledge requires a rather detailed information
(of the orientational character) on the microstructure and may not be
readily available. Utilization of the cross-property correlation makes the
knowledge of ω unnecessary.

3.1 Homogeneous material with microcracks

In the case of isotropy (random crack orientations), the explicit cross-
property correlations were given by Bristow [1]; in the general anisotropic
case, such correlations were derived in [6]. In the latter work, the analy-
sis was done in terms of compliance contribution tensors (H-tensors) of
cracks. However, the conductivity contribution tensor of crack was used
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instead of the resisitvity related one, that may lead to a wrong result
at high crack densities. In the case of cracks, both the effective conduc-
tivities and the approximate representation of the elastic properties are
given in terms of a symmetric second rank crack density tensor

α = (1/V )
∑(

a3nn
)

(3.14)

Its first invariant trα coincides with the conventional scalar crack density
ρ = (1/V )

∑
a3. In terms of α, the effective conductivity tensor is

expressed exactly :

K = k0 (I + 8α/3)−1 (3.15)

and the effective compliance tensor S - approximately as follows:

S = S0 +
16 (1 − ν2

0)

3 (2 − ν0)E0

[αisJsjkl + Jijksαsl] (3.16)

Expressing now α in terms of K−K0 from (3.15) and substituting into
(3.16) yields the explicit cross-property relation:

S = S0 +
2 (1 − ν2

0)

(2 − ν0)E0

[(
k0K

−1 − I
)
· J + J ·

(
k0K

−1 − I
)]

(3.17)

In particular, it implies a very simple one-to-one correspondence between
the effective Young’s moduli Ei and the principal conductivities ki in the
same directions:

E0 − Ei

Ei

=
4 (1 − ν2

0)

2 − ν0

k0 − ki

ki

(3.18)

Note, that the sensitivity of the factor entering (3.18) to Poisson’s ratio
is very low (it is 2.00 for both ν0 = 0 and ν0 = 0.5, reaching 2.144 for
ν0 = 0.27). Formula (3.18) recovers results of Bristow for the case of
effective isotropy.

Remark 3 A physically important observation is that, as far as the ef-
fective conductivities, effective compliances and the cross-property cor-
relations are concerned, strongly oblate pores can be replaced by cracks
[6]. Thus, all the relations derived in the present subsection, apply to
materials with pores having aspect ratios γ < 0.15
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3.2 The case of overall isotropy

If the porous material is isotropic (pores are either spherical or ran-
domly oriented), tensor ω is isotropic (ω = cI) and the cross-property
correlation (3.17) takes the following form, that contains only two shape
factors - coefficients at II and J:

S = S0 + 5
k0 − k

kE0

(
b1 + b3

3a1 + a2

II +
b2 + b4

3a1 + a2

J

)

(3.19)

We note that the overall isotropy takes place in one of the two cases:
(A) spherical inclusions and (B) randomly oriented non-spherical inclu-
sions. While in case (A) the cross-property correlation (3.19) becomes
exact, in the case (B) it is approximate, since it is based on the ap-
proximate representations of tensor H in terms of a second rank tensor.
However, in case (B), the exact cross-property correlation can be derived
independently (without using the approximation (3.1)). Indeed, in this
case, the exact representation (2.7) of the effective elastic compliance
tensor is:

E0 (S − S0) = p (w1 + w3/3 + w5/15) II +

c (w2 + w4/3 + w5/15)J (3.20)

where wi are related to Wi for the individual inclusions (given by (2.8))
by formulas analogous to (3.12). The effective conductivity in the case
of isotropy takes the form

k = k0/1 − a1p− a2p/3 (3.21)

Solving for the porosity p from (3.21) and substituting into (3.20)
yields the exact cross-property correlation for isotropic porous material

E0 (S − S0) =
3 (k0 − k)

k

[
w1 + w3/3 + w5/15

3a1 + a2

II+

w2 + w4/3 + w5/15

3a1 + a2

J

]

(3.22)

In particular, the effective Young’s modulus and Poisson’s ratio are
exactly expressed in terms of the effective conductivity k as follows:

E0 − E

E
=

3 (w1 + w2) + w3 + w4 + 2w5/5

3a1 + a2

k0 − k

k
(3.23)
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ν =
ν0k (3a1 + a2) − (k0 − k) (3w1 + w3 + w5/5)

[k (3a1 + a2) + (k0 − k) (3w1 + 3w2 + w3 + w4 + 2w5/5)]

4 Experimental verification

The cross-property correlations were derived in the previous section in
the framework of non-interaction approximation. To extend the appli-
cability of the derived correlations to high concentrations of inclusions,
we suggest and experimentally verify the following key hypothesis: in-
teractions between pores affect both groups of properties - elastic and
conductive - in a similar way, so that the cross-property correlations de-
rived in the non-interaction approximation continue to hold (although
this approximation may yield substantial errors for each of the proper-
ties separately). This hypothesis was first suggested by Bristow [1]. In
this section we discuss two materials - metal foam and aluminum alloy
containing multiple microcracks due to cyclic loading (fatigue damage).

4.1 Metal foam [9]

To verify the theoretical predictions, Young moduli and electric con-
ductivities of AlMgSi foam were measured at various levels of porosity
(from 70 to 90%). Then Young’s modulus was calculated via electric
conductivities and compared with the experimental measurements.

In the case of randomly distributed pores (overall isotropy) that
slightly differ from spherical shape (note, that ”slightly” allows vari-
ation in the aspect ratio from 0.7 to 1.4 [6])

1

Eeff

=
1

E0

+
p

1 − p

3 (1 − ν0) (9 + 5ν0)

2 (7 − 5ν0)
(4.1)

and
1

keff

=
1

k0

+
1

2k0

3p

1 − p
(4.2)

Now expressing p from (4.2) and substituting it into (4.1) gives us cross-
property correlation for porous material in the form:

E0 − Eeff

Eeff

=
(1 − ν0) (9 + 5ν0)

(7 − 5ν0)

k0 − keff

keff

(4.3)
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Aluminum foam samples were prepared in Institute of Materials and
Machine Mechanics, Slovak Academy of Sciences by the powder met-
allurgy technique. Two different geometries of the test specimens were
used: cylindrical rods with a diameter of 25 mm and length 300 mm (for
measuring modulus of elasticity) and flat plates with dimensions 140 x
140 x 8.5 mm (for measuring electrical conductivity). The pores within
specimens have usually average radii in the range of 0.5 - 2.5 mm de-
pending on the porosity. The computer analysis of sample cross-section
revealed that pores were preferentially oriented parallel to the sample
axis/horizontal base with slightly elongated pore shape (see Fig.4a).
However, the degree of the anisotropy of electric conductivity was found
to be smaller than 10% for porosity higher than 78% and to be smaller
than 20% for porosity higher than 63%. Therefore, the sample can be
considered as almost isotropic. (see Fig.1).

The electrical conductivity of the flat aluminum foam samples was
calculated from the geometry and resistance of the specimens (see Fig.4b).
The resistance measurements were performed by the ”four point” method
in which four sharp tungsten electrodes are positioned under an optical
microscope and are mechanically pressed in the sample surface. All the
electrodes should be aligned in one line. The outer two electrodes are
current bearing while the inner two electrodes in between are used for
the voltage tap over the electrode distance. The modulus of elastic-
ity of the foam was determined from free vibrations of the sample (in
order to eliminate any plastic deformation during tensile/compression
test). The cylindrical specimens were vibrated longitudinally using an
”impact hammer” [19] while the frequency response was measured with
an accelerometer. The samples’ vibration response exhibits amplitude
maximum for various resonant frequencies corresponding to harmonic
oscillations. The modulus of elasticity (Fig.4c) E is calculated from the
resonant frequency fn according to

E = ρ.

(

2L
fn

n

)2

, (4.4)

where n is the order of the resonant frequency in harmonic oscillation,
ρ is the density and L is the length of the specimen.

To verify the cross-property correlation, we substitute the measured
values of electric conductivity at various levels of porosity into (4.3)
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and compare thus obtained values of Eeff/E0 with experimental mea-
surements. The results of the comparison are presented in Fig.4c. The
agreement between the theoretical predictions and experimental mea-
surements is better than 10% for all considered porosity levels as shown
in Table 1.

4.2 Microcracked material [10]

Aluminum alloy (Aluminum 2124-T351) samples reinforced with 15%,
20% and 25% volume fraction of particulate of Aluminum 3003-H18 were
used for experimental verification of the cross-property correlation for
microcracked material. The specimens had geometry of cylindrical rods
with a diameter of 25 mm and length 300 mm. The mechanical prop-
erties of the matrix and the inclusions almost coincide (see Table 2).
The only reason for choosing the composition instead of a homogeneous
material is to create stress concentrators at interfaces (due to imperfect
contacts) to promote nucleation of microcracks. The specimens were
subjected to an axial force. All tests were performed under a strain-
controlled mode (1.4% strain). The input signals were generated by a
computer program. Through the feedback systems, the axial load was
adjusted to maintain the value axial strain reading to that of the initial
input signal. Data were recorded in a real time mode by a computer
and the hysteresis loop in axial direction was plotted on the monitor
(see Fig.5a). The electrical conductivity in the loading direction was
calculated from the geometry and resistance of the sample in this direc-
tion. The resistance measurement was performed by the ”four point”
method (described in the previous subsection). The change in electric
conductivity is presented in Fig.5b as a function of number of cycles for
three different concentrations of inclusions. Note that the decrease in
conductivity is bigger for higher inclusion concentrations. The Young’s
modulus of the specimen along the loading direction was determined
from the free vibrations of the sample. To verify formula (3.18), we sub-
stitute the measured values of electric conductivity at various numbers
of cycles into (3.18) and compare the obtained by such a way values of
E1 with experimental measurements. The results of the comparison are
presented in Fig.5c. The agreement between the theoretical prediction
and experimental measurements is better than 15% for all considered
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values of conductivity. Note, that, the cross-property correlation in the
framework of non-int eraction approximation is identical to those de-
rived in the framework of Mori-Tanaka’s scheme [20, 21]. Therefore we
verified the hypothesis formulated in the beginning of this section - that
the interactions affect both groups of properties - elastic and conductive
- in a similar way, so that the cross-property correlations derived in the
non-interaction approximation continue to hold at high concentrations
of the defects although this approximation may yield substantial errors
for each of the properties separately.

5 Plastic yield in terms of effective electric

conductivities

It is well known that porosity enhances plasticity in elastic-plastic mate-
rials (in the sense that the macroscopic plasticity is identified with lower
level of stresses). The transversely isotropic yield condition of a porous
material has the form [22]:

2τ∗2 = A1 (σkk)
2 + A2τijτji

︸ ︷︷ ︸isotropic part

+ (5.1)

A3 (σkk)σ33 + A4σ3jσj3 + A5σ
2
33

︸ ︷︷ ︸anisotropic part

where τ ∗ is yield stress of the matrix material and τij = σij − (σkk/3) δij
is the stress deviator. In contrast with the dense material, this yield
condition is sensitive to the first invariant of stresses σkk (terms with
coefficients A1 and A3). In the case of the overall isotropy (spherical
pores or randomly oriented non-spherical ones), only the first two terms
of (5.1) remain.

Dimensionless factors A1−5 are key parameters that depend on the
pore shapes. They can be expressed in terms of the compliance contri-
bution tensors of the pores Ĥ =

∑
H(k) [11] as
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A1 = 2G0

3(1+ν0)

(

6 (1 − ν0) ĥ1 + 6ν0ĥ3 + (1 + ν0) ĥ2

)

+

2G2

0

3

[

12ĥ2
1 + 6ĥ2

3 − ĥ2
2

]

A2 = 1 + 4G0ĥ2 + 4G2
0ĥ

2
2

A3 = 4G0

1+ν0

[

−2ĥ1 + (1 + ν0) ĥ2 + (2 + ν0) ĥ3 − ν0ĥ6

]

+

4G2
0

[

4ĥ1ĥ3 + 2ĥ3ĥ6 − 4ĥ2
1 + ĥ2

2 − 2ĥ2
3

]

A4 = 4G0

(

ĥ5 − 2ĥ2

)

+ 2G2
0

(

ĥ2
5 − 4ĥ2

2

)

A5 = 2G0

[

2ĥ1 + ĥ2 − 4ĥ3 − 2ĥ5 + 2ĥ6

]

+

2G2
0

[

4ĥ2
1 + ĥ2

2 + 6ĥ2
3 − ĥ2

5 + 2ĥ2
6 − 4ĥ3

(

2ĥ1 + ĥ6

)]

(5.2)

These expressions are verified numerically in [23]. Now let us use
the elasticity/conductivity cross-property relation (3.13) in the following
form

E0Ĥ = E0 (S − S0) = (C1II + C2J) [k0tr (K−1) − 3] +

C3 [(k0K
−1 − I) I + I (k0K

−1 − I)] +

C4 [(k0K
−1 − I) · J + J · (k0K

−1 − I)] ,

(5.3)

where

C1 =
b1a2 − 2b3a1

a2 (a2 + 3a1)
, C2 =

b2a2 − 2b4a1

a2 (a2 + 3a1)
, C3 =

b3
a2

, C4 =
b4
a2

(5.4)

Representing tensor Ĥ as a linear combination of six ”standard” ten-

sors T(m) (the ”standard” tensorial basis) Ĥ =
6∑

m=1

ĥmT(m) we get the

following expressions for the coefficients ĥm:
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ĥ1 = (2C1 + C2 + 2C3 + C4)
k0−k11

k11

+
(
C1 + 1

2
C2

)
k0−k33

k33

ĥ2 = 2 (C2 + C4)
k0−k11

k11

+ C2
k0−k33

k33

ĥ3 = ĥ4 = (2C1 + C3)
k0−k11

k11

+ (C1 + C3)
k0−k33

k33

ĥ5 = 2 (2C2 + C4)
k0−k11

k11

+ 2 (C2 + C4)
k0−k33

k33

ĥ6 = 2 (C1 + C2)
k0−k11

k11

+ (C1 + C2 + 2C3 + 2C4)
k0−k33

k33

(5.5)

Substituting now (5.5) into (5.2) expresses the plastic yield factors
Ai in terms of the conductivities:

A1 = α11
k0−k11

k11

+ α12
k0−k33

k33

+ α13

(
k0−k11

k11

)2

+

α14

(
k0−k33

k33

)2

+ α15
k0−k11

k11

k0−k33

k33

,

A2 = α21
k0−k11

k11

+ α22
k0−k33

k33

+ α23

(
k0−k11

k11

)2

+

α24

(
k0−k33

k33

)2

+ α25
k0−k11

k11

k0−k33

k33

,

A3 = α31
k0−k11

k11

+ α32
k0−k33

k33

+ α33

(
k0−k11

k11

)2

+

α34

(
k0−k33

k33

)2

+ α35
k0−k11

k11

k0−k33

k33

,

A4 = α41
k0−k11

k11

+ α42
k0−k33

k33

+ α43

(
k0−k11

k11

)2

+

α44

(
k0−k33

k33

)2

+ α45
k0−k11

k11

k0−k33

k33

,

A5 = α51
k0−k11

k11

+ α52
k0−k33

k33

+ α53

(
k0−k11

k11

)2

+

α54

(
k0−k33

k33

)2

+ α55
k0−k11

k11

k0−k33

k33

.

(5.6)

These relations contain no adjustable parameters. Dimensionless
coefficients αij depend, in the known way, on the average pore shapes
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(via C1−4). The sensitivity to pore shapes is due to the fact that the
shapes affect the conductivity and the plastic yield somewhat differently
(otherwise, relations (5.6) would have been pore shape - independent).

Pore shape dependence of relations (5.6) is illustrated in Figs 6 and 7.
Fig. 6 shows the sensitivity to pore shapes of coefficients αij. This sen-
sitivity is relatively moderate (and negligible for the coefficients entering
A5). Moreover, in the important limits of strongly oblate (crack-like)
and strongly prolate pores (discussed in the text to follow), the curves
of Fig.6 become flat, indicating that the sensitivity to the aspect ratio
vanishes in these limits.

Fig. 7 gives a numerical example of recovering the plastic yield fac-
tors Ai from the conductivity data. It is seen that such a recovery
requires an information on the average pore shapes (the curves corre-
sponding to different aspect ratios γ differ significantly).

Remark 4 Being sensitive to pore shapes, relations (5.6) are not sen-
sitive to the overall porosity p. This is a consequence of the fact that, in
the framework of Mori-Tanaka’s scheme, p affects the effective elasticity
and the effective conductivity in a similar way.

The utility of relations (5.6) is as follows. Without them, Ai can be
expressed in terms of coefficients ĥm- characteristics of the pore space.
However, ĥm require knowledge not only of pore shapes, but of their
orientational distribution as well, including such details as, for example,
the extent of orientational scatter about the dominant orientation. Such
information may not be readily available.

Utilization of the cross-property correlation makes this orientational
information unnecessary. Indeed, if the conductivities are known, the
only additional information needed to construct the yield surface is on
the average pore shape. Moreover, in the cases when pores are known to
have strongly oblate or strongly prolate shapes, no further information
on the porous space geometry is needed.

5.1 Strongly oblate (crack-like) pores

This particular case is of interest, for example, in connection with porous
metals that have been subjected to rolling. Expressions (5.5) take the
form:
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ĥ1 =
2(1−ν2

0)
(2−ν0)E

k0−k11

k11

, ĥ2 =
4(1−ν2

0)
(2−ν0)E

k0−k11

k11

ĥ3 = ĥ4 = 0, ĥ5 =
4(1−ν2

0)
(2−ν0)E

[
k0−k11

k11

+ k0−k33

k33

]

,

ĥ6 =
4(1−ν2

0)
(2−ν0)E

k0−k33

k33

(5.7)

and plastic yield factors Ai are expressed in terms of conductivities:

A1 = 8
3

1−ν0

1+ν0

k0−k11

k11

+ 16
3

(
1−ν0

2−ν0

)2 (
k0−k11

k11

)2

,

A2 = 1 + 81−ν0

2−ν0

k0−k11

k11

+ 16
(

1−ν0

2−ν0

)2 (
k0−k11

k11

)2

,

A3 = 8 ν0(1−ν0)
(1+ν0)(2−ν0)

(
k0−k11

k11

− k0−k33

k33

)

,

A4 = 81−ν0

2−ν0

(

−k0−k11

k11

+ k0−k33

k33

)

×
[

1 + 1−ν0

2−ν0

(

3k0−k11

k11

+ k0−k33

k33

)]

,

A5 = 8
(

1−ν0

2−ν0

)2 (
k0−k11

k11

− k0−k33

k33

)2

.

(5.8)

6 Conclusions

The paper overviews the recently obtained results on correlation between
mechanical and conductive properties of porous/microcracked materi-
als published in [6-10]. The derived cross–property correlations inter-
relate, in the closed form, the effective conductivities and mechanical
constants (elastic compliances and plastic yield factors) of anisotropic
porous/microcracked materials. They may be valuable for applications,
if one property (say, conductivities) is easier to measure than the other
one (say, a full set of anisotropic elastic constants). Such correlations
may also be used to optimize the microstructure for the best combined
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conductive/elastic performance. The derived correlations are approx-
imate. Their accuracy depends on the pore shapes and on the Pois-
son’s ratio of the matrix; it remains good in a relatively wide range of
parameter. In this range, the effective elastic properties are approxi-
mately orthotropic (for any orientational distribution of pores) and the
orthotropy axes are coaxial to the principal axes of conductivity. Our
results are given in closed form that explicitly reflects inclusion shapes.
They are derived in the non-interaction approximation. However, the
experimental verification shows that the interactions affect both groups
of properties - elastic and conductive - in a similar way, so that the
cross-property correlations derived in the non-interaction approxima-
tion continue to hold at high concentrations of the defects although
this approximation may yield substantial errors for each of the prop-
erties separately. The derived correlations contain factors that depend
on the average pore shapes. Their presence reflects the fact that pore
shapes affect the elasticity and the conductivity differently; otherwise,
the correlations would have been universal, independent of microgeome-
tries. However, the information on the microstructure that is reflected
in these factors is much less detailed than the one required for a di-
rect expression of the effective properties in terms of the microstructure
(for example, knowledge of the orientational distribution of pores is not
needed). The practical utility of the derived cross-property correlations
lies precisely in this fact: if the conductivities (or elastic constants) have
been measured, then the microstructural information needed to estimate
the elastic constants (or conductivities) is rather minimal and approxi-
mate. A methodology is suggested to construct anisotropic plastic yield
surfaces of porous metals in terms of electric conductivities. In [11] the
yield surfaces is constructed in terms of the porous space geometry (in-
cluding the orientational distribution). However, this information may
not be readily available (particularly the information on details of the
orientational distribution of pores, like the orientational scatter about a
certain preferred orientation). The methodology proposed here requires
the knowledge of conductivities plus an estimate of the average pore
shapes. This information on the pore space geometry is rather mini-
mal. Moreover, in the cases when pores are known be strongly oblate
or strongly prolate, no further information on pores is required. The
conductivity-yield relations derived here hold if (1) material in the ab-
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sence of pores (”dense” material) has a clearly identifiable yield point,
followed by a horizontal plateau, and (2) the porosity is of the order of
15% or lower.
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Appendix A. Tensorial basis in the space of trans-
versely isotropic fourth rank tensors. Representa-
tion of certain transversely isotropic tensors in terms
of the tensorial basis

The operations of analytic inversion and multiplication of fourth rank
tensors are conveniently done in terms of special tensorial bases that are
formed by combinations of unit tensor δij and one or two orthogonal
unit vectors (see Kunin, 1983 and Kanaun and Levin, 1993). In the
case of the transversely isotropic elastic symmetry, the following basis
is most convenient (it differs slightly from the one used by Kanaun and
Levin, 1993):

T
(1)
ijkl = θijθkl, T

(2)
ijkl = (θikθlj + θilθkj − θijθkl)/2,

T
(3)
ijkl = θijmkml, T

(4)
ijkl = mimjθkl

T
(5)
ijkl = (θikmlmj + θilmkmj + θjkmlmi + θjlmkmi) /4,

T
(6)
ijkl = mimjmkml (A.1)

where θij = δij −mimj and m = m1e1 + m2e2 + m3e3 is a unit vector
along the axis of transverse symmetry. These tensors form the closed al-
gebra with respect to the operation of (non-commutative) multiplication
(contraction over two indices):

(
T(α) : T(β)

)

ijkl
≡ T

(α)
ijpqT

(β)
pqkl (A.2)
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The table of multiplication of these tensors has the following form (the
column represents the left multipliers):

T(1) T(2) T(3) T(4) T(5) T(6)

T(1) 2T(1) 0 2T(3) 0 0 0

T(2) 0 T(2) 0 0 0 0

T(3) 0 0 0 T(1) 0 T(3)

T(4) 2T(4) 0 2T(6) 0 0 0

T(5) 0 0 0 0 T(5)/2 0

T(6) 0 0 0 T(4) 0 T(6)

Then the inverse of any fourth rank tensor X, as well as the product
X : Y of two such tensors are readily found in the closed form, as soon
as the representation in the basis

X =
6∑

k=1

XkT
(k), Y =

6∑

k=1

YkT
(k) (A.3)

are established. Indeed:
a) inverse tensor X−1defined by X−1

ijmnXmnkl =
(
XijmnX

−1
mnkl

)
= Jijkl

is given by

X−1 =
X6

2∆
T(1)+

1

X2

T(2)−X3

∆
T(3)−X4

∆
T(4)+

4

X5

T(5)+
2X1

∆
T(6) (A.4)

where ∆ = 2 (X1X6 −X3X4).
b) product of two tensors X : Y (tensor with ijkl components equal

to XijmnYmnkl) is

X :Y = (2X1Y1 +X3Y4)T
(1) +X2Y2T

(2) + (2X1Y3 +X3Y6)T
(3)+

+ (2X4Y1 +X6Y4)T
(4) +

1

2
X5Y5T

(5) + (X6Y6 + 2X4Y3)T
(6) (A.5)

If x3 is the axis of transverse symmetry, tensors T(1), ...,T(6) given by
(A1) have the following non-zero components:

T
(1)
1111 = T

(1)
2222 = T

(1)
1122 = T

(1)
2211 = 1
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T
(2)
1212 = T

(2)
2121 = T

(2)
1221 = T

(2)
2112 = T

(2)
1111 = T

(2)
2222 =

1

2

T
(2)
1122 = T

(2)
2211 = −1

2

T
(3)
1133 = T

(3)
2233 = 1 (A.6)

T
(4)
3311 = T

(4)
3322 = 1

T
(5)
1313 = T

(5)
2323 = T

(5)
1331 = T

(5)
2332 = T

(5)
3113 = T

(5)
3223 = T

(5)
3131 = T

(5)
3232 =

1

4

T
(6)
3333 = 1

General transversely isotropic fourth-rank tensor, being represented
in this basis

Ψijkl =
∑

ψmT
m
ijkl

has the following components:

ψ1 = (Ψ1111 + Ψ1122) /2, ψ2 = 2Ψ1212, ψ3 = Ψ1133, ψ4 = Ψ3311 (A.7)

ψ5 = 4Ψ1313, ψ6 = Ψ3333

Utilizing (A.7) one obtains the following representations:

• Tensor of elastic compliances of the isotropic material Sijkl =
∑
smT

m
ijkl has the following components

s1 =
1 − ν

4G (1 + ν)
, s2 =

1

2G
,

s3 = s4 =
−ν

2G (1 + ν)
, s5 =

1

G
, s6 =

1

2G (1 + ν)
(A.8)

• Tensor of elastic stiffness of the isotropic material by Cijkl =
∑
cmT

m
ijkl has components

c1 = λ+G, c2 = 2G, c3 = c4 = λ, c5 = 4G, c6 = λ+ 2G (A.9)

where λ = 2Gν/(1 − 2ν).
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Figure 1: Accuracy of the approximate representation of the pore com-
pliance tensor H as a function of pore aspect ratio γ for several values
of ν0

• Unit fourth rank tensors are represented in the form

J
(1)
ijkl = (δikδlj + δilδkj)/2 =

1

2
T 1

ijkl + T 2
ijkl + 2T 5

ijkl + T 6
ijkl (A.10)

J
(2)
ijkl = δijδkl = T 1

ijkl + T 3
ijkl + T 4

ijkl + T 6
ijkl (A.12)

• Eshelby’s tensor for spheroidal inclusion sijkl =
∑
se

mT
m
ijkl has com-

ponents

se
1 =

1

2 (1 − ν)
f0 + f1, se

2 =
3 − 4ν

2 (1 − ν)
f0 + f1,

se
3 =

ν

1 − ν
f0 − 2f1, s

e
4 =

ν

1 − ν
(1 − 2f0) − 2f1, (A.12)

se
5 = 2 (1 − f0 − 4f1) , se

6 = 1 − 2f0 + 4f1,

where f0 and f1 are given by (2.5).
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Figure 2: Factors entering approximate expression (3.1) for the com-
pliance contribution tensor H as functions of pore aspect ratio γ and
Poisson’s ratio of the matrix ν0. Curves 1, 2, 3, and 4 correspond to B1,
B2,B3, and B4. For oblate shapes (γ < 1) factors Bi enter in product
with pore aspect ratio γ, to avoid degeneracy for small γ
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Figure 3: Factors entering expression (2.11) for the resistivity contri-
bution tensor as functions of pore’s aspect ratio γ. For oblate shapes
(γ < 1) factors Ai enter in product with pore aspect ratio γ, to avoid
degeneracy for small γ
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Figure 4: Cross-property correlation for aluminum foam. (a) A typical
cross-section of AlMg1Si0.6 aluminum foam; (b) Electric conductivity of
aluminum foam as a function of (1 − p); (c) Comparison of Young’s mod-
ulus of aluminum foam calculated via cross-property correlation with
experimental measurements
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Figure 5: Fatigue experiment. (a) A schematic diagram of the exper-
iment set-up; (b) A typical cross-section of the Al alloys composition
subjected to cyclic loading; (c) Change in electric conductivity as a
function of loading cycles number for different volume concentrations of
inclusions (1- 15%, 2 - 20%, 3 - 25%); (d) Change in Young’s modulus as
a function of loading cycles number for different volume concentrations
of inclusions (1- 15%, 2 - 20%, 3 - 25%): theoretical predictions and
experimental measurements
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Figure 6: Dependence of coefficients αij entering plastic yield factors Ai

on the average pore aspect ratio γ
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Figure 7: Plastic yield factors Ai in terms of conductivities, for various
average pore aspect ratios γ (a numerical example)
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P ,% 0.84 0.82 0.80 0.79 0.77 0.76 0.71 0.00

keff ×106 S/m 2.23 2.58 2.77 3.23 3.50 3.48 4.83 37.6

Eeff -experiment,GPa 3.20 3.86 3.81 4.98 5.48 5.50 7.07 70.0

Eeff -theory, GPa 3.46 3.66 3.94 4.61 5.00 4.96 6.96 70.0

Disagreement 7.5% 5.2% 3.3% 7.4% 8.8% 9.6% 1.8%

Table 1. Comparison of the experimentally measured Young’s mod-
ulus with calculated via effective electric conductivity with cross-property
correlation at various levels of porosity p.

Young’s

modulus

Pois-

son’s

ratio

Yield

strength

Electrical

conducti-

vity

Melting

point
Density

Aluminum

2124-T351
73 GPa 0.33 325 MPa 22.7 MS/m 773 K 2.78

Aluminum

3003-H18
69 GPa 0.33 185 MPa 23.3 MS/m 916 K 2.73

Table 2. Material properties of the constituentsof aluminum alloy
composition used in fatigue experiments: Aluminum 2124-T351 (matrix)
and Aluminum 3003-H18 (inclusions)
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Korelacija izmedju mehaničkih i konduktivnih
osobina metala poroznoih ili sa mikroprslinama

UDK 531.01, 537.634, 539.42

Različite fizičke osobine anizotropnih materijala poroznoih ili sa mikro-
prslinama - posebno elastične i konduktivne - mogu se eksplicitno povezati.
Praktična korist ovakvih relacija leži u činjenici da se jedna osobina
(recimo, električna provodnost) može lakše meriti od neke druge (rec-
imo, celog skupa anizotropnih elastičnih konstanata). Još jedna pri-
mena su veštačke mikrostructure dizajnirane za optimalnu elastično-
provodnu svrhu. Ove su relacije, izvedene iz mikromehaničkih razma-
tranja, potvrdjene eksperimentima na nekoliko heterogenih materijala.
Pokazano je, takodje, da se anizotropna površ tečenja za neki porozni
žilavi materijal može konstruisati iz merenja efektivnih električnih provod-
nosti. Izvedene unakrsne korelacije osobina su osetljive na količnike as-
pekta pora i Poisson-ove koeficijente devičanskih materijala.


