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PREFACE 
 
 
 
The proceedings contains the papers presented at the Third (28th Yu) International Congress 
of Serbian Society of Mechanics held in Vlasina lake during the period 5th -8th July, 2011. 
Theoretical and Applied Mechanics is a subject of great importance in the developing of 
science and technology. The aim of the Congress is to provide a forum to exhibit the 
progress in this field during the past two years and a place to further the interaction of 
modern theoretical and applied mechanics, as well as modern engineering sciences. 
The papers, contributed by authors from all around the globe, have been separated into 7 
sections which cover the main areas of the interest, e. g. `Plenary lectures`, Section A, 
Section B, Section C, Section D and two Mini-symposia. 
We would here like to express our heartfelt thanks to all members of the Scientific 
Committee and also to the participants for their engagement in organizing of the Congress, 
including the preparation of manuscripts which will be published in the Journal Theoretical 
and Applied Mechanics and Scientific Technical Review. 
Last, but by no means least, the Congress organizing committee wishes to acknowledge the 
collaboration of the Ministry of Education and Science – Government of the Republic of 
Serbia, Municipatily Surdulica and Many Supporting members of the Serbian Society of 
Mechanics listed in the proceedings. 
 
 
 
 

Stevan Maksimović & Tomislav Igić 
 

Chairmen of Organizing Committee 
July, 2011. 
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Abstract. A thorough investigation of the failure mechanisms of composite sandwich beams 
under four- and three-point bending and cantilever beams was undertaken. The beams were 
made of unidirectional carbon/epoxy (AS4/3501-6) facings and a PVC closed-cell foam 
(Divinycell) core. Two types of core material H100 and H250 with densities 100 and 250 
kg/m3, respectively, were used. Sandwich beams were loaded under bending moment and 
shear and failure modes were observed and compared with analytical predictions. The 
failure modes investigated are face sheet compressive failure, core failure, facing wrinkling 
and face sheet debonding. The various modes have been studied separately and both 
initiation and ultimate failure have been determined. Initiation of a particular failure mode 
and triggering and interaction with other failure modes was also investigated. The initiation 
of the various failure modes depends on the material properties of the constituents (facings, 
adhesive, core), geometric dimensions and type of loading. Failure modes were discussed 
according to the type of loading applied. In sandwich columns under compression, or beams 
in pure bending, compressive failure of the skins takes place if the core is sufficiently stiff in 
the through-the-thickness direction. Otherwise, facing wrinkling takes place. In the case of 
beams subjected to bending and shear the type of failure initiation depends on the relative 
magnitude of the shear component. When the shear component is low (long beams), facing 
wrinkling occurs first while the core is still in the linear elastic range. When the shear 
component is relatively high (e.g., short beams), core shear failure takes place first and is 
followed by compression facing wrinkling. 

 
 
 

1. Introduction  
 
Sandwich construction is of particular interest and widely used, because the concept is very 
suitable and amenable to the development of lightweight structures with high in-plane and 
flexural stiffness. Sandwich panels consist typically of two thin face sheets (or facings, or 
skins) and a lightweight thicker core. Commonly used materials for facings are composite 
laminates and metals, while cores are made of metallic and non-metallic honeycombs, 
cellular foams, balsa wood and trusses. The facings carry almost all of the bending and in-
plane loads and the core helps to stabilize the facings and defines the flexural stiffness and 
out-of-plane shear and compressive behavior. 
The overall performance of sandwich structures depends on the material properties of the 
constituents (facings, adhesive and core), geometric dimensions and type of loading. 
Sandwich beams under general bending, shear and in-plane loading display various failure 
modes. Failure modes and their initiation can be predicted by conducting a thorough stress 
analysis and applying appropriate failure criteria in the critical regions of the beam 
including three-dimensional effects. This analysis is difficult because of the nonlinear and 
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inelastic behavior of the constituent materials and the complex interactions of failure 
modes. For this reason, properly designed and carefully conducted experiments are 
important in elucidating the physical phenomena and helping the analysis. 
Possible failure modes include tensile or compressive failure of the facings, debonding at 
the core/facing interface, indentation failure under concentrated loads, core failure, 
wrinkling of the compression face and global buckling. Following initiation of a particular 
failure mode, this mode may trigger and interact with other modes and final failure may 
follow another failure path. A substantial amount of work has been reported on failure of 
sandwich panels [1-4]. Recently, the authors and coworkers have performed a thorough 
investigation of the failure behavior of sandwich beams with facings made of carbon/epoxy 
composite material [5-15]. The various modes have been studied separately and both 
initiation and ultimate failure have been determined.  
In the present work, failure modes were investigated experimentally in axially loaded 
composite sandwich columns, sandwich beams under four-point and three-point bending 
and end-loaded cantilever beams. Failure modes observed and studied include face sheet 
compressive failure, face sheet debonding, core failure and face sheet wrinkling. 
 

2. Characterization of constituent materials 
 
The sandwich beam facings were unidirectional carbon/epoxy plates (AS4/3501-6), 
fabricated separately by autoclave molding. Uniaxial tensile and compressive tests were 
conducted primarily in the longitudinal direction in order to obtain the relevant constitutive 
behavior of the facing material. The compressive tests were performed using a new fixture 
developed at Northwestern University [16]. The concept of the fixture is to transmit the 
initial part of the load through the tabs by shear loading and thereafter engage the ends to 
apply the additional load to failure by end loading. The longitudinal tensile and 
compressive stress-strain behavior for the AS4/3501-6 carbon/epoxy is shown in Fig. 1, 
where it is seen that the material exhibits a characteristic stiffening nonlinearity in tension 
and softening nonlinearity in compression. 
Three core materials were investigated. One of them was aluminum honeycomb (PAMG 
8.1-3/16 001-P-5052, Plascore Co.). The other core materials investigated were two types 
of PVC closed-cell foam, Divinycell H100 and H250, with densities of 100 and 250 kg/m3, 
respectively. The aluminum honeycomb material is highly anisotropic with much higher 
stiffness and strength in the through-the-thickness direction (cell direction) than in the in-
plane directions. The three principal moduli E1, E2 and E3 (along the cell axis) were 
obtained by means of four-point bending, three-point bending and pure compression tests 
[17]. The span length of the bending specimens was 20.3 cm. The distance between the 
loads in the four-point bending tests was 10.2 cm. The specimens had a cross section of 
2.54 x 2.54 cm. The out-of-plane shear modulus G13 was obtained by means of a rail shear 
test. The lower density foam core material, Divinycell H100, exhibits nearly isotropic 
behavior. The higher density foam, Divinycell H250, exhibits pronounced axisymmetric 
anisotropy with much higher stiffness and strength in the cell direction (3-direction). 
To determine the in-plane stress-strain behavior of the materials in compression, prismatic 
specimens of dimensions 25.4 x 25.4 x 76.2 mm were tested quasi-statically in an Instron 
servo-hydraulic testing system. Both longitudinal and transverse strains were measured 
with extensometers. The longitudinal strains were monitored on opposite sides of the 
specimen to insure that there was no bending effect during loading. The tests were 
terminated after the load dropped and remained almost constant following a peak value.  
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For the through-the-thickness stress-strain behavior of the materials in compression, 
specimens of the same dimensions as for the in-plane direction were used. The specimens 
were made by bonding together three cubes of the material of 25.4 mm side along the 
thickness direction. The cubes were bonded using a commercially available epoxy adhesive 
(Hysol EA 9430). The specimens used for tension tests along the in-plane direction had 
dimensions 6.4 x 25 x 200 mm. The specimens were tabbed with 100 mm long glass/epoxy 
tabs which were bonded over a length of 50 mm at the specimen ends with epoxy adhesive 
(Hysol 907). The space between the extended parts of the tabs was filled in with high 
modulus epoxy filler (Hysol EA 9430). 
For the tension tests in the through-the-thickness direction, prismatic specimens of 
dimensions 13 x 25 x 200 mm were made by assembling and bonding together fifteen 
triangular prismatic pieces of the material. The specimens were tabbed with glass/epoxy 
tabs as described before for the in-plane tension tests. Both types of specimens were 
gripped over the extended and filled portion of the tabs to avoid crushing of the foam. They 
were loaded quasi-statically to failure in a servo-hydraulic testing machine (Instron). 
Strains were measured with an extensometer attached to the specimen.  
Fig. 2 shows stress-strain curves for this material under uniaxial tension and compression 
along the in-plane (1) and through-the-thickness (3) directions. The material displays 
different behavior in tension and compression with tensile strengths much higher than 
corresponding compressive strengths. The uniaxial stress-strain behavior in tension is 
nonlinear elastic without any identifiable yield region. In uniaxial compression the material 
is nearly elastic-perfectly plastic in the initial stage of yielding. 

 

 
Figure 1. Stress-strain curves in tension (exhibiting hardening nonlinearity) and compression (exhibiting softening 

nonlinearity) of carbon/epoxy facings (AS4/3501-6) 
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Figure 2:  Stress-strain curves of PVC foam (Divinycell H250) 

 

The shear stress-strain behavior on the 1-3 plane was determined by the Arcan test and is 
shown in Fig. 3. The shear behavior is also nearly elastic - perfectly plastic. Some 
characteristic properties of the sandwich constituent materials investigated are tabulated in 
Table 1.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3:  Shear stress-strain curve of PVC foam (Divinycell H250) 
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A common failure mode in sandwich construction is the so-called "core shear failure," in 
which the core fails when the shear stress reaches its critical value. However, although the 
shear stress is usually the dominant one in the core, there are situations in which the normal 
stresses in the core are of comparable magnitude or even higher than the shear stresses. 
Under such circumstances a material element in the core may be subjected to a multi-axial 
state of stress. Therefore, proper design of sandwich structures requires failure 
characterization of the core material under combined stresses. 
The higher density foam (Divinycell H250) core was fully characterized under multiaxial 
states of stress in the 1-3 plane [18]. A number of tests were conducted to define a failure 
surface for the material. Experimental results conformed well with the Tsai-Wu failure 
criterion for anisotropic materials as shown in Fig. 4. The Tsai-Wu criterion for a general 
two-dimensional state of stress on the 1-3 plane is expressed as follows 
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Setting 55 Fk , Eq. (1) is rewritten as 
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The failure surface described by the Tsai-Wu criterion is an ellipsoid in the  

space displaced toward the tension-tension quadrant. It is seen that the material can sustain 
shear stresses  up to 17% higher than the pure shear strength (F5). The most critical 

region for the material is the compression-compression quadrant. The most critical 
combination is compression and shear. 
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Table 1: Properties of constituent materials 
 

 Facing 
Honeycob 
Core 

FM-73 
Adhesive 

Foam 
Core 
(H100) 

Foam 
Core 
(H250) 

Density, , kg/m3  1,620  129  1,180  100  250  

Thickness, h, mm  1.01 25.4  0.05  25.4  25.4  

Longitudinal Modulus, E1, MPa  147,000  8.3  1,700  120  228  

Transverse Modulus, E3, MPa  10,350  2,415   139  403  

Transverse Shear Modulus, G13, MPa  7,600  580  110  48  117  

LongitudinalCompressive Strength, F1c, MPa  1,930  0.2   1.7  4.5  

Transverse Compressive Strength, F3c, MPa  240  11.8   1.9  6.3  

Transverse Shear Strength, F13, MPa  71  3.5  33  1.6  5.0  
 

3. Experimental procedure 

 
The honeycomb core was 2.54 cm wide and was machined from a 2.54 cm thick sheet 
along the stiffer in-plane direction. The 2.54 cm wide composite facings were machined 
from unidirectional plates, bonded to the top and bottom faces of the honeycomb core with 
FM73 M film adhesive and the assembly was cured under pressure in an oven following the 
recommended curing cycle for the adhesive. Sandwich beams were also prepared by 
bonding composite facings to foam cores of 2.54 x 2.54 cm cross section using an epoxy 
adhesive (Hysol EA 9430) [17]. The adhesive was cured at room temperature by subjecting 
the sandwich beam to vacuum. The cured adhesive layer was 0.13 mm thick. 
Special fixtures were fabricated for beams subjected to three-point and four-point bending 
and for end-loaded cantilever beams. In studying the effects of pure bending special 
reinforcement was provided for the core at the outer sections of the beam to prevent 
premature core failures. Also, under three-point bending, the faces directly under 
concentrated loads were reinforced with additional layers of carbon/epoxy to suppress and 
prevent indentation failure. Only in the case when the indentation failure mode was studied 
there was no face reinforcement.   
 

 

7



Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 2011 P-01 

 
 

10 MPa 

-4.6  MPa 

 

 

Figure 4. Failure envelopes predicted by the Tsai-Wu failure criterion for PVC foam (Divinycell H250) for k = 0, 
0.8 and 1, and Experimental results (k = 13/F13 = 5/F5) 

 

Strains on the outer and inner (interface between facing and core) surfaces of the facings 
were recorded with strain gages. Beam deflections were measured with a displaceent 
transducer (LVDT) and by monitoring the crosshead motion. The deflection was also 
monitored with a coarse moiré grating (31 lines/cm). Longitudinal and transverse strains in 
the core were measured with finer moiré gratings of 118 lines/cm and 200 lines/cm. 
The deformation of the core was also monitored with birefringent coatings using reflection 
photoelasticity. Coatings, 0.5 mm and 1 mm thick, were used (PS-4D coatings, 
Measurements Group). The coating is bonded to the surface of the core with a reflective 
cement to insure light reflection at the interface. A still camera and a digital camcorder 
were used to record moiré and isochromatic fringe patterns. The fringe order of this pattern 
is related to the difference of principal strains as follows: 
 

 
hK2

λN
εεεε s

3
s
1

c
3

c
1    (3) 

 

where N is the fringe order,  is the wavelength of the illuminating light, h is the coating 
thickness and K is a calibration constant for the coating material. Superscripts s and c 
denote specimen and coating, respectively. The reinforcement effect of the birefringent 
coatings was neglected.  
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4. Failure modes 

4.1. Sandwich Columns under Axial Compression 

 
Possible failure modes in a sandwich column under axial compression include facing 
compressive failure, facing wrinkling, global buckling and core shear instability. Core 
compressive failure is unlikely because of its low stiffness and high ultimate (yield) strain. 
Because of the much higher stiffness of the facing material, the axial compressive stress in 
the facing is given by 

 

 

f
f bh2

P
  (4) 

 

where P = applied load, hf = facing thickness, and b = width of column cross section. 
Facing compressive failure occurs when 
 

 
c1

f
f F
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P
  (5) 

 
where F1c = compressive strength of facing material (here the longitudinal compressive 
strength of the composite). 
Face wrinkling occurs when the facing stress reaches a critical value. One expression given 
by Heath and modified here is [19]: 
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where hc = core thickness, Ef1 = longitudinal modulus of the face, Ec3 = through-the-
thickness modulus of the core, ij (i, j = 1,3) = Poisson’s ratios of facing material associated 
with loading in the i-direction and deformation in the j-direction. 
Three sandwich columns with three core materials, aluminum honeycomb, Divinycell H100 
and Divinycell H250, were tested in compression. The sandwich columns had a height of 
76.2 mm and a cross-sectional area of 25.4 x 25.4 mm. The facing stresses at failure were 
measured and compared with predicted critical values by Eqs. (5) or (6). Fig. 5 shows 
failure patterns of two columns with Divinycell H250 (Fig. 5a) and Divinycell H100 (Fig. 
5b) foam cores. In the case of the honeycomb core, the measured failure stress indicates 
compressive facing failure according to Eq. (5). This behavior is explained from the high-
out-of-plane stiffness of the honeycomb core, which results in a critical wrinkling stress 
predicted by Eq. (6) higher than the compressive strength of the facing. In the case of foam 
cores failure occurred by facing wrinkling as predicted by Eq. (6). The measured values 
were somewhat lower than predicted due to material imperfections. 
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Global buckling depends on end conditions and material properties in a more complex 
manner as discussed by Vinson [20]. Core shear instability depends primarily on the shear 
modulus of the core and the core and facing thickness [20]. Neither one of these two modes 
was observed in the tests conducted. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

(b)  (a) 

 

Figure 5.  Failure of sandwich columns (a) Divinycell H250 core, (b) Divinycell H100 core 

 

4.2. Sandwich Beams under Pure Bending 

 
Under pure bending (or four-point bending) the moment is primarily carried by the much 
stiffer facings. For relatively thin facings and relatively low core stiffness, the facing stress 
is 
 
 

 cff
f hhbh

M


  (7) 

 
where M = applied moment, and b = beam width. 
Compressive failure occurs in the facing when 
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where Ffc = compressive strength of facing material. This mode of failure occurs in beams 
with cores of sufficiently high stiffness in the core direction, such as aluminum honeycomb. 
Fig. 6 shows experimental and predicted moment-strain curves for facings of a beam under 
four-point bending where the failure mode was compressive failure of the skin as predicted 
by Eq. (8). 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Experimental and predicted moment-strain curves for two facings of composite sandwich beam under 
four-point bending (dimensions are in cm) 

 

 
 For lower stiffness cores, a more likely failure mode is facing wrinkling as predicted 
by the modified Heath expression, Eq. (6). Facing wrinkling failure will occur when the 
predicted critical stress by Eq. (6) is less than the compressive strength of the facing 
material. The value of core modulus at transition from skin wrinkling to facing compressive 
failure is obtained from Eqs (6) and (8) as 
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For values of the core modulus greater than calculated by Eq. (9), failure is governed by the 
compressive strength of the facing material. For core moduli lower than calculated above, 
facing wrinkling failure takes place and is controlled by the core modulus. 
 Fig. 7 shows moment-strain curves for two beams with Divinycell H100 foam cores 
under four-point bending. Failure in both cases is due to facing wrinkling. The measured 
facing stress at failure is relatively close to the predicted critical wrinkling stress by Heath’s 
formula, Eq. (6). 
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Figure 7. Facing wrinkling in sandwich beam under four-point bending (Divinycell H100 foam core, dimensions  

are in cm) 
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Figure 8. Applied moment versus maximum facing strain for beams of different span length under three-point 
bending 

 
 

4.3. Sandwich Beams under Bending and Shear 

 
Beams under three-point bending and end-loaded cantilever beams are subjected to both 
bending moment and shear. It is assumed that the core and facings in the vicinity of the 
applied load are locally reinforced to suppress any possible indentation failure. The latter is 
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the subject of another study [5, 9, 21]. The bending moment is primarily carried by the 
facings and the shear by the core. Excluding indentation, possible failure modes include 
core shear failure, core failure under combined shear and compression, facing wrinkling 
and facing compressive failure. 
Sandwich beams with aluminum honeycomb cores under three-point bending failed due to 
early shear crimping of the core. The shear force at failure remained nearly constant for 
varying span lengths. This means that as the span length increases, the applied maximum 
moment and, thereby, the maximum face sheet strains at failure increase (Fig. 8). The 
results also indicate that the bending moment is carried almost entirely by the face sheets. 
The average shear stress at failure from the three tests represented in Fig. 8 is 

which compares well with the measured shear strength of the honeycomb 

material of  
MPa59.3τu 

Fc MPa59.3

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Moiré fringe patterns corresponding to horizontal and vertical displacements 
in sandwich beam under three-point bending (12 lines/mm, Divinycell H250 core) 

 
 The deformation and failure mechanisms in the core were studied experimentally by 
means of moiré gratings and birefringent coatings. Fig. 9 shows moiré fringe patterns for 
the vertical, w, and horizontal, u, displacements in the core of a sandwich beam with 
Divinycell H250 foam core under three-point bending. They were obtained with specimen 
gratings of 11.8 lines/mm and a master grating of the same pitch with lines parallel to the 
longitudinal and vertical directions. The moiré fringe patterns of Fig. 9 corresponding to the 
horizontal (u) displacements away from the applied load consist of nearly parallel and 
equidistant fringes from which it follows that 
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where C1is a constant. 
Similarly, the moiré fringe patterns corresponding to the vertical (w) displacements away 
from the applied load consist of nearly parallel and equidistant fringes from which it 
follows that 
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where C2 is constant. 
From Eqs (10) and (11) it follows that 
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z

u
γxz
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Eq. (12) indicates that the core is under nearly uniform shear strain, and therefore, under 
nearly uniform shear stress. Furthermore, Eqs (10) and (11) indicate that the normal strains 
εx and εz in the core are nearly zero or very small compared to the shear strain. This is in 
accordance with the classical bending theory of sandwich beams. The bending moment is 
taken mainly by the tensile and compressive facings. This results in high facing normal 
stresses with low normal strains due to the high Young’s modulus of the facings. On the 
other hand the shearing force is taken mainly by the core, resulting in high core strains due 
to the low shear modulus of the core. Thus, the core is under nearly uniform shear stress. 
This is true only in the linear range as shown by the isochromatic fringe patterns of the 
birefringent coating in Fig. 10. In the nonlinear and plastic region the core begins to yield 
and the shear strain becomes highly nonuniform peaking at the center. From fringe patterns 
like those of Fig. 10 it was found that the shear deformation starts becoming nonuniform at 
an applied load of 3.29 kN which corresponds to an average shear stress of 2.55 MPa. This 
is close to the proportional limit of the shear stress-strain curve of Fig. 3. As the load 
increases the shear strain in the core becomes nonuniform peaking at the center is 
illustrated in Fig. 4. 
Core failure is accelerated when compressive and shear stresses are combined. This critical 
combination is evident from the failure envelope of Fig. 4. The criticality of the 
compression/shear stress biaxiality was tested with a cantilever sandwich beam loaded at 
the free end. The cantilever beam was 25.4 cm long. A special fixture was prepared to 
provide the end support of the beam. The isochromatic fringe patterns of the birefringent 
coating in Fig. 10 show how the peak birefringence moves towards the fixed end of the 
beam at the bottom where the compressive strain is the highest and superimposed on the 
shear strain. 
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Figure 10. Isochromatic fringe patterns in birefringent coating of a cantilever sandwich beamunder end load 

 

Plastic deformation of the core, whether due to shear alone or a combination of 
compression and shear, degrade the supporting role of the core and precipitate other more 
catastrophic failure modes, such as facing wrinkling. 
In the present case of beams subjected to bending and shear, compression facing wrinkling 
is influenced by the shear as well as the axial stiffnesses of the core in the through-the-
thickness direction. A prediction of the critical facing wrinkling stress for this case was 
given by Hoff and Mautner [22]. 
 

   3/1
13c3c1fcr GEEcσ   (13) 

 
where c is a constant usually taken equal to 0.5. In this relation the core moduli are the 
initial elastic moduli if wrinkling occurs while the core is still in the linear elastic range. 
This requires that the shear force at the time of wrinkling be low enough or, at least, 
 
 csc FAV  (14) 

 
where Ac  =   core cross sectional area 
 Fcs  =  core shear strength 
 
Sandwich beams with Divinycell H250 foam cores were tested under three-point bending 
and as cantilever beams, while monitoring strain on the face sheets, at points of highest 
compressive stress.  Moment-strain curves for three such beams are shown in Fig. 11. The 
maximum moment recorded is an indication of facing wrinkling. For the cantilever beam 
and one of the beams loaded in three-point bending, the facing wrinkling obtained from the 
experiments are: 
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 (cantilever) MPa910σcr 
  (three-point bending) MPa715σcr 
 
The calculated value from eq. (11) is 
 
  MPa945σcr 
In the case of the short beam the experimental critical stress at facing wrinkling is cr=500 
MPa. 
This lower than predicted value is attributed to the fact that the shear loading component is 
significant and core failure precedes facing wrinkling. Core failure takes the form of core 
yielding, which results in reduced Young’s modulus. This reduces the core support of the 
facing and precipitates facing wrinkling at a lower stress. The critical wrinkling stress in 
this case could be predicted by a modification of expression (13) as 
 
 
   3/1

13c3c1fcr GEE5.0σ   (15) 

 
 

 
 

Figure 11. Moment-strain curves for beams in three-point bending 

 

where  and  are the reduced core moduli. The determination of these moduli 

would require an exact elastic-plastic stress analysis of the beam. 
3cE 13cG 

 It is obvious from the above that failure modes, their initiation, sequence and 
interaction depend on loading conditions. In the case of beams under three-point bending 
this is illustrated by varying the span length. For short spans, core failure occurs first and 
then it triggers facing wrinkling. For long spans, facing wrinkling can occur before any core 
failure. Core failure initiation can be described by calculating the state of stress in the core 
and applying the Tsai-Wu failure criterion. This yields a curve for critical load (at core 
failure initiation) versus span length. On the other hand, in the absence of core failure, 
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facing wrinkling can be predicted by Eq. (11) and expressed in terms of a critical load as a 
function of span length. Fig. 12 shows curves of the critical load versus span length for 
initiation of the two failure modes discussed above. Their intersection defines the transition 
from core failure initiation to facing wrinkling initiation. For a beam with carbon/epoxy 
facings (8-ply unidirectional AS4/3501) and PVC foam core (Divinycell H250) of 2.5 x 2.5 
cm cross section, the span length for failure mode transition is L = 35 cm. 
Although the results above are at least qualitatively explained by available theory, it is 
apparent that better theoretical modeling is needed. The theoretical prediction of facing 
wrinkling, Eq. (13), gives equal weight to the three moduli involved and is independent of 
facing and core dimensions. A more sound theory should take into consideration the 
nonlinear and inelastic biaxial stress-strain behavior of the core material and the 
stress/strain redistribution following core yielding. 
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Figure 12: Critical load versus span length for initiation of core failure and facing wrinkling. 

 

4.4 Facing debonding 

Facesheet debonding may develop during fabrication of sandwich panels or may be caused 
by external loading such as impact. Debonding reduces the stiffness of the structure and 
makes it susceptible to buckling under in-plane compression. Facesheet/core debonding 
failures and interfacial cracking have been studied by many investigators over the last two 
decades by means of experimental, numerical and analytical methods [23-30]. Debonding 
failures are not typically observed in many sandwich beam specimens under usual quasi-
static loading configurations. In the case of foam cores no debonding was observed under 
quasi-static loading due to the relatively high interface fracture toughness. Under impact, 
delamination failures of the compressive face sheet have been observed, but no interfacial 
debonding. 
Beams with aluminum honeycomb cores (Fig. 13) showed some premature debonding 
failure in some cases due to the very small bonded area of the honeycomb cross section.  
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Figure 13. Double cantilever sandwich beam specimen. 

  
 
The strain energy release rate for interfacial crack growth is given by  
 

               2 2
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1 2

1 1 1
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where  21 j jE E j for plane strain, and jE E j  for plane stress, and for crack 

growth in a monolithic elastic material by 
 

                 
2 2
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                                             (17) 

 
The interfacial crack may propagate along the interface or kink into one of the adjoining 
materials. The angle of initial crack propagation, Ω, is given, according to the maximum 
tangential (hoop) stress criterion, by: 
 

                  
 2

II I1

II I

1 8 1
2tan

4

     
 

K K

K K
                                        (18) 

Kinking of the interfacial crack into the core occurs when the following inequality is 
satisfied: 
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 I,cr cr intcore

max         

G G

G G




    (19) 

 
The critical strain energy release rate for the core material in mode I, , and the critical 

interfacial strain energy release rate, 
I,crG

 crG  , as function of mode mixity, are determined 

experimentally. They are characteristic parameters of the core and the interface, 
respectively. Values of GInt,cr and GI,cr are shown in Table 2. On the other hand, the values 
of energy release rate for crack growth in the core and along the interface depend on the 
applied loads and the geometry of the sandwich plate, and are determined numerically.  
 
 

Table 2 Values of GInt,cr and GI,cr for various core materials 
 

Materials 
GInt,cr 
(Nmm/mm2) 

GI,cr 
(Nmm/mm2) 

Divinycell H60 0.28 0.10 
Divinycell H80 0.45 0.22 
Divinycell H100 0.78 0.30 
Divinycell H250 1.55 1.00 

 
 
We consider a sandwich double cantilever beam (DCB) specimen of length 152.4 mm (6 
in) and width 25.4 mm (1 in) loaded by a concentrated load at a distance 25.4 mm (1 in) 
from its end (Fig. 13). The beam is made of aluminum 2024 T3 facings of thickness 1 mm 
and a PVC foam (Divinycell H) core of thickness 25.4 mm (1 in). The core is bonded to the 
facings by of epoxy adhesive of thickness 0.3 mm. Four different PVC core materials, H60, 
H80, H100, and H 250, were studied. An interfacial crack of length 51.1 mm (2 in.) is 
introduced between the core and the adhesive at the loaded end of the specimen. 
Propagation of the interfacial crack is studied under condition of plane strain.  
 
 

 
Figure 14: Initial meshing. 

 
The model of the sandwich DCB specimen is shown in Fig. 14. It is composed of seven 
topological regions. Each region is divided into regular and transition sub-regions. Sub-
region boundaries are then subdivided into segments of appropriate number and 
proportions, and meshing is done automatically by boundary extrapolation, using Q8 and 
T6 elements for regular and transition sub-regions, respectively. The initial model contains 
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1501 elements (986 Q8 and 515 T6), of which 282 discretize the upper face, 114 the upper 
layer of adhesive, 97 the lower layer of adhesive, 97 the lower facing and 911 the core. 
For the prediction of the crack trajectory we use the interface toughness values for normal 
adhesion (Table 5). It is obtained that first the interfacial crack kinks into the core and then 
curves back toward the interface (Fig. 15). For intermediate values of the distance x from 
the crack tip (3 mm< x <30 mm), we obtain the following results: 

• the crack after a small depth h  becomes parallel to the interface (as shown in Fig. 

15) 
• I,intK , , and  vary linearly with the distance x from the crack tip, and II,intK I,coreK

•  and  vary linearly with x and are almost independent of the core properties. intG coreG

 
 
 

 
 

Figure 15. Initial crack path trajectory. 

 
Regarding the sub-interfacial crack propagation into the core we obtain that the crack 
becomes parallel to the interface at a constant depth h . An explanation of the constant 

value of  and the linear variation of stress intensity factors with the distance from the 

crack tip x can be obtained by noting that the debonded part of the specimen (above the 
crack) can be considered as a thin cantilever beam (l/b = 25), elastically supported by the 
foam core, and subjected to a dominant bending moment varying linearly with x and to a 
relatively small (constant) shear force. Thus, the near-tip stress field is linearly proportional 
to x and, hence, the crack propagates in a self-similar manner parallel to the interface. The 
strain energy release rate can be determined by differentiating the work of the applied load 
with respect to the distance from the crack tip and is constant during crack propagation. 
Values of  for various core materials are shown in Table 3. 

h

h
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The core stiffness appears to be the main factor that influences the value of the asymptotic 
depth . Indeed, it can be obtained from Table 3 that the product h Eh is almost constant 

and equal to 60 N/mm for the three PVC foam materials H60, H80 and H250. For H100 it 
takes the value 70 N/mm. Thus, the depth h  is inversely proportional to the modulus of 

elasticity of the core material.  
 
 
 Table 3. Values of critical distance h∞ 

 

E  h  Eh  
 

(GPa) (mm) 
(N/mm

) 
H 60 0.059 1.01 59.6 
H 80 0.087   0.70 60.9 
H 100 0.107 0.65 69.6 
H 250 0.308 0.20 61.6 

 
 
Under such conditions and for a critical applied load, debonding propagates along the 
interface only when the adhesion between the interface and the core is weak. Otherwise, the 
crack kinks into the core and after a small initial curved path it propagates parallel to the 
interface at a depth . The value of h h  is inversely proportional to the modulus of 

elasticity of the core. This behavior is independent of the core thickness, which is an order 
of magnitude larger than the thickness of the facing and the adhesive. Away from boundary 
effects (e.g., concentrated loads, beam supports, crack kinking, etc.) both stress intensity 
factors and strain energy release rate can be approximated as linear functions of the crack 
length. 
 

5. Conclusions 

 
The initiation of the various failure modes in composite sandwich beams depends on the 
material properties of the constituents (facings, adhesive, core), geometric dimensions and 
type of loading. The appropriate failure criteria should account for the complete state of 
stress at a point, including two- and three-dimensional effects. Failure modes were 
discussed according to the type of loading applied.  
In sandwich columns under compression, or beams in pure bending, compressive failure of 
the skins takes place if the core is sufficiently stiff in the through-the-thickness direction. 
Otherwise, facing wrinkling takes place, which can be predicted by Heath’s formula. 
Experimental results were close to predicted ones. 
In the case of beams subjected to bending and shear the type of failure initiation depends on 
the relative magnitude of the shear component. When the shear component is low (long 
beams), facing wrinkling occurs first while the core is still in the linear elastic range. The 
critical stress at wrinkling can be predicted satisfactorily by an expression by Hoff and 
Mautner and depends only on the facing and core moduli. When the shear component is 
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relatively high (e.g., short beams), core shear failure takes place first and is followed by 
compression facing wrinkling. Wrinkling failure follows but at a lower than predicted 
critical stress. The predictive expression must be adjusted to account for the reduced core 
moduli. 
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Abstract 

 
The paper gives an overview of developments of the SPH method.  Especial attention is 
given to the main shortcomings of the original form of the method naimly consistency, 
tensile instability and zero energy modes.  An example of derivation of correction necessary 
to assure first order consistency is given.  The origin of the tensile instability and few 
proposed solutions to this problem are described.  Similar consideration is given with 
respect to the zero energy modes typical for the collocational SPH method.   

 
 

Introduction 

This paper discusses the development of the Smooth Particle Hydrodynamics (SPH) 
method in its original form based on updated Lagrangian formalism.  SPH is a relatively 
new numerical technique for the approximate integration of partial differential equations.  It 
is a meshless Lagrangian method that uses a pseudo-particle interpolation method to 
compute smooth field variables.  Each pseudo-particle has a mass, Lagrangian position, 
Lagrangian velocity, and internal energy; other quantities are derived by interpolation or 
from constitutive relations.   
 
The advantage of the meshless approach is its ability to solve problems that cannot be 
effectively solved using other numerical techniques.  It does not suffer from the mesh 
distortion problems that limit Lagrangian approaches based on structured mesh when 
simulating large deformations. As it is a Lagrangian method it naturally tracks material 
history information, such as damage, without the diffusion that occurs in Eulerian 
approaches due to advection.  
 
Gingold and Lucy initially developed SPH in 1977 for the simulation of astrophysics 
problems. Their breakthrough was a method for the calculation of derivatives that did not 
require a structured computational mesh.  Review papers by Benz and Monaghan (1982) 
cover the early development of SPH.  Libersky and Petchek (1990) extended SPH to work 
with the full stress tensor in 2D.  This addition allowed SPH to be used in problems where 
material strength is important.  The development SPH with strength of materials continued 
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

with extension to 3D Libersky (1993), and the linking of SPH with existing finite element 
codes Attaway, Johnson (1994).   
 
The introduction of material strength highlighted shortcomings in the basic method: 
accuracy, tensile instability, zero energy modes and artificial viscosity. These shortcomings 
were identified in a first comprehensive analysis of the SPH method by Swegle, Wen.  The 
problems of consistency and accuracy of the SPH method, identified by Belytschko (1996), 
were addressed by Randles and Libersky (1996) and Vignjevic and Campbell (2000).  This 
resulted in a normalised first order consistent version of the SPH method with improved 
accuracy.  The attempts to ensure first order consistency in SPH led to the development of a 
number of variants of the SPH method, such as Element Free Galerkin Mehod (EFGM) 
Belytschko (1994), Kongauz (1997), Reproducing Kernel Particle Method (RKPM) Liu 
(1995, 1997), Moving Least Square Particle Hydrodynamics (MLSPH) Dilts, Meshless 
Local Petrov Galerkin Method (MLPG) Atluri (2000).  These methods allow the restoration 
of consistency of any order by means of a correction function.  It has been shown by Atluri 
that the approximations based on corrected kernels are identical to moving least square 
approximations.   
The issue of stability was dealt with in the context of particle methods in general by 
Belytschko (2002), and independently by Randles (1999). They reached the same 
conclusions as Swegle in his initial study.   
 
In spite of these improvements, the crucial issue of convergence in a rigorous mathematical 
sense and the links with conservation have not been well understood. Encouraging 
preliminary steps in this direction have already been put forward very recently by Ben 
Moussa, who proved convergence of their meshless scheme for non-linear scalar 
conservation laws; see also Ben Mousa and Vila. This theoretical result appears to be the 
first of its kind in the context of meshless methods.  Furthermore, Ben Moussa proposed an 
interesting new way to stabilise normalised SPH and allow for treatment of boundary 
conditions by incorporating upwinding, an approach usually associated with finite volume 
shock-capturing schemes of the Godunov type, see Toro (1991, 1995, 1999). The task of 
designing practical schemes along these lines is pending, and there is scope for cross-
fertilisation between engineers and mathematicians and between SHP specialists and 
Godunov-type schemes specialists.  
 
The improvements of the methods in accuracy and stability achieved by kernel re-
normalisation or correction, have not, however, come for free; now it is necessary to treat 
the essential boundary conditions in a rigorous way.  The approximations in SPH do not 
have the property of strict interpolants so that in general they are not equal to the particle 
value of the dependent variable, i.e. u x x u uh

j I
I

j I J( ) ( ) 

uI

.  Consequently it does 

not suffice to impose zero values for  at the boundary positions to enforce homogeneous 

boundary conditions.   
 
The treatment of boundary conditions  and contact was neglected in the conventional SPH 
method.  If the imposition of the free surface boundary condition (stress free condition) is 
simply ignored, then conventional SPH will behave in an approximately correct manner, 
giving zero pressure for fluids and zero surface stresses for solids, because of the deficiency 
of particles at the boundary.  This is the reason why conventional SPH gives physically 
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reasonable results at free surfaces. Contact between bodies occurs by smoothing over all 
particles, regardless of material. Although simple this approach gives physically incorrect 
results.  
 
Campbell [30] made an early attempt to introduce a more systematic treatment of boundary 
condition by re-considering the original kernel integral estimates and taking into account 
the boundary conditions through residual terms in the integral by parts.  Probably the most 
sophisticated work on boundary conditions in SPH is due to Takeda et al. [31], who have 
applied SPH to a variety of viscous flows.  A similar approach has also been used to a 
limited extent by Libersky [8] with the ghost particles added to accomplish a reflected 
symmetrical surface boundary condition.  In, Belytschko, Lu and Gu [19] the essential 
boundary conditions were imposed by the use of Lagrange multipliers leading to an 
awkward structure of the linear algebraic equations, which are not positive definite.  
Krongauz and Belytschko [32] proposed a simpler technique for the treatment of the 
essential boundary conditions in meshless methods, by employing a string of finite 
elements along the essential boundaries.  This allowed for the boundary conditions to be 
treated accurately, but reintroduced the shortcomings inherent to structured meshes.   
 
Randles et al. [18, 33] were first to propose a more general treatment of boundary 
conditions based on an extension of the ghost particle method.  In this, the boundary is 
considered to be a surface one half of the local smoothing length away from the so-called 
boundary particles.  A boundary condition is applied to a field variable by assigning the 
same boundary value of the variable to all ghost particles.  A constraint is imposed on the 
boundary by interpolating it smoothly between the specified boundary particle value and 
the calculated values on the interior particles. This serves to communicate to the interior 
particles the effect of the specific boundary condition.  There are two main difficulties in 
this:   

 Definition of the boundary (surface normal at the vertices).  
 Communication of the boundary value of a dependent variable from the boundary to 

internal particles.  
 
A penalty contact algorithm for SPH was developed at Cranfield by Campbell and 
Vignjevic (2000). This algorithm was tested on normalised SPH using the Randles 
approach for free surfaces. The contact algorithm considered only particle-particle 
interactions, and allowed contact and separation to be correctly simulated. However tests 
showed that this approach often excited zero-energy modes. 
 
Another unconventional solution to the SPH tensile instability problem was first proposed 
by Dyka in which the stresses are calculated at the locations other than the SPH particles.  
The results achieved in 1D were encouraging but a rigorous stability analysis was not 
performed. A 2D version of this approach was investigated by Vignjevic (2000), based on 
the normalised version of SPH. This investigation showed that extension to 2D was 
possible, although general boundary condition treatment and simulation of large 
deformations would require further research.   
 
To utilise the best aspects of the FE and SPH methods it was necessary to develop 
interfaces for the linking of SPH nodes with standard finite element grids (see Johnson, 
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(1993, 1994) and contact algorithms for treatment of contact between the two particles and 
elements De Vuyst and Vignjevic .   
 
From the review of the development of meshless methods, given above, the following 
major problems can be identified: consistency, stability and the treatment of boundary 
conditions.   
 
Basic Formulation 

The spatial discretisation of the state variables is provided by a set of points. Instead of a 
grid, SPH uses a kernel interpolation to approximate the field variables at any point in a 
domain.  For instance, an estimate of the value of a function ( )f x  at the location x  is 

given in a continuous form by an integral of the product of the function and a kernel 
(weighting) function : ( ',W x x h )

( ) ( ') ( ', ) 'f x f x W x x h d  x  (1) 

Where: the angle brackets denote a kernel approximation  

h  is a parameter that defines size of the kernel support known as the smoothing length 
'x  is new independent variable.   

 
The kernel function usually has the following properties:   

- Compact support, which means that it’s zero everywhere but on a finite domain inside 
the range of the smoothing length 2h: 

( ', )W x x h  0  for ' 2x x  h

1

 (2) 

- Normalised  

( ', ) 'W x x h dx  (3) 

These requirements, formulated by Lucy (1977), ensure that the kernel function reduces to 
the Dirac delta function when  tends to zero: h

0
lim ( ', ) ( ', )
h

W x x h x x h


    (4) 

And therefore, it follows that: 

0
lim ( ) ( )
h

f x f x


  (5) 

If the function ( )f x  is only known at  discrete points, the integral of equation 5.1 can 

be approximated by a summation:  

N

1

( ) ( ) ( , )
jN

j
j

j

m jf x f x W x x


 h  (6) 

where 
j

j

m


 is the volume associated to the point or particle j . In SPH literature, the term 

particles is misleading as in fact these particles have to be thought of as interpolation points 
rather than mass elements.   
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Equation 6 constitutes the basis of SPH method. The value of a variable at a particle, 
denoted by superscript i , is calculated by summing the contributions from a set of 
neighbouring particles (Figure 1), denoted by superscript j  and for which the kernel 

function is not zero:   

1

( ) ( ) ( , )
jN

i j i
j

j

m jf x f x W x


 x h  (7) 

 

 
Figure 1: Set of neighbouring particles 
 
Conservation Equations 
 
The conservation equations in Lagrangian framework are given by: 

vd

dt x




   


  (8) 

1dv

dt x











 or 
2

dv

dt x x
 

 

  
 

  
    

 (9a) and (9b) 

vdE

dt x
 










 or 

 
2 2

vvdE

dt x x
  

 

  
 

 
 

 
 (10a) and (10b) 

with 
dx

v
dt


   

The subscripts α and β denote the component. 
Equations 9b and 10b are the forms proposed by Monaghan (1983).  The kernel 
interpolation allows the derivation of the basic SPH form of these conservation equations 
as:   

'
' '

'

vd
W d

dt x




  
 

 x   (11) 
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2

' ' '
'

' ' ' '

dv
W dx W

dt x x
 

 

  
 

  
    
  'dx  (12) 

 
2 2

' '' ' '
'

' ' ' '

vvdE
W dx W

dt x x
  

 

'
'dx

  
 

 
 

    (13) 

All the equations above contain integrals of the form: 
( ')

( ') '
'

g x
W f x dx

x


  (14) 

Using a development in a Taylor series about 'x x , it follows: 

( ') ( ) ( )
( ') ' ( ) ( ') ( ) ... '

'

g x g x d g x
W f x dx f x x x f x W dx

x x dx x

              
   (15) 

As W  is an even function, the terms containing odd powers of 'x x  vanish. Neglecting 
second and higher order terms, which is consistent with the overall order of the method, 
gives:   

'

( ') ( ')
( ') ' ( ')

' ' x x

g x g x
W f x dx f x

x x 

        (16) 

 
 

Substituting 
( )g x

x




 for 
( )g x

x




 gives: 

'

( ') ( ')
( ') ( ) '

' 'x x

g x g x
f x f x W

x x

        dx  (17) 

Using the last relation in equations 5.11, 5.12 and 5.13 gives 

'
'

'

vd
W d

dt x




  
 

 x   (18) 

2

' '
'

' ' '

dv
W dx W

dt x x
 

 

  
 

  
    
  'dx  (19) 

 
2 2

' ' '
'

' '

vvdE
W dx W

dt x x
  

 

'dx
  
 

 
 

    (20) 

All equations include kernel approximations of spatial derivatives: 

( ) ( ')
'

'

f x f x
W d

x x 

 


  x  (21) 

Integrating by part gives: 

( )
( ) ( ) '

'

f x W
W f x f x dx

x 

 
 

  x
 (22) 
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The first term of the second member can be rewritten: 

 ( ')
( ) '

'

W f x
W f x dx

x




  (23) 

Using Green’s theorem, it follows: 

 ( ')
' ( ')

' i

S

W f x
dx W f x n dS

x




   (24) 

The surface integral is zero if the domain of integration is larger than the compact support 
of W  or if the field variable assumes zero value on the boundary of the body (free surface). 
If none of these conditions is satisfied, modifications should be made to account for 
boundary conditions.  
 
One should note that in Equations 18, 19 and 20 the spatial derivatives of the field variables 
are substituted by the derivatives of the kernel:   

( ')
' ( ) '  (25) 

' '

f x W
W dx f x dx

x x 

 
 

  
It follows:   

' '
'

d W
v d

dt x


  


 x   (26) 

2

'
' '

' ' '

dv W W
dx dx

dt x x
 

 

'
 


 

 
  

    (27) 

2 2
' ' ' ' '

' '

vdE W W
v dx d

dt x x
  


 

x
 


 

 
  

     (28) 

The final step is to convert the continuous volume integrals to sums over discrete 
interpolation points. Finally, after a few arrangements in order to improve the consistency 
between all equations, the most common form of the SPH discretised conservation 
equations are obtained: 

 
1

i jN
i j i

j
j

d m
v v

dt x 

ij

i

W



 



 

  (29) 

2 2
1

j ii ijN
j

j i i
j

dv W
m

dt x
 



 
 

  
      
  (30) 

 2
1

ii ijN
j j i

i
j

dE W
m v v

dt x


  i



 


  

  (31) 

where  ),( hxxWW jiij 
 
 
Kernel Function 
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To complete the discretisation one has to define the kernel function.  Numerous 
possibilities exist.  A large number of kernel function types are discussed in literature, 
ranging from polynomial to Gaussian.  The most common is the B-spline kernel that was 
proposed by Monaghan (1983):   

 

2 3

3

3 3
1 1

2 4

1
( , ) 2 1 2

4
0

D

v v v

C
W v h v v

h
otherwise

     


   





  (32) 

where  

'x x
v

h


 ,  

D  is the number of dimensions of the problem (i.e. 1, 2 or 3),  
C is the scaling factor which depends on the number of dimensions and ensures that the 
consistency conditions 2 and 3 are satisfied: 

2
1

3
10

2
7
1

3

D

C

D





 

 

 

D   (33) 

 
Variable Smoothing Length 
 
If large deformations occur, particles can largely separate from each other. If the smoothing 
length remains constant, the particle spacing can become so large than particles will no 
more interact. On the other hand, in compression, a lot of particles might enter in the 
neighbouring of each other, which can significantly slow down the calculation. In order to 
avoid these problems, Benz (1990) proposed the use of a variable smoothing length. The 
intent was to maintain a healthy neighbourhood as continuum deforms. The equation for 
evolution of h derived by Benz (1990) is: 

1

0
0

n

h h



 
  

 
 (34) 

where  and 0h 0  are initial smoothing length and density and  is the number of 

dimensions of the problem. 

n

 
Another frequently used equation of evolution based on conservation of mass is: 
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1

div( )
dh

h v
dt n

  (35) 

where div  is the divergence of velocity.  . ( )v
 
Neighbour Search 
 
An important step in the SPH computation is the neighbour search. This task can be 
extremely time consuming. The neighbour search routine lists the particles that are inside 
the neighbourhood of each particle at each time step. A direct search between every particle 
is particularly inefficient. A bucket sort algorithm is more efficient. In this method, an 
underlying grid of side 2h is generated and the particles are sorted according to the box in 
which they are located (Figure 2). Then for each particle, the neighbours are searched 
among the particles contained in the same box and the surrounding boxes. This allows the 
computational time to be cut down from a default time proportional to N² for a direct search 
to NlogN, where N is the total number of particles.   
 

 
Figure 2: Bucket sort and neighbour search 
 
SPH Shortcomings 
 
The basic SPH method has shown several problems when used to model a solid body: 

- Consistency  
- Tensile instability  
- Zero-energy modes  

 
Consistency  
 
The SPH method in its continuous form is inconsistent within 2 h of the domain boundaries 
due to the kernel support incompleteness.  In its discrete form the method loses its 0th order 
consistency not only in the vicinity of boundaries but also over the rest of the domain if 
particles have an irregular distribution.  Meglicki (1995) showed that node disorder results 
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in a systematic error. Therefore, a proper SPH grid should be as regular as possible and not 
contain large discrepancies in order to perform most accurate simulation.  
The first order consistency of the method can be achieved in two ways.  Firstly, by 
correcting the kernel function, second, by correcting the discrete form of the convolution 
integral of the SPH interpolation.  Johnson (1996) uses this correction procedure and 
proposed the Normalised Smoothing Function. Vignjevic (1999) also implemented a kernel 
normalisation and correction to lead to a Corrected Normalised Smooth Particle 
Hydrodynamics (CNSPH) method which is first order consistent. The full derivation of this 
correction is given below.  In SPH methods based on a corrected kernel, it is no-longer 
possible to ignore boundary conditions. In basic SPH, free surface boundary conditions are 
not imposed and are simply ignored as variables tends to zero at boundaries because of the 
deficiency of neighbour particles. 
 
Derivation of Normalised Corrected Gradient SPH formula 
 
The approximation of fields using a Normalised Corrected SPH (NCSPH) interpolation has 
been published Libersky&Randles (1999), Vignjevic (2000), Bonet (2000).  Some authors 
have chosen to use properties of the integrals of motion (linear and angular momentum) to 
derive Normalisation and Gradient Correction for kernel interpolation, see Bonet.  This 
approach lacks generality and does not provide the insight into the origin and the nature of 
the problem.  A full derivation of the correction proposed by Vignjevic (2000), which has 
not been published before, is given below.  The derivation is based on the homogeneity and 
isotropy of space, the space properties, which have as a consequence conservation of linear 
and angular momentum, see Landau.  The mixed correction insures that homogeneity and 
isotropy of space are preserved in the process of spatial discretisation.   
 
An interpolation technique should not affect homogeneity of space.  One way of 
demonstrating this is to prove that the interpolation of the solution space itself is 
independent of a translation of the coordinate axes.  In order to express this statement 
mathematically one can start by writing the general expression for the SPH interpolation of 
a vector field: 
 

      



 j

jij
j

j W
m

i

xxxFxF
xx


  (36) 

 

If the field to be interpolated is the solution space then xF


  and Equation 36 becomes:   
 

 





j
jij

j

j W
m

i

xxxx
xx


  (37) 

 
In a different, translated coordinate system, this equation is: 

 





j
jij

j

j W
m

i

xxxx
xx


  (38) 
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o
Where  is the coordinate vector in the new coordinate system.  If the translation vector 
by which the origin f the coordinate system was moved is defined as 

x


x


  then the 
r lationship between xe


 and x

 is: 
xxx


  (39) 
 
If the interpolated coordinates of a point are independent of the translation of coordinate 
axes then the following should hold: 
 

xΔxx


  (40) 

By substituting Equation 40 into Equation 39 for both ix


and jx


 one obtains: 

 

   






j

ji
j

j

j
jij

j

j W
m

W
m

xxxxxxx 
 (41) 

or 
 

 



j

ji
j

j W
m

xxxxx 
 (42) 

By comparison of Equation 42 and Equation 40 it is clear that the discretised space will 
only be homogeneous if the following condition is satisfied:   

  1W
m

j
ji

j

j 
 xx


 (43) 

 
Similarly, an interpolation technique should not affect isotropy of space.  One way of 
demonstrating this is to prove that the interpolation of the solution space itself is 
independent of a rotation of the coordinate axes.  The same holds for the SPH 
approximation.  The change in coordinates due to a rotation of the coordinate axes is:   
 

xCx


  (45) 
where C is the rotation matrix.  For small rotations this can also be written as: 
 

xxx


  (46) 

where 


 is the rotation vector.   

 
If one wants to ensure that the SPH approximation does maintain the fact that space is 
isotropic then the approximation has to satisfy the following condition:   
 

xCxCx


  (47) 

or 

CC   (48) 
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This means that the rotation matrix has to be approximated exactly.   
 
In order to develop this equation one can start by rewriting  

 

 xI

xx

xxx

xxx

x 














x
 (49) 

 

where  is a skew-symmetric matrix: x
 






















0

0

0

xy

xz

yz
x  (50) 

 
This means that, for small rotations, the rotation matrix is given by: 
 

xIC   (51) 

 
The approximation of the rotated coordinates is: 
 

xIxCxCx
 x  (52) 

 
This means that the requirement on the interpolation is: 
 

xx  II  (53) 

 
or 
 

xx   (54) 

 
Expanding this expression leads to: 
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Therefore to preserve space isotropy, i.e. xx   the following condition has to be 

satisfied. 
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 (56) 

The form of the normalised kernel function and the approximation of the first order 
derivatives which provides first order consistency is given in Table 1. below.   
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Table 1.  Corrected forms of the kernel function and its gradient 
 
Using the NCSPH approximations the conservation equations assume the following form:   
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 Tensile Instability 
 
A Von Neumann stability analysis of the SPH method was conducted Swegle and Balsara 
separately.  This has revealed that the SPH method suffers from a tensile instability.  This 
instability manifests itself as a clustering of the particles, which resembles fracture and 
fragmentation, but is in fact a numerical artefact. Swegle concluded that the instability 
doesn’t result from the numerical time integration algorithm, but rather from an effective 
stress resulting from a non-physical negative modulus being produced by the interaction 
between the constitutive relation and the kernel interpolation.  In other words the kernel 
interpolation used in spatial discretisation changes the nature of original partial differential 
equations.  These changes in the effective stress amplify, rather than reduce, perturbations 
in the strain. From Swegle’s stability analysis it emerged that the criterion for stability was 
that:   
 

'' 0W    (60) 

where  is the second derivative of  with respect to its argument and ''W W   is the stress, 
negative in compression and positive in tension. 
 
This criterion states that instability can also occur in compression, not only in tension. 
Indeed, if the slope of the derivative of the kernel function is positive, the method is 
unstable in tension and stable in compression and if the slope is negative, it is unstable in 
compression and stable in tension. 
 

 
Figure 3: Stability regimes for the B-spline kernel function (Swegle, 1994) 
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h

 
The fact that this instability manifests itself most often in tension can be explained. Figure 3 
shows the stability regime for the B-spline kernel function. The minimum of the derivative 
is situated at 2 / 3u  . In standard configurations, the particle spacing is equal to the 

smoothing length, u . Thus, standard configurations are unstable in tension. This 
explains why this unstable phenomenon is generally observed in tension and hence, its 
misleading name “tensile instability”. 

h

 
In order to remedy this problem several solutions have been proposed.  Guenther (1994) 
and Wen (1994) have proposed a solution, known as Conservative Smoothing.  Randles and 
Libersky proposed adding dissipative terms, which is related to conservative smoothing.  
Dyka proposed an original solution by using a non-colocated discretisation of stress and 
velocity points.  At one set of points the stresses are evaluated, while the momentum 
equation is calculated at another set of points.  The ‘stress’ points are equivalent to the 
Gauss quadrature points in FE, the other set of points is equivalent to the element nodes.  
This approach was extended to two dimensions, in combination with kernel normalisation, 
by Vignjevic and Campbell (2000).  Other solutions were proposed, fore instance see 
Monaghan (2001).  The former proposes a corrective SPH method by enforcing higher 
order consistency, while the latter proposes the addition of an artificial force to stabilise the 
computation.  Recently Randles and Libersky combined MLS interpolation with the stress 
and velocity point approach.  They called this approach the Dual Particle Dynamics method 
Libersky (2001).   
 
The conservative smoothing and the artificial repulsive forces methods have limited 
applicability and have to be used with caution because they affect the strength of material 
being modelled.  At present, the most promising approach is non-collocational spatial 
discretisation.  This problem is in the focus of attention of a number of researchers working 
on mesh-less methods.   
 
Zero-Energy Modes 
 
Zero-energy modes are a problem that is not unique to particle methods. These spurious 
modes, which correspond to modes of deformation characterised by a pattern of nodal 
displacement that produces zero strain energy, can also be found in the finite difference and 
finite element methods.   
 
Swegle (1994) was first to showed that SPH suffers from zero energy modes.  These modes 
arise from the nodal under integration. The fundamental cause is that all field variables and 
their derivatives are calculated at the same locations (particle positions).  For instance, for 
an oscillatory velocity field, illustrated in Figure 1, the kernel approximation would give 
negligible gradients and consequently stresses at the particles.  These modes of deformation 
are not resisted and can be easily exited by rapid impulsive loading.  Another explanation 
can be found in the origin of the kernel approximation. As the kernel approximation, which 
is the basis of SPH, is an interpolation of a set of discrete data, a constant field, can be fit 
with a sinusoidal curve/surface if the order of the interpolation is high enough.   
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Figure 4 illustrates this spurious mode for a field in 1D SPH.  If one would approximate the 
derivative of the field shown in Figure 4 with a central difference formula:   
 

   
1i1i

1i1i

xx xx

xfxf

dx

df

i 



 


  (61) 

 
then one would obtain: 
 

0
dx

df

ixx




 (62) 

 
at all points.  Hence this mode can not be detected, and can grow unhindered.  This means 
that this mode could grow to a level where it dominates the solution. 
 

 
Figure 4:  Zero Energy Modes. 
 
Zero energy or spurious modes are characterised by a pattern of nodal displacement that is 
not a rigid body but produces zero strain energy.  
 
One of the key ideas to reduce spurious oscillations is to compute derivatives away from 
the particles where kernel functions have zero derivatives. Randles (1999) proposed a stress 
point method. Two sets of points are created for the domain discretisation, one carries 
velocity, and another carries stress. The velocity gradient and stress are computed on stress 
points, while stress divergence is sampled at the velocity points using stress point 
neighbours. According to Swegle (1994), these spurious modes can be eliminated by 
replacing the strain measure by a non-local approximation based on gradient approach.  
Beissel (1996) proposed another way to stabilise nodal integration, the least square 
stabilisation method.  
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Summary  
 
The paper gives an overview of developments of the SPH method.  Especial attention is 
given to the main shortcomings of the original form of the method naimly consistency, 
tensile instability and zero energy modes.  An example of derivation of correction 
necessary to assure first order consistency is given.  The origin of the tensile instability and 
few proposed solutions to this problem are described.  Similar consideration is given with 
respect to the zero energy modes typical for the collocational SPH method.   
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Abstract. In this paper, some basic results of the stability criteria of fractional order system 
with time delay as well as free delay are presented. Also, they are obtained and presented 
sufficient conditions for finite time stability for (non)linear (non)homogeneous as well as 
perturbed fractional order time delay systems. Several stability criteria for this class of 
fractional order systems are proposed using a recently suggested generalized Gronwall 
inequality as well as “classical” Bellman-Gronwall inequality. Some conclusions for 
stability are similar to that of classical integer-order differential equations. Last, a numerical 
example is given to illustrate the validity of the proposed procedure. 

 
 

1. Introduction  
 
The question of stability is of main interest in control theory. Also, the problem of 
investigation of time delay system has been exploited over many years.  Delay is very often 
encountered in different technical systems, such as electric, pneumatic and hydraulic 
networks, chemical processes, long transmission lines, etc.,[1]. Delays are inherent in many 
physical and engineering systems. In particular, pure delays are often used to ideally 
represent the effects of transmission, transportation, and inertial phenomena. This is 
because these systems have only limited time to receive information and react accordingly. 
Such a system cannot be described by purely differential equations, but has to be treated 
with differential difference equations or the so called differential equations with difference 
variables. Delay differential equations (DDEs) constitute basic mathematical models for 
real phenomena, for instance in engineering, mechanics, and economics, [2]. The basic 
theory concerning the stability of systems described by equations of this type was 
developed by Pontryagin in 1942. Also,important works have been written by Bellman and 
Cooke in 1963, [3]. The presence of time delays in a feedback control system leads to a 
closed-loop characteristic equation which involves the exponential type transcendental 
terms. The exponential transcendentality brings infinitely many isolated roots, and hence it 
makes the stability analysis of time-delay systems a challenging task. It is well recognized 
that there is no simple and universally applicable practical algebraic criterion, like the 
Routh–Hurwitz criterion for stability of delay-free systems, for assessing the stability of 
linear time-invariant time-delayed (LTI-TD) systems. On the other side, the existence of 
pure time delay, regardless if it present in the control or/and state, may cause undesirable 
system transient response, or generally, even an instability. Numerous reports have been 
published on this matter, with particular emphasis on the application of  Lyapunov`s second 
method, or on using idea of matrix measure,[4-7]. The analysis of time-delay systems can 
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be classified such that the stability or stabilization criteria involve the delay element or not. 
In other words, delay independent criteria guarantee global asymptotic stability for any 
time-delay that may change from zero to infinity. As there is no upper limit to time-delay, 
often delay independent results can be regarded as conservative in practice, where 
unbounded time-delays are not so realistic. In practice one is not only interested in system 
stability (e.g. in the sense of Lyapunov), but also in bounds of system trajectories. A system 
could be stable but still completely useless because it possesses undesirable transient 
performances. Thus, it may be useful to consider the stability of such systems with respect 
to certain subsets of state-space which are defined a priori in a given problem. Besides that, 
it is of particular significance to concern the behavior of dynamical systems only over a 
finite time interval. These boundedness properties of system responses, i.e. the solution of 
system models, are very important from the engineering point of view. Realizing this fact, 
numerous definitions of the so-called technical and practical stability were introduced. 
Roughly speaking, these definitions are essentially based on the predefined boundaries for 
the perturbation of initial conditions and allowable perturbation of system response. Thus, 
the analysis of these particular boundedness properties of solutions is an important step, 
which precedes the design of control signals, when finite time or practical stability control 
is concern. Motivated by “brief discussion” on practical stability in the monograph of 
LaSalle and Lefschet,[8] and  Weiss and Infante,[9] have introduced various notations of 
stability over finite time interval for continuous-time systems and constant set trajectory 
bounds. A more general type of stability (“practical stability with settling time”, practical 
exponential stability, etc.) which includes many previous definitions of finite stability was 
introduced and considered by Grujić,[10,11]. Concept of finite-time stability, called “final 
stability”, was introduced by Lashirer and Story, [12] and further development of these 
results was due to Lam and Weiss,[13]. Recently, finite-time control/stabilization, and 
methods for stability evaluation of linear systems on finite time horizont are proposed by 
Amato et al., [14,15], respectively. Also, analysis of linear time-delay systems in the 
context of finite and practical stability was introduced and considered in [16-18] and as 
well as finite-time stability and stabilization [19]. 
Recently  there have been some advances in control theory of fractional (non-integer order) 
dynamical systems for stability questions such as robust stability, bounded input–bounded 
output stability, internal stability, finite time stability, practical stability, root-locus, robust 
controllability, robust observability, etc. For example, regarding linear fractional 
differential systems of finite dimensions in state-space form, both internal and external 
stabilities are investigated by Matignon,[20].Some properties and (robust) stability results 
for linear, continuous, (uncertain) fractional order state-space systems are presented and 
discussed [20,21].However, we can not directly use an algebraic tools as for example 
Routh-Hurwitz criteria for the fractional order system because we do not have a 
characteristic polynomial but pseudopolynomial with rational power-multivalued function. 
An analytical approach was suggested by Chen and Moore,[22], who considered the 
analytical stability bound using Lambert function W. Further, analysis and stabilization of 
fractional (exponential) delay systems of retarded/neutral type are considered [23,24], and 
BIBO stability [25]. Whereas Lyapunov methods have been developed for stability analysis 
and control law synthesis of integer linear systems and have been extended to stability of 
fractional systems, only few studies deal with non-Lyapunov stability of fractional systems. 
Recently, for the first time, finite-time stability analysis of fractional time delay systems is 
presented and reported on papers [26,27]. Here, a Bellman-Gronwall`s approach is 
proposed, using  “classical” Bellman-Gronwall inequality as well as a recently obtained 

45



Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 2011 P-03 

 

 
 

generalized Gronwall inequality reported in [28] as a starting point. The problem of 
sufficient conditions that enable system trajectories to stay within the a priori given sets for 
the particular class of (non)linear (non)autonomous fractional order time-delay systems has 
been examined.  
 

2. Fundamentals of fractional calculus  

Fractional calculus (FC) as an extension of ordinary calculus has a 300 years old history. 
FC was initiated by Leibniz and L`Hospital as a result of a correspondence which lasted 
several months in 1695. Both Leibniz and L`Hospital, aware of ordinary calculus, raised the 
question of a noninteger differentiation (order 1/ 2n  ) for simple functions.  Subsequent 
mention of fractional derivatives was  made, in some context or the other by (for example) 
Euler in 1730, Lagrange in 1772, Laplace in 1812, Lacroix in 1819, Fourier in 1822, 
Riemann in 1847, Green in 1859, Holmgren in 1865, Grunwald in 1867, Letnikov in 1868, 
Sonini in 1869, Laurent in 1884, Nekrassov in 1888, Krug in 1890, and Weyl in 1919, etc. 
[29]. In that way, the theory of fractional-order derivative was developed mainly in the 19th 
century. Since from 19th century  as a foundation of fractional geometry and fractional 
dynamics, the theory of FO, in  particular,  the  theory  of  FC  and  FDEs  and  researches  
of  application  have  been  developed rapidly in the world. The modern epoch started in 
1974 when a consistent formalism of the fractional calculus has been developed by Oldham 
and Spanier,[4], and later Podlubny,[6]. Applications of FC are very wide nowadays, in 
rheology, viscoelasticity, acoustics, optics, chemical physics, robotics, control theory of 
dynamical systems, electrical engineering, bioengineering and so on, [4-12]. In fact, real 
world processes generally or most likely are fractional order systems. The main reason for 
the success of applications FC is that these new fractional-order models are more accurate 
than integer-order models, i.e. there are more degrees of freedom in the fractional order 
model. Furthermore, fractional derivatives provide an excellent instrument for the 
description of memory and hereditary properties of various materials and processes due to 
the existence of a ”memory” term in a model. This memory term insure the history and its 
impact to the present and future. A typical example of a non-integer (fractional) order 
system is the voltage-current relation of a semi-infinite lossy transmission line [17] or 
diffusion of the heat through a semi-infinite solid, where heat flow is equal to the half-
derivative of the temperature [6].In his 700 pages long book on Calculus, 1819 Lacroix [30]  

developed the formula for the n-th derivative of , m – is a positive integer, mxy

 
!

!
n m m nm

D x
m n

x 


 where  is an integer. Replacing the factorial symbol by the 

Gamma function, he further obtained the formula for the fractional derivative 

n m 

 

 
 

1

1
D x x  

 
 


  

 (1) 

where   and   are fractional numbers and Gamma function  z  is defined for   0z 

by the so-called Euler integral of the second kind: 

                                                       (2) 
  1

0

, ( 1) ( )x zz e x dx z z z


      
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On the other hand, Liouville (1809-1882) formally extended the formula for the derivative 
of integral order n 

 .         (3) ,n ax n ax ax axD e a e D e a e arbitrary order     

Using the series expansion of a function, he derived the formula known as Liouville`s first 
formula for fractional derivative, where   may be rational, irrational or complex. 

  (4) 0

( ) na x
n n

n

D f x c a e 






where  . However, it can be only used for functions of the 

previous form. Also, it was J. B. J. Fourier,[31] who derived the functional representation 
of function 

 
0

exp( ), Re 0n n n

n

f x c a x a




 

     1
( ) cos

2
R R

f t f x d d    


   , (5) 

where he also formally introduced the fractional derivative version. In 1823, Abel 
considered a mechanical problem, namely Abel’s mechanical problem  [32]. In the absence 
of friction, the problem is reduced to an integral equation  

   1/ 2

0

( ) 2 ( ), 0,
y

y z u z dz g f y y H


    , (6) 

where    21 ( ) ,u z z z    is an increasing function, g is the constant downward 

acceleration,  f y  is a prescribed function. Then Abel solved (6) in [33]. Also an Abel 

transform of a sufficiently well behaved function u  was generalized to 

 
   

1

1
( ) ,

x

a

x t u t dt a x b







 
  

1

, (7) 

where  and  , 0,a b       (.)  is the well known Euler's gamma function. Here, 

it is assumed the solution of classical Abel integral equation exists and  the fractional 

derivative with order  1,0  exists in , [34], so we have following results: ),ba(1L

 Lemma1.Consider, for    ba,1,0 , the classical Abel integral equation  

 

     



x

a

bxaxfdttutx ),()(
1 1


, (8) 

Then there exists at most one solution of equation (8) in . Moreover, if the  

function  is absolutely continuous on [a, b], then equation (8) has a solution in , 

given by (9) 

),(1 baL

f ),(1 baL
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     


 
x

a

bxaxfdttftx
dx

d
xu ),()(

1

1
)( 


, (9) 

If  and  are finite, then  a  af

        bxadttftxaxafxu
x

a


















   ,,)(

1

1
)( 


, (10) 

If  is finite and  is extended by 0 to the left of , then a f a

 

     bxatdftxxu
x

a


















 



 ,)(
1

1
)(

0




, (11) 

If  is finite and a 0)(lim 1 
 xfxx

 then 

 

     bxtdftxxu
x


















 



 ,)(
1

1
)( 


, (12) 

From the viewpoint of fractional calculus, we can see that (9)–(12) are just some other 
forms of fractional derivatives, with order  1,0 , under some different hypotheses on . 

Fractional derivatives are typically treated as a particular case of pseudo-differential 
operators. Since they are nonlocal and have weakly singular kernels, the study of fractional 
differential equations seems to be more difficult and less theories have been established 
than for classical differential equations. In 1832-1837 a series of papers by Liouville 
[35,36] reported the earliest form of the fractional integral, though not quite rigorously from 
the mathematical point of view. The formula was taken as follows 

f

 
   

 


 




0

1 0,,
1

1
)( pxdtttx

p
xD p

p
p  , (13) 

That is now called the Liouville form of fractional integral with the factor  being 

omitted. Next the significant work was done by Riemann [37], who wrote that paper in 
1847 when he was just a student. But it was published until 1876, ten years after his death. 
Riemann had arrived at the expression 

 p1

     
 

 10

1
,RL D x d x

x




 


 





  0                                           (14) 

for fractional integration. Furthermore, we have the most useful forms of left-hand and 
right-hand Riemann- Liouville (RL) derivatives defined as follows 
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


                         (15) 

where 1m m   , a, b are the terminal points of the interval  ,a b , which can also be  

. The definition (15) of the fractional differentiation of Riemann-Liouville type leads 
a conflict between the well-established and polished mathematical theory and proper needs, 
such as the initial problem of the fractional differential equation, and the nonzero problem 
related to the Riemann-Liouville derivative of a constant, and so on. A certain solution to 
this conflict was proposed by Caputo first in his paper [38] (1967) .Caputo’s definitions can 
be written as 

, 

         

   
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
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

 

 

 
 


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 




                           (16) 

where  . Obviously, the Caputo derivative is more strict than Riemann-
Liouville derivative, one reason is that the m-th order derivative is required to exist. The 
Caputo and Riemann-Liouville formulation coincide when the initial conditions are zero. 
Besides, the RL derivative is meaningful under weaker smoothness requirements. Also, the 
RL derivative can be presented as: 

1m m    

  , ( ), 1, ,n n
RL x a xD f x D D f x n n                                           (17) 

and the Caputo derivative  

 , ,( ) ( ), 1, ,n n
C a x a xD f x D D f x n n n                                        (18) 

where  is the classical -order derivative. Moreover, previous expressions 
show that the fractional-order operators are global operators having a memory of all past 
events, making them adequate for modeling hereditary and memory effects in most 
materials and systems. Also, for the RL derivative, we have 
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But for the Caputo derivative, we have   
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  (20) 

Obviously,  varies continuously with , but the Caputo derivative 

cannot do this. On the other side, initial conditions of fractional differential equations with 
Caputo derivative have a clear physical meaning and Caputo derivative is extensively used 
in real applications.  On the other side, Grunwald [39] (in 1867) and Letnikov [40] (in 
1868) developed an approach to fractional differentiation based on the definition 

, ,RL aD n    n
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which is the left Grunwald-Letnilov (GL) derivative as a limit of a fractional order 
backward difference. Similarly, we have the right one as 
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0
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Therefore, one can define the new form of Grunwald-Letnikov derivative as follows 
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                          (23) 

which is called the Grunwald-Letnikov-Riesz derivative. As indicated above, the previous 
definition of GL  is valid for α > 0 (fractional derivative) and for α < 0 (fractional integral) 
and, commonly, these two notions are grouped into one single operator called 
differintegral.  The GL derivative and RL derivative are equivalent if the functions they act 
on are sufficiently smooth. For numerical calculation of fractional–order differ-integral 
operator one can use relation derived from the GL definition. 

                                            (24)  
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x j( x L
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  

where L is the "memory length", h is the step size of the calculation,   
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 x  is the integer part of x  and  
jb


 is the binomial coefficient given by 
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For convenience, Laplace domain is usually used to describe the fractional integro-
differential operation for solving engineering problems. The formula for the Laplace 
transform of the RL fractional derivative has the form: 
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                     (27) 

Where for 0  (i.e., for the case of a fractional integral) the sum in the right-hand side 
must be omitted). Also,  Laplace transform of the Caputo fractional derivative is:  
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( ) ( ) (0), 1
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st k k
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 

  


n           (28) 

which implies that all the initial values of the considered equation are presented by a set of 
only classical integer-order derivatives. Besides that, a geometric and physical 
interpretation of fractional integration and fractional differentiation can be found in 
Podlubny’s work [41]. 
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3. Preliminaries on integer time-delay systems 

 
A linear, multivariable  time-delay system can be represented by differential equation: 

0 1

( )
( ) ( )

dx t
A x t A x t

dt
                                                                   (29) 

and  with associated function of initial state: 

( ) ( ), 0,xx t t t                                                        (30) 

Equation (29) is referred to as homogenous state equation. Also, more general a linear, 
multivariable  time-delay system can be represented by following differential equation: 

0 1 0 1

( )
( ) ( ) ( ) ( ),

dx t
A x t A x t B u t B u t

dt
                                        (31) 

and with associated function of initial state and control: 
( ) ( ), 0,

( ) ( ),
x

x

x t t t

u t t

 

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


                                                              (32) 

Equation (31) is referred to as nonhomogenous or the unforced state equation, ( )x t is state 

vector,  control vector, ( )u t 0 1 0, ,A A B  and are constant system matrices of appropriate 

dimensions, and 
1B

  is pure time delay,  =const. ( >0). Moreover, here it is considered a 
class of non-linear system with time delay described by the state space equation: 
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with the initial functions (32) of the system. Vector functions , , 1, , 1,i jf f i n j m 

( )tx ( )t

 

present nonlinear parameter perturbations of system in respect to  and x  

respectively. Also, it is introduced next assumption that: 
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x x
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where  ,i jc c R  are known real positive numbers. Moreover, a linear multivariable time-

varying delay system can be represented by differential equation 

 0 1 0
( )

( ) ( ) ( ),
dx t

A x t A x t t B u t
dt

                                             (35) 

and with associated function of initial state  
( ) ( ), 0.x Mx t t t                                                       (36) 

where  t is an unknown time–varying parameter  which satisfies  

   0 , , , ,M o ot t J J t t T J        R                             (37) 

Moreover, here it is considered a class of perturbed non-linear system with time delay 
described by the state space equation 
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with the given initial functions of the system and vector function 0f .Vector function 0f  

present nonlinear parameter perturbations of system in respect to ( )x t  and ( ( ))x t t  

respectively and matrices  present perturbations of system, too. Also, it is 

assumed that  next assumption  is true. 
0 ,A A  1

0 0 1( ( ), ( ( ))) ( ) ( ( )) , 0, ,f x t x t - t c x t c x t - t t       (39) 

                  where  are known real positive numbers. Dynamical behavior of system 

(29),(31) or (33) with initial functions (30),or (32) is defined over time interval 
0 1,c c R

 t To o , J t ,  where quantity T may be either a positive real number or symbol + , 

so finite time stability and practical stability can be treated simultaneously. It is obvious 
that 



J R . Time invariant sets, used as bounds of system trajectories, are assumed to be 
open, connected and bounded. Let index ""   stands for the set of  all allowable states of 
system and  index  for the set of  all initial states of the system, such that  the set 

. In general, one may write: 
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where Q will be assumed to be symmetric, positive definite, real matrix. 
u

S  denotes the 

set of the all allowable control actions. Let  .x  be any vector norm (e.g., ) and . 1,2, 

(.)  the matrix norm induced by this vector. Matrix measure has been widely used in the 

literature when dealing with stability of time delay systems. The matrix measure   for any 

matrix  is defined as follows: n nA C 
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The matrix measure defined in (36) can be subdefined in three different ways, depending on 
the norm utilized in its definitions,[42]. 
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and                                
1

max Re
n

ii ki
i

i
i k

A a



 
 

 
  
 

 a                             (44)  

Expression (32)  can be written in it’s general form as:  

 
 

( ) ( ), 0, ( ) ,

( ) ( ), 0, ( ) , 0

o x x

o u u

t C

t C

       

       

      

      

x

u

0
,                    (45) 

where   is the initial time of observation of the system (29) and ot  ,0C -τ  is a Banach 

space of continuous functions over a time interval of  length , mapping the interval 

 into R  with the norm defined in the following manner:  

τ

 t,t  n

0

max ( )
C

 
  

  
 ,                              (46) 

It is assumed that the usual smoothness condition is present so that is no difficulty with 
questions of existence, uniqueness, and continuity of solutions with respect to initial data. 
 
3.1 Some previous results related to integer time-delay systems 

The existing methods developed so far for stability check are mainly for integer-order 
systems.  
 
Definition 1: System given by (31) with   0,t - t  u ,satisfying initial condition (4) is 

finite stable w.r.t  0( ), , , , ,ut J     0 ,A   if  and only if: 

 ,x S t     , 0                                            (47) 

and 

  ,
u

t S t J  u                                                                 (48) 

imply:                                      
                       0( ; , ) , 0,t t S t T  0x x                                                 (49) 

Illustration of preceding definition is pictured on Fig. 1.  
                     

 
                              Fig.1  Finite time stability concept illustration 
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Definition 2: System given by (31) satisfying initial condition (32) is finite stable w.r.t 

  if  and only if:   0, , , , , , 0 ,u J A      

 ,x S t     , 0                             (50) 

      
0
, ,u S t 0                             (51) 

and 
                                     (52)   ,

u
t S t J  u 

imply:          0( ; , , ( )) ,t t t S t J  0x x u                             (53) 

 
Theorem 1. System given by (31), with initial function (32) is finite time stable w.r.t 

 if the following condition is satisfied,[43]:   0, , , , , , 0 ,u J A       
 2 0( )1 1

2 0( ) /A tA e                   (54) 

where: 

                               2 0 2 01
1 2 0 1 1 21 1A Aa A a e c e c          t      (55) 

                         2 0 1 1 1, 1c b b c b                                        (56) 

                       1 1 1 1 1 0 0/ , / , , / , /u a A b B a b B a           1   (57)  

Results that will be presented in the sequel enables one to check finite time stability of the 
nonautonomous system to be considered (29),(31) or (33) and (30),(32) without finding the 
fundamental matrix or corresponding matrix measure.   
 
Definition 3: System given by (31) satisfying initial condition (32) is finite stable w.r.t 

 0, , , , , , ,u ot J        if  and only if: 

   0,x uC C
     ,             (58) 

( ) ,ut  u t J                                                      (59) 

 imply:                                      
     ( ) ,t t x J                                (60) 

Theorem 2. Nonautonomous system given by (31) satisfying initial condition (33) is finite 
time stable w.r.t.  0, , , , , , ,u ot J      , if the following condition is satisfied,[44]:   

                          (61)     max 0( ) * *
max 0 1 0 01 ( )

A t tA t t e t t t J                / , .

where  

                            * *
1 1 0 0 1 0 1 0 0/ , / , ,ub b b                1u ,          (62) 
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4.  Preliminaries on stability of fractional  order systems including time-delays 

 
In the field of fractional-order control systems, there are many challenging and unsolved 
problems related to stability theory such as robust stability, bounded input – bounded 
output stability, internal stability, root-locus, robust controllability, robust observability, 
etc. In engineering, the fractional order   is often less than 1, so we restrict  as 

usual. Even if 

 0,1 

1  , we can translate the fractional systems into systems with the same 

fractional order which lies in   provided some suitable conditions are satisfied [45]. To 

demonstrate the advantage of fractional calculus in characterizing system behavior,here, 
stability properties, let us consider the following illustrative example, [46].  

0,1

Example 1:  Compare the following two systems with initial condition (0)x  for 0 1  , 

 1 1
0,( ) , ( ) , 0 1.C t

d
x t t D x t t

dt
         (63) 

The analytical solutions of previous systems are  and (0)t x 
 

1( )
(0)

t
x

  
 

 


 
, 

respectively. One may conclude, the integer-order system is unstable for any . 

However, the second,given fractional dynamic  system is stable as 

 0,1 
0 1    , which 

implies that fractional-order system may have additional attractive feature over the integer-
order  system. Also, in [47], Tarasov proposed that stability is connected to motion changes 
at fractional changes of variables where systems which are unstable “in sense of Lyapuov”' 
can be stable with respect to fractional variations. In 1996, Matignon [48] studied the 
following fractional differential system involving Caputo derivative 

                            0, 0, (0) , 0,1C t

d x
D Ax t x x

dt




                                             (64) 

where   1 2, ,...,
T

n x x x x  with initial value  0 10 20 0, ,..., ,
T n n

nx x x x A R   .The stability of  

the equilibrium of system (64) was first defined and established by Matignon as follows. 
 
Definition 4. The autonomous fractional order system (64) is said to be 

(a) stable iff for any 0x , there exists 0   such that                                    (65) 

                     x    for    0t 

(b)  asymptotically stable iff   lim 0t x t                                              (66) 

Also,Matignon [48] proposed definition of the BIBO stability for fractional differential 
system.  
Definition 5.  An  input/output linear fractional system (67) 

0, (0)
d x

Ax Bu x x
dt
y Cx



   


                                                                      (67) 

,n px R y R  is externally stable or bounded-input bounded-output (BIBO) iff  

   , , ,mR y h u L R R    pu L R    which is equivalent to:  1 , p mh L R R  . 
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Also, in [49] authors give two definitions of the stability for differential  systems with the 
Caputo derivative and Riemann-Liouville derivative, respectively. Besides, the 
asymptotical stability of higher-dimensional linear fractional differential systems with the 
Riemann-Liouville fractional order and Caputo fractional order were studied where the 
asymptotical stability theorems were also derived. 
Definition 6. The zero solution of the following differential system with the α-th order 
Caputo derivative in which 0 < α < 1  

0,C tD X AX                                                                                        (68) 

is said to be: 

(i) Stable, if  0, 0,      when  0X  , the solution   X t  to (68)  with the initial 

condition    0X t X satisfies  ( )X t   for any  .                                             (69) 0t 
(ii) Asymptotically stable, if the zero solution to (68) is stable, and it is locally attractive, 

i.e., there exists a 0  such that   0X 0  implies that 

lim ( ) 0
t

X t


                                                                                   (70) 

Definition 7.  The zero solution of the following differential system with the α-th order 
Riemann- Liouville derivative in which 0 < α < 1 

0,RL tD X AX                                                                                  (71) 

is said to be: 

 (i) Stable, if  0, 0,      when  0X  , the solution   X t  to (71)  with the initial 

condition  satisfies    1
0, 0RL t t

D X t 


    0X

( )X t   for any  .                                                                 (72) 0t 
 (ii) Asymptotically stable, if the zero solution to (71) is stable, and it is locally attractive, 
i.e., there exists a 0  such that   0X 0  implies that  

lim ( ) 0
t

X t


                                                                                    (73) 

Next, one may study the stability of fractional differential systems in two spatial 
dimensions, and then study the fractional differential systems with higher dimensions. 
Now, it is studied the fractional differential system with the Caputo derivative, 

 * 0, , 0,1 , n n
tD X AX A R                                                         (74) 

where fractional derivative * 0 . They studied the 

fractional differential system with the Caputo derivative,as follows:  
, 0, 0,(..) (..) (..)t C t RL tD D or D  

 0, , 0,1 ,C
tD X AX A R  n n                                                      (75) 

Theorem 3. If the real parts of all the eigenvalues of A are negative, then the zero solution 
to system  (75) is asymptotically stable.  
Also for fractional differential system with the Riemann-Liouville  derivative 

 0, , 0,1 ,RL
tD X AX A R  n n                                                     (76) 

they stated following theorem. 
Theorem 4. If the real parts of all the eigenvalues of A are negative, then the zero solution 
to system  (76) is asymptotically stable. 
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A fractional-order linear time invariant system can be represented in the following 
pseudostate space form: 

( )
( ) ( )

( ) ( )

d x t
Ax t Bu t

dt
y t Cx t



  


                                                                      (77) 

where the notation /d dt   indicates the Caputo fractional derivative of fractional 

commensurate order  , ,n mx R u R  and  py R
n nA R

 are pseudo-state, input, and output 

vectors of the system, respectively, and , ,n m p nB R C R     . It is worth 
mentioning that the state space form Eq. (77) is a pseudo-representation because the 

knowledge of vector x  at time 0t t  and input vector  u t 0t t

0t

 for  are not entirely 

sufficient to know the behavior of system (77) for . A fractional-order model is in 

fact infinite dimensional, therefore its true state vector should be also infinite dimensional.  

t 

 
Theorem 5[48]: The following autonomous system,(64) 

     0 0

( )
( ), , 0 1

d x t
Ax t x t x

dt



                                                   (78) 

nx R , and A is an matrix, is asymptotically stable if and only if  n n   / 2arg    is 

satisfied for all eigenvalues   of matrix A. In this case, each component of the states  

decays toward 0 such as  t  . Also, this system is stable if and only if    / 2arg    is 

satisfied for all eigenvalues    of matrix A with those critical eigenvalues satisfying 

  / 2arg    have geometric multiplicity of one. 

Demonstration of this theorem is based on the computation of state vector of system 

  , 0, 0x t Nt t   . response to non-zero initial conditions. However, this result 

remains valid whatever the definition used given that for a linear system without delay, an 
autonomous system with non-zero initial conditions can be transformed into a non-
autonomous system with null initial condition. Also, the stable and unstable regions for 

10  is shown in Fig. 2 and they denote the stable and unstable regions for 

10   by   and , respectively.  
C 

C
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      Fig. 2 Stability region of fractional-order linear time invariant  system with order 0 1   

 
For a minimal realization of (77), Matignon has also demonstrated the following 
theorem,[48]. 
Theorem 6.  In [48], consider a system given by the following linear pseudostate space 
form with inner dimension n: 

0

( )
( ) ( ), (0)

( ) ( )

d x t
Ax t Bu t x x

dt
y t Cx t



   


                                                    (79) 

where 0 1  . Also, assume that the triplet (A,B,C) is minimal. System (79) is bounded-

input bounded-output (BIBO) stable if and only if  arg / 2   is satisfied for all 

eigenvalues   of matrix A. When system (79) is externally stable, each component of its 

impulse response behaves like 1t    at infinity. 
Exponential stability thus cannot be used to characterize asymptotic stability of fractional 
systems. A new definition is introduced. 

Definition 8. t   stability     

Trajectory x(t) = 0 of system     / ,d x t dt f t x t    (unforced system) is t   

asymptotically stable if the uniform asymptotic stability condition is met and if there is a 
positive real   such that: 

    0 , ox t c Q x t     such that   0 ,t t x t Qt                 (80) 

t   stability will thus be used to refer to the asymptotic stability of fractional systems.As 

the components of the state  x t  slowly decay towards 0 following t  , fractional 

systems are sometimes called long memory systems.  
 

5.  Stability of fractional delay system 

In spite of intensive researches, the stability of fractional order (time delay) systems 
remains an open problem. As for linear time invariant integer order systems, it is now well 
known that stability of a linear fractional order system depends on the location of the 
system poles in the complex plane. However, poles location analysis remains a difficult 
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task in the general case. For commensurate fractional order systems, powerful criteria have 
been proposed. The most well known is Matignon's stability theorem [48]. It permits us to 
check the system stability through the location in the complex plane of the dynamic matrix 
eigenvalues of the state space like system representation. Matignon's theorem is in fact the 
starting point of several results in the field. As we know, due to the presence of the 
exponential function se  , this equation has an infinite number of roots, which makes the 
analytical stability analysis of a time-delay system extremely difficult. In the literature few 
theorems are available for stability testing of fractional-delay systems. Almost all of these 
theorems are based on the locations of the transfer function poles [24,50] and since there is 
no universally applicable analytical method for solving fractional-delay equations in s 
domain, the numerical approach is commonly used. In the field of infinite-dimensional 
fractional-delay systems most studies are concerned about the stability of a class of 

distributed systems whose transfer functions involve s  and/or se ,[51]. Many examples 
of fractional differential systems with  delay can be found in the literature. Simple examples 

such as ( ) exp( ) / , 0G s a s s a  

G s

 arising in theory of transmission lines [52], or one can 

find in [53] fractional delay  systems with transfer function of linked to the heat equation 
which leads to  transfer functions such as  ( )

 cosh( )
( ) , 0 1

sinh( )

x s
G s x

s s
     or  

2

2
( )

(1 )

a s

a s

e
G s

b e







                (82) 

For example, Hotzel [54] presented the stability conditions for fractional-delay systems 

with the characteristic equation     0sas b cs d e     

as

. Chen and Moore [22] 

analyzed the stability of a class of fractional-delay systems whose characteristic function 

can be represented as the product of factors of the form   0
r csb e d    where the 

parameters  ,and r are  all real numbers. In fact, they computed the characteristic 
roots of the system using the Lambert W function, which has become a standard library 
function of many mathematical software. In other words, they got a stability condition of 
(83), given by a transcendent inequality via the Lambert function [22,55]. They considered 
the following delayed fractional equation 

dcba ,,,

( )
(

q

pq

d y t
K y t

dt
)                                                                             (83) 

where q and Kp are real numbers and 0 < q < 1, time delay τ is a positive constant and  all 
the initial values are zeros. We are interested in telling whether the system (10) is stable or 
not for a given set of combination of the three parameters: q, Kp and τ. The stability 
condition is that for all possible q , r and Kp 

 1/
0

q
p

q
W K

r




  
 

                                                                         (84) 

In inequality,W(.) denotes the Lambert function such that  ( )( ) W xW x e x . However, such 

a bound remains analytic and is difficult to use in practice. In paper [55], the application of 
Lambert W function to the stability analysis of time-delay systems is re-examined  through 
actually constructing the root distributions of the derived  a transcendental characteristic 
equation’s (TCE) of some chosen orders. It is found that the rightmost root of the original 
TCE is not necessarily a principal branch Lambert W function solution, and that a derived 
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TCE obtained by taking the nth power of the original TCE introduces superfluous roots to 
the system. Further, Matignon's theorem has been used in [56] to investigate fractional 
differential systems with multiple delays stability. The proposed stability conditions are 
based on the root locus of the system characteristic matrix determinant but the proposed 
conditions are thus difficult to use in practice. Authors used fractional derivative Caputo 
definition of derivative where by using the Laplace transform, it is introduced a 
characteristic equation for the above system with multiple time delays. They discovered 
that if all roots of the characteristic equation have negative parts, then the equilibrium of the 
above linear system with fractional order is Lyapunov globally asymptotical stable if the 
equilibrium exist that is almost the same as that of classical differential equations. Namely, 
the following n-dimensional linear fractional differential system with multiple time delays: 

1

1

2

2

1
11 1 11 12 2 12 1 1

2
21 1 21 22 2 22 2 2

1 1 1 2 2 2

( )
( ) ( ) ... ( ),

( )
( ) ( ) ... (

..............

( )
( ) ( ) ... (

n

n

q

n n nq

q

n n nq

q
n

n n n n nn n nq

d x t
a x t a x t a x t

d t

d x t
a x t a x t a x t

d t

d x t
a x t a x t a x t

d t

 

  ),

),n





  

      

      

      

         (85) 

where  is real and lies in (0,1), the initial values iq ( ) ( )i ix t t  are given for− 

and , maxmax 0i j t    ij 1, 2,...,i n . In this system, time-delay matrix  

   n n

ij R
 

n n
T


, coefficient matrix  ij n n

A a


 , state variables    , ,i i ijx t x t R   

and initial values  i t C 0 ,0m  ax  
0, ,ij

. Its fractional order is defined as 

. If   and   ..., nq q q iq 1 2, ,q jq 1,2,i j ..., n   , then system (85) is actually the 

one considered in [56]. 

 

11 11 12

221 2 22

1 2

11 12 1

21 22 2

1 2

...

...

...

n

n

n n n

sq s s
n

ss q s
n

s s q
n n nn

s a e a e a e

a e s a e a e
s

a e a e s a e

 

 

 

 

 

 

   
 

      
     

   
nns

                       (86) 

where  s  denotes a characteristic matrix of system (1) and   det s  a characteristic 

polynomial of (86). The distribution of   det s ’s eigenvalues totally determines the 

stability of system (86).  
 

Theorem 7. If all the roots of the characteristic equation    0det s   have negative 

real parts, then the zero solution of system (1) is Lyapunov globally asymptotically stable. 
If n = 1,  then (86) is reduced to the system studied in [56]. 
Bonnet and Partington [23,24] analyzes the BIBO stability of fractional exponential delay 
systems which  are of retarded or neutral type. Conditions ensuring stability are given and  
these conditions can be expressed in terms of the location of the poles of the system. In 
view of constructing robust BIBO stabilizing controllers, explicit expressions of coprime 
and B´ezout factors of these systems are determined.Also,they have handled the robust 
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stabilization of fractional exponential delay systems of retarded type. The determination of 
coprime and B´ezout factors in the case of neutral systems is under study in both cases.  
However, all these contributions do not provide universally acceptable practical effective 
algebraic criteria or algorithms for testing the stability of a given general fractional delay 
system. Although the stability of the given general characteristic equation can be checked 
with the Nyquist criterion or the Mikhailov criterion, it becomes sufficiently difficult when 
a computer is used since one should find an angle of turn of the frequency response plot for 
an infinite variation of the frequency  . A visual conclusion on stability with respect to the 
constructed part of the plot is not practically reliable, since, along with an infinite spiral, the 
delay generates loops whose number is infinite. As is evidenced from the literature the lack 
of universally acceptable algebraic algorithms for testing the stability of the characteristic 
equation  has hindered the advance of control system design for fractional delay systems. 
This is particularly true in the case of designing fixed-structure fractional-order controller, 

e.g., .   On the other side, Hwang and Cheng [57] proposed a numerical algorithm 
which use methods that are based on the Cauchy integral theorem and suggested the 
modified complex integral in the form of 

DPI

 
 1 2 2( )

i

k k
i

f s
J ds

s h ih f ih



 


                                                           (87) 

where  and   are randomly chosen real constants lying in a specified interval and k 

is a positive integer. The randomness of the parameters h1 and h2 makes the probability of 
the zero sum of the residues of all poles of the integrand being practically zero. Hence, the 
stability of a given fractional-delay system can be achieved by evaluating the integral 

1 0h  2h

kJ and comparing its value with zero. Also, the proposed algorithm provides no idea about 

the number and the location of unstable poles. In paper [58], an effective numerical 
algorithm for determining the location of poles and zeros on the first Riemann sheet is 
presented. The proposed method is based on the Rouche’s theorem and can be applied to all 
multi-valued transfer functions defined on a Riemann surface with finite number of  
Riemann sheets where the origin is a branch point. This covers all practical (finite-
dimensional) fractional-order transfer functions and  fractional-delay systems. 
 
 
5.1 Finite time stability and stabilization of fractional order time delay systems  
 
As we know, the boundedness properties of system responses are very important from the 
engineering point of view. That is to say, enable system trajectories to stay within a  priori 
given sets for the fractional order time-delay systems in state-space form, i.e., system 
stability from the non-Lyapunov point of view is considered. From this fact and our the best 
knowledge, we firstly introduced and defined finite-time stability for fractional order time 
delay systems [26-27, 60,62-63]. We also need the following definitions to analyze the case 
of fractional order systems with time-delay from non-Lyapunov point of view. First, we 
introduce the same order fractional differential system with time-delay (88) as well as 
multiple time delays (90) represented by the following differential equations: 

* , 0 1 0

( )
( ) ( ) ( ) ( ), 0 1,to t

d t
D x t A t A t B u t

dt




      
x

x x               (88) 

with the associated function of initial state:  
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 0( ) ( ) ,0 , 0xt t t C t        x .                                                    (89) 

Moreover, it is shown in [26] that fractional-order time delay state space model of PD  
control of Newcastle robot can be presented by (88) in state space form. Here, * , (.)to tD  

denotes either Caputo fractional derivative , (.)C to tD or Riemann-Liouville fractional 

derivative , (.)RL to tD . Also, fractional differential system with multiple time delays can be  

presented as follows: 

* , 0 0

1

1 2

( )
( ) ( ) ( ) ( ), 0 1,

0 ... ...

n

to t i i

i

i m

d t
D x t A t A t B u t

dt




  

   


     

       

x
x x 

      (90) 

 with the associated function of initial state:  

 0( ) ( ) ,0 ,xx t t t C t       0.                                           (91) 

and where 0( 0,1,..., ),iA i m B  are constant system matrices of appropriate dimensions, and 

0 (i 1,2,..., )i m   are pure time delays.  
Definition 9.[59] System given by (88), (   0u t  ) satisfying initial condition (89) is finite 

stable w.r.t  , , , , ,ot J       if and only if: 

      ,x C
                                                                                             (92)    

implies:                   ( ) , ,  x t t J                          (93)  

Definition 10.[59] System given by (90), (   0u t  ) satisfying initial condition (91) is finite 

stable w.r.t  , , , , ,ot J       if and only if: 

                   ,x C
  , , 0     t J J R ,                                           (94)  

implies:                ( ) , ,  x t  t J                    (95)  

Definition 11.[27,62]System given by (90) satisfying initial condition (91) is finite stable 
w.r.t  , , , , , , ,u ot J        if and only if: 

     , , ,0x C
t J J R                                        (96) 

and        
( ) , , 0ut t J  u u                                                            (97) 

imply:                                      
       ( ) ,t  x t J                                                                (98) 

Also, nonlinear fractional differential system with time delay in state and control can be  
presented as follows: 

   

* , 0 1 0 1

1 1

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) , 0 1,

to t

n m

i j

i j

d t
D x t A t A t B t B t

dt

f t f t




  

 
 

       

    

x
x x u u

x x 
             (99) 
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 and with associated function of initial state and control: 

( ) ( ), ( ) ( ), 0x ut t t t t     x u                                       (100) 

Equation (99) is referred to as nonlinear nonhomogenous state equation, 0 1 0, ,A A B  and 

are constant system matrices of appropriate dimensions, and vector functions 1B

, , 1, , 1,i jf f i n j m 

( )t

 present nonlinear parameter perturbations of system in respect to 

 and ( )tx x  respectively.  

Definition 12: System given by (99) satisfying initial condition (100) is finite stable w.r.t 

 0, , , , , , ,u ot J        if and only if: 

      0, ,x uC C
                              (101) 

( ) ,ut  u t J                             (102) 

 imply:                    ( ) ,t  x t J                                                                       (103) 

In what follows, we introduce the sufficient conditions on finite-time stability. In [59], we 
considered the fractional time-delay systems (88),(90) in the case of   0u t  .  

Theorem 8.(A) Autonomous system given by (88) satisfying initial condition (89) is finite 
time stable w.r.t. , , , , , ,ot J     , if the following condition is satisfied:      

 
 

 
max 0( )

1max 01
1

A t tA t t
e

 


 



 

 
   

   
/ , .t J                                (104)  

where  being the largest singular value of matrix (.), namely: (.)max

   max max 0 max 1
A A A    ,                                                             (105) 

and  is the Euler's gamma function.   .

B) Autonomous system given by (90) satisfying initial condition (91) is finite time stable 
w.r.t. , , , , , ,ot J    , if the following condition is satisfied:                  

 
 

 
( )

1max 0

0max

1
1

t t
A

A

t t
e







 




 
 

   
   

/ , .t J                              (106) 

where   of matrices A
max i i

i

(.) A   ,iA i = 0,1,2,...,n

n,...,2

. where  being the 

largest singular value of matrix 

(.)max

iAi ,1,0,  .  

The above stability results for linear time-delay fractional differential systems were derived 

by applying Bellman -Gronwall’s inequality. In that way, one can check system stability 
over finite time interval. 
Remark 1[60]:  If 1  , case A, one can obtain same conditions which related to integer 
order time delay systems (1) as follows: 
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 
1

max 0( )1
max 0 11 / ,

1

A t tA t t
e t J




 
       

 
 

, (2) 1                      (107)  

For the nonautonomous case,Zhang [61] also considered the following initial value 
problem  

       0, 0 1( ) ( ) ( ), 0; , ,0RL tD x t A x t A x t f t t x t t t           (108) 

where 0 < α < 1,   is a given continuous function on [−τ, 0], 0A and  1A are constant 

system matrices of appropriate dimensions, and   is a constant with 0  . The 
system is defined over time interval  0,J T , where T is a positive number, f(t) is 

a given continuous function on [0, T]. Similarly, the sufficient conditions of finite-
time stability were derived by applying Bellman-Gronwall’s inequality. 
Theorem 9. System given by (108) satisfying initial condition is finite-time stable  
w.r.t {0, J, δ, ε, τ}, δ <ε, if the following condition is satisfied: 

  
 

 
( )

1 1
max

/ , ,
1

tA
M t

e







 


 


   
 

t J                                        (109) 

Where /M f  , and  . is the Euler’s gamma function,  0sup        

     max max 0 max 1 1 max 1,A A A       A . 
In paper [62],  we  considered a class of fractional non-linear perturbed autonomous system 
with time delay described by the state space equation: 

                       0 0 1 1 0

( )
( ) ( ) ( ) ,

d t A A t A A t f t
dt



        
x

x x x                (110) 

with the initial functions (89)of the system and vector functions  satisfied (34).  0f

Theorem 10.  Nonlinear perturbed autonomous system given by (110) satisfying initial 
condition (89) and (34) is finite time stable w.r.t.  , , , , ,   ot J , if  the following 

condition is satisfied: 

           
 

 
 

0

0 1( )
1 /

1





 





 
   
  
 

p t t

p t t
e ,  t J



1.

,                 (111) 

where  Euler's gamma function, and  (.)
0 10 1 1, ,Aoco Ao A A A Ac          

1 1, ,p Aoco A Ao Ao A A               

Remark 2:  If we have no perturbed system 0 1 00, 0, ( (t)) 0    A A f x  one can obtain 

same conditions which related to Theorem 7. 
Further, paper [63] presents  natural extension of the our paper [59] where it is obtained  
new stability criteria for nonautonomous fractional order time delay system (88). 
Theorem 11.  Nonautonomous system given by (88) satisfying initial condition (89) is 
finite time stable w.r.t.  0, , , , , , ,u ot J      , if  the following condition is satisfied: 
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 
 

 

 

( )

1max 0 0

max 0 ( )
1 /

1 1

t tA
A

t t t t
e t

  





  
 


 

  
    

     

 , .J        (112)   

where 0 0/ ,ub B   
0b .  

Remark 3.  If  1 
1B
, one can obtain same conditions which related to integer order time 

delay systems (31) ,  as follows, [18]: 0

 
1

max 0( )1 1
max 0 01 ( )

1 /
1 1

A t tA t t t t
e t




  
         

 
 

 , , (2) 1J     (113)  

Moreover, in same paper [63], it is proposed finite time stability criteria for a class of 
fractional non-linear nonautonomous system with time delay in state and in control as 
follows: 

   0 1 0 1 0 1

( )
( ) ( ) ( ) ( ) ( ) ( ) ,

d t
A t A t B t B t f t f t

dt



           
x

x x u u x x    (114) 

with the initial functions (99) of the system and vector functions  satisfied (34). 0 1,f f

Theorem 12: Nonlinear nonautonomous system given by (114) satisfying initial condition 
(99) is finite time stable w.r.t.  0, , , , , , ,u ot J      , if  the following condition is 

satisfied:                  (115) 

 

 
   

 
 
 

 
 

1 0 0 1 0 01max 01 0

0max 01( )
1 / ,

1 1 1 1

t t

u uc

c t t t tt t
e t

   



    

 
   


  

     
             

J  

b

 

where  0 0 1 1 01 0 1/ , / , /u u u ub b             . 

Recently, we studied  and reported in paper,[27] finite-time stability analysis of  linear 
fractional order single time delay systems where a Bellman-Gronwall`s approach is 
proposed, using as the starting point a recently obtained generalized Gronwall inequality 
reported in [28].  

Theorem 13.  The linear nonautonomous system given by (88) satisfying initial condition 
( ) ( ), 0xx t t t      is finite time stable w.r.t.  0, , , , ,u J     , if  the following 

condition is satisfied: 

      max 01 0
max 01 01 /

1 1
ut t

E t t J
 




 
  

 

 
          

, 0,T ,       (116)  

where 0 0 / ,u ub   

 max 01 max 0

 and  being the largest singular value of matrix (.), 

where:

(.)max
 1maxA A    and  .E denotes Mittag-Leffler function (see 

Appendix). 
Remark 4. If  1 

1B
, one can obtain same conditions which related to integer order time 

delay systems (31),  as follows [18]: 0
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 1 ( ) 1
max 0 01

1

1
max 0 ( )

1 / ,
1 1

( )

A t t

z

A
t t t t

e t

E z e






  





  
       
  



 , (2) 1,J 
   (117)  

Theorem 14. The linear autonomous system given by Eq. (88) 0 0B  , satisfying initial 

condition ( ) ( ), 0xx t t t      is finite time stable w.r.t.  0, , ,J ,     , if  the 

following condition is satisfied: 

   max 01
max 01 01

1

t
E t t

 
  
   







  


/ , J  ,                                  (118)  

Remark 5. In same manner, one may conclude that if  1  , see (21), it follows  same 
conditions [60],Eq. (107) which relate to integer order time delay systems (29). 

5.2 An illustrative example            

Using a Time-Delay PD  compensator on a linear system of equations with respect to the 
small perturbation  ,  one may obtain:  ( )e t y( ) ( )dt y t 

 ( ) ( ) ( ) ( ) / ( ),P De t e t K e t K de t dt u t                             (119) 

where:  1/ 2, 2, 3, 4,p DK K u    

1 2( ) ( ), ( )

t -feedforward control. Also, all initial values 

are zeros. Introducing: 1/ 2 1/ 2( ) /x t e t x t 

 ( ) ,
T

1 2t x xx

d e t dt ,one may write (119) in state-

space form, : 

1 11/2

2 2

( ) ( )0 1 0 0 0
( ) ( )

( ) ( )2 0 3 4 1t
x t x t

D t u t
x t x t




        
                  

x ,            (120) 

with an associated function of the initial state: ( ) ( ) 0, 0.xt t t    x   Now, we can 

check the finite time stability wrt   0 0, 0,2 , 0.1, 100, 0.1, 1 ,ut J         where  

 ( ) 0, 0.1,0x t t     . From the initial data and the Eq.(120) it yields:  

    max 0 max 1 max 0,1( ) 0.1, 2, 5, 7x C
t A A              (121) 

Applying the condition of the Theorem 13  (116) one can get: 

 
0.5 0.5

0.5
0.5

7 10
1 7 100/ 0.1 0.1 .

0.886 0.886
e e

e e
T T

E T T
  
      
  

s         (122) 

eT  being “estimated time” of finite time stability. 

Conclusion 
 
In this paper, we have studied and presented the finite time stability of perturbed 
(non)linear fractional order time delay systems. We have employed the “classical” and the 
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

generalization of Gronwall Belmann lemma to obtain finite time stability criteria for 
proposed class of time delay system. Also, they are presented some basic results on the 
stability of fractional order time delay systems as well as free delay systems. Finally, a 
numerical example is given to illustrate the validity of the proposed procedure. 
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Appendix 
 Mittag-Leffler Function 
Similar to the exponential function frequently used in the solutions of integer-order 
systems, a function frequently used in the solutions of fractional-order systems is the 
Mittag-Leffler function defined as 

  0

,
1

k

k

z
E z

k 






                                                                     (A1) 

where 0   and  . The Mittag-Leffler function with two parameters appears most 
frequently and has the following form 

z C

   ,

0

,
k

k

z
E z

k   






                                                                 (A2) 

where 0, 0   , and . For z C 1   we obtain     ,1E z E z   and   1,1
zE z e  

Lemma (Gronwall Inequality).  
Suppose that ( )g t  and are continuous in  t    0 1, , 0, 0t t g t    and  are two 

constants. If  

0r 

   
0

( )
t

t g s s r   ds                                                        (A3) 

then                             1 0 0 1

0

( ) exp ,

t

t r t t g s ds t t
 
  t         
 
                          A4) 

Theorem A ([28] Generalized Gronwall inequality)  Suppose ( ), ( )x t a t  are nonnegative 

and local integrable on ,and 0 ,t T some T    ( )g t

con

 is a nonnegative, nondecreasing 

continuous function defined on 0 , (t T g t) M st    , 0   with 

  1

0

( ) ( ) ( ) ( )

t

x t a t g t t s x s d
   s                                       (A5) 

on this interval.Then                                                    

  
    1
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( ) ( ) ( ) , 0

nt
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g t
x t a t t s a s ds t T

n
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
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Corollary 2.1 of (Theorem A) [28] Under the hypothesis of  Theorem 2.2, let  be a 

nondecreasing function on . Then holds: 

( )a t

 0,T

    ( ) ( )x t a t E g t t  
                                                     (A7) 
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Abstract. This is a review paper presenting a general theory of interaction of eigenvalues
of complex matrices of an arbitrary dimension depending on real parameters. The cases of
weak and strong interaction are distinguished and their geometric interpretation in two and
three-dimensional spaces is given. General asymptotic formulae for eigenvalue surfaces near
diabolic and exceptional points are presented demonstrating crossing and avoided crossing
scenarios. A physical example on propagation of light in a homogeneous non-magnetic crystal
illustrates effectiveness and accuracy of the presented theory. As applications in mechanics
stability problems for a pendulum with periodically varying length and stabilization effect for
a buckled elastic rod by longitudinal vibrations are considered.

Keywords: Coupling of eigenvalues, stability problems, physics, mechanics.

1. Introduction

The behavior of eigenvalues of matrices and differential operators dependent on parameters is
a problem of general interest having many important applications in natural and engineering
sciences. In modern physics, e.g. quantum mechanics, crystal optics, physical chemistry,
acoustics and mechanics, singular points of matrix spectra associated with specific effects
have attracted great interest of researchers since the papers [15] and [14]. These are the points
where matrices possess multiple eigenvalues. In applications the case of double eigenvalues
is the most important. With a change of parameters, coupling and decoupling of eigenvalues
with crossing and avoided crossing scenarios occur. In recent papers two important cases
are distinguished: the diabolic points (DPs) and the exceptional points (EPs). From the
mathematical point of view DP is a point where the eigenvalues coalesce (become double),
while corresponding eigenvectors remain different (linearly independent); and EP is a point
where both eigenvalues and eigenvectors merge forming a Jordan block. Both the DP and
EP cases are interesting in applications and were observed in experiments. In early studies
only real and Hermitian matrices were considered while modern physical systems require the
study of complex symmetric and non-symmetric matrices.

In this paper we present the results on interaction of eigenvalues of complex matrices of
arbitrary dimension smoothly depending on multiple real parameters. Two essential cases of
weak and strong coupling based on a Jordan form of the system matrix are distinguished.
These two cases correspond to diabolic and exceptional points, respectively. We derive
general formulae describing coupling and decoupling of eigenvalues, crossing and avoided
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crossingof eigenvalue surfaces. We present typical (generic) pictures showing the movement
of eigenvalues, the eigenvalue surfaces and their cross-sections. It is emphasized that the
theory of coupling of eigenvalues of complex matrices gives not only qualitative, but also
quantitative results on the behavior of eigenvalues based only on the information taken at the
singular points.

Interaction of eigenvalues for real matrices depending on multiple parameters with
mechanical applications is given in the book [10] where significant mechanical effects related
to diabolic and exceptional points were studied. These include transference of instability
between eigenvalue branches, bimodal solutions in optimal structures under stability
constraints, flutter and divergence instabilities in undamped nonconservative systems, effect
of gyroscopic stabilization, destabilization of a nonconservative system by infinitely small
damping, which were described and explained from the point of view of coupling of
eigenvalues. The presented theory for complex matrices is based on the papers [9, 4].

The paper is organized as follows. In section 2 we present general results on weak and
strong interaction of eigenvalues of complex matrices depending on parameters. These two
cases correspond to the study of eigenvalue behavior near diabolic and exceptional points.
Section 3 is devoted to a physical example of propagation of light in a homogeneous non-
magnetic crystal. Section 4 presents applications in mechanics, and the conclusion is given
in section 5.

2. Interaction of Eigenvalues

Let us consider the eigenvalue problem

Au = λu (1)

for a generalm×m complex matrix A smoothly depending on a vector ofn real parameters
p = (p1, . . . , pn). Assume that, atp = p0, the eigenvalue coupling occurs, i.e., the matrix
A0 = A(p0) has an eigenvalueλ0 of multiplicity 2 as a root of the characteristic equation
det(A0 − λ0I) = 0; I is the identity matrix. This double eigenvalue can have one or
two linearly independent eigenvectorsu, which determine the geometric multiplicity. The
eigenvalue problem adjoint to (1) is

A∗v = ηv, (2)

whereA∗ = A
T

is theadjointmatrix operator (Hermitian transpose). The eigenvaluesλ and
η of problems (1) and (2) are complex conjugate:η = λ .

Double eigenvalues appear at sets in parameter space, whose codimensions depend
on the matrix type and the degeneracy (EP or DP). In this paper we analyze general
(nonsymmetric) complex matrices. The EP degeneracy is the most typical for this type
of matrices. In comparison with EP, the DP degeneracy is a rare phenomenon in systems
described by general complex matrices. However, some nongeneric situations may be
interesting from the physical point of view. As an example, we mention complex non-
Hermitian perturbations of symmetric two-parameter real matrices, when the eigenvalue
surfaces have coffee-filter singularity.
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Let us considera smooth perturbation of parameters in the formp = p(ε), where
p(0) = p0 andε is a small real number. For the perturbed matrixA = A(p(ε)), we have

A = A0 + εA1 + 1
2ε2A2 +o(ε2),

A0 = A(p0), A1 =
n

∑
i=1

∂A
∂ pi

dpi

dε
,

A2 =
n

∑
i=1

∂A
∂ pi

d2pi

dε2 +
n

∑
i, j=1

∂ 2A
∂ pi∂ p j

dpi

dε
dpj

dε
.

(3)

The double eigenvalue λ0 generally splits intoa pair of simple eigenvalues under the
perturbation. Asymptotic formulae for these eigenvalues and corresponding eigenvectors
contain integer or fractional powers ofε.

2.1. WeakInteraction of Eigenvalues

Let usconsiderthe interaction of eigenvalues in the case ofλ0 with two linearly independent
eigenvectorsu1 andu2. This interaction point is known as a diabolic point. Let us denote
by v1 andv2 two eigenvectors of the complex conjugate eigenvalueη = λ for the adjoint
eigenvalue problem (2) satisfying the normalization conditions

(u1,v1) = (u2,v2) = 1,

(u1,v2) = (u2,v1) = 0,
(4)

where (u,v) = ∑n
i=1uivi denotesthe Hermitian inner product. Conditions (4) define the

unique vectorsv1 andv2 for givenu1 andu2.
For nonzero smallε, the two eigenvaluesλ+ andλ− resulting from thebifurcation ofλ0

and the correspondingeigenvectorsu± are given by

λ± = λ0 + µ±ε +o(ε),

u± = α±u1 +β±u2 +o(1).
(5)

Thecoefficientsµ±, α±, andβ± are found from the 2×2 eigenvalue problem, see e.g. [10]
(

(A1u1,v1) (A1u2,v1)
(A1u1,v2) (A1u2,v2)

)(
α±
β±

)
= µ±

(
α±
β±

)
. (6)

Solvingthecharacteristicequation for (6), we find

µ± =
(A1u1,v1)+(A1u2,v2)

2
±

√
D2 +(A1u1,v2)(A1u2,v1),

D = 1
2((A1u1,v1)−(A1u2,v2)).

(7)

We note that for Hermitian matricesA one can takev1 = u1 and v2 = u2 in (6), where
the eigenvectorsu1 andu2 are chosen satisfying the conditions(u1,u1) = (u2,u2) = 1 and
(u1,u2) = 0, and obtain the well-known formula.
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Figure1. Eigenvalue interaction: (a) weak, (b) strong.

As the parameter vector passes the interaction pointp0 along the curvep(ε) in parameter
space, theeigenvaluesλ+ andλ− change smoothly and cross each other atλ0, see Figure 1a.
At the same time, the corresponding eigenvectorsu+ and u− remain different (linearly
independent) at all values ofε including the pointp0. We call this interactionweak. By
means of eigenvectors, the eigenvaluesλ± are well distinguished during the weak interaction.

We emphasizethat despite the eigenvaluesλ± and the eigenvectorsu± dependsmoothly
ona single parameterε, they are non-differentiable functions of multiple parameters atp0 in
the senseof Frechét.

2.2. Strong Interaction of Eigenvalues

Let us considerinteraction of eigenvalues atp0 with a double eigenvalueλ0 possessing a
single eigenvectoru0. This case corresponds to the exceptional point. The second vector of
the invariant subspace corresponding toλ0 is called an associated vectoru1 (also calleda
generalized eigenvector; it is determined by the equation

A0u1 = λ0u1 +u0. (8)

An eigenvectorv0 and an associated vectorv1 of the matrixA∗ are determined by

A∗
0v0 = λ 0v0, A∗

0v1 = λ 0v1 +v0,

(u1,v0) = 1, (u1,v1) = 0,
(9)

wherethelasttwo equations are the normalization conditions determiningv0 andv1 uniquely
for a givenu1.

Bifurcation of λ0 into two eigenvaluesλ± and the corresponding eigenvectorsu± are
describedby, see [10]

λ± = λ0±√µ1ε + µ2ε +o(ε),

u± = u0±u1
√µ1ε

+(µ1u0 + µ2u1−G−1A1u0)ε +o(ε),

(10)

whereG = A0−λ0I +u1v∗1. The coefficientsµ1 andµ2 are

µ1 = (A1u0,v0),

µ2 =
(
(A1u0,v1)+(A1u1,v0)

)
/2.

(11)
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With a change ofε from negative to positive values, the two eigenvaluesλ± approach,
collide with infinite speed (derivative with respect toε tends to infinity) atλ0, and diverge
in theperpendicular direction, see Figure 1b. The eigenvectors interact too. Atε = 0, they
mergeto u0 up to a scalar complex factor. At nonzeroε, the eigenvectorsu± differ from u0

by the leading term±u1
√µ1ε . This term takes the purely imaginary factori asε changes the

sign, forexample altering from negative to positive values.
We call such an interaction of eigenvalues asstrong. An exciting feature of the strong

interaction is that the two eigenvalues cannot be distinguished after the interaction. Indeed,
there is no natural rule telling how the eigenvalues before interaction correspond to those
after the interaction.

3. Applications in Physics

As a physical example, we consider propagation of light in a homogeneous non-magnetic
crystal in the general case when the crystal possesses natural optical activity (chirality)
and dichroism (absorption) in addition to biaxial birefringence, see [2] for the general
formulation. The optical properties of the crystal are characterized by the inverse dielectric
tensorηηη . The vectors of electric fieldE and displacementD arerelated asE = ηηηD [5]. The
tensorηηη is described by a non-Hermitian complex matrix. The electric fieldE and magnetic
field H in the crystal are determined by Maxwell’s equations

rotE =−1
c

∂H
∂ t

, rotH =
1
c

∂D
∂ t

, (12)

wheret is timeandc is the speed of light in vacuum.
A monochromatic plane wave of frequencyω that propagates in a direction specified by

a realunit vectors= (s1,s2,s3) has the form

D(r , t) = D(s)expiω
(

n(s)
c sT r − t

)

H(r, t) = H(s)expiω
(

n(s)
c sT r − t

)
,

(13)

wheren(s) is a refractive index, andr = (x1,x2,x3) is the real vector of spatial coordinates.
Substituting the wave (13) into Maxwell’s equations (12), we find

H = n[s,ηηηD], D =−n[s,H], (14)

wheresquarebrackets indicate cross product of vectors [5]. Then we obtain an eigenvalue
problem for the complex non-Hermitian matrixA(s) dependent on the vector of parameters
s= (s1,s2,s3):

Au = λu, A(s) = (I −ssT)ηηη(s), (15)

whereλ−2, u = D, andI is theidentity matrix. Multiplying the matrixA by the vectors from
the left we conclude thatsTA = 0, i.e., the vectors is the left eigenvector with the eigenvalue
λ = 0. Zero eigenvalue always exists, because det(I−ssT)≡ 0, if ‖s‖= 1.

The matrix A(s) defined by equation (15) is a product of the matrixI − ssT and the
inverse dielectric tensorηηη(s). The symmetric part ofηηη constitutes the anisotropy tensor
describing the birefringence of the crystal. It is represented by the complex symmetric
matrixU, which is independent of the vector of parameterss. The antisymmetric part ofηηη is
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determinedby theoptical activity vectorg(s) = (g1,g2,g3), describing the chirality (optical
activity) of the crystal. It is represented by the skew-symmetric matrix

G = i




0 −g3 g2

g3 0 −g1

−g2 g1 0


 . (16)

The vectorg is given by the expressiong(s) = γγγs, whereγγγ is the optical activity tensor
represented bya symmetric complex matrix. Thus, the matrixG(s) depends linearly on the
parameterss1, s2, s3.

In the presentformulation, the problem was studied in [2]. Below we present a specific
numerical example in case of a non-diagonal matrixγγγ, for which the structure of singularities
wasnot fully investigated. Unlike [2], where the reduction to two dimensions was carried
out, we work with the three-dimensional form of problem (15). Our intention here is to give
guidelines for using our theory by means of the relatively simple 3×3 matrix family, keeping
in mind that the main area of applications would be higher dimensional problems.

For numericalexample, we choose the inverse dielectric tensor in the form

ηηη =




3 0 0
0 1 0
0 0 2


+ i




0 1 2
1 0 0
2 0 0


+ i




0 −s1 0
s1 0 −s3

0 s3 0


 (17)

wheres3 =
√

1−s2
1−s2

2. The crystaldefined by (17) is dichroic and optically active with
the non-diagonal matrixγγγ. Whens1 = 0 ands2 = 0 the spectrum of the matrixA consists
of the double eigenvalueλ0 = 2 and the simplezero eigenvalue. The double eigenvalue
possesses the eigenvectorsu0, v0, and associated vectorsu1, v1. Calculating the derivatives
of the matrixA(s1,s2) at the points0 = (0,0,1) and substituting it together with the vectors
of Jordan chainsu0, u1 andv0, v1 yields the vectorsf, g andh, r as

f = (0,4), g = (−4,0), h = (0,0), r = (−4,0). (18)

With these vectors we find from the approximations of the eigensurfaces Reλ (s1,s2) and
Imλ (s1,s2) in the vicinity of the points0 = (0,0,1):

Reλ± = 2±
√

2s2 +2
√

s2
1 +s2

2,

Imλ± =−2s1±
√
−2s2 +2

√
s2
1 +s2

2.

(19)

Calculation of the exact solution of the characteristic equation for the matrixA with
the inverse dielectric tensorηηη defined by equation (17) shows a good agreement of the
approximations (19)with the numerical solution, see Figure 2. One can see that the both
surfaces of real and imaginary parts have a Whitney umbrella singularity at the interaction
point; the surfaces self-intersect along different rays, which together constitute a straight line
when projected on parameter plane. Other physical examples related to strong and weak
interaction of eigenvalues are presented in [9, 4, 6].
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Figure2. Eigensurfaces of a crystal and their approximations

4. Mechanical Applications

In this section we consider applications in mechanics. First we study oscillations and stability
problems for a pendulum with periodically varying length. It is a model of child’s swing.
Then we consider stabilization effect for an elastic rod, compressed by a longitudinal force
greater than the critical Euler’s value, by longitudinal vibrations applied to the rod end. This
is called Chelomei’s problem.

4.1. Stability of a Pendulum with Variable Length

Oscillations of a pendulum with variable length is among classical problems of mechanics.
Usually, the pendulum with periodically varying length is associated with a child’s swing.
As probably everyone can remember, to swing a swing one must crouch when passing
through the middle vertical position and straighten up at the extreme positions, i.e. perform
oscillations with a frequency which is approximately twice the natural frequency of the swing.
Despite popularity of the swing, in the literature on oscillations and stability there are not
many analytical and numerical results on behavior of the pendulum with periodically varying
length dependent on parameters. In this paper the stability of the lower vertical position of
the pendulum with damping and arbitrary periodic excitation function is investigated.

Equation for motion of the swing can be derived with the use of angular momentum
alteration theorem. Taking into account also linear damping forces we obtain

d
dt

(
ml2

dθ
dt

)
+ γ l2 dθ

dt
+mglsinθ = 0, (20)

wherem is themass,l is the length,θ is the angle of the pendulum deviation from the vertical
position,g is theacceleration due to gravity, andt is the time, Fig. 3.

It is assumedthat the length of the pendulum changes according to the periodic law

l = l0 +aϕ(Ωt),
∫ 2π

0
ϕ(τ)dτ = 0, (21)

where l0 is the meanpendulum length,a and Ω are the amplitude and frequency of the
excitation,ϕ(τ) is the smooth 2π-periodic function with zero mean value.
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Figure3. Schemesof the pendulum with periodically varying length.

Figure4. Stabilizationregion in Chelomei’s problem

We introduce the following dimensionless parameters and variables

τ = Ωt, ε =
a
l0

, Ω0 =
√

g
l0

, ω =
Ω0

Ω
, β =

γ
mΩ0

. (22)

Then,equation(20)can be written in the following form

θ̈ +
(

2εϕ̇(τ)
1+ εϕ(τ)

+βω
)

θ̇ +
ω2sinθ

1+ εϕ(τ)
= 0 (23)

Here the dotdenotes differentiation with respect to new timeτ. Behavior of the system
governed by equation (23) will be studied in the following sections via analytical and
numerical techniques depending on three dimensionless problem parameters: the excitation
amplitudeε, the damping coefficientβ , and the frequencyω under the assumptionε ¿ 1,
β ¿ 1. It is convenient to change the variable by the substitutionq = θ(1+ εϕ(τ)). With
this substitutionwe obtain a nonlinear equation forq which is useful for stability study of the
vertical position of the pendulum as well as analysis of small oscillations. Equation (23) is
used for stability and dynamics study of the pendulum with variable length. It is shown that
the instability (parametric resonance) regions are semi-cones in three-dimensional parameter
space with singularities at the DP, see also [7, 1].
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4.2. Chelomei’sproblem

The possibility to increase the stability of elastic systems by means of vibrations was
originally pointed out in [3]. In particular, he arrived at the conclusion that an elastic rod
compressed by a longitudinal force greater than the critical Euler’s value can be stabilized by
high-frequency longitudinal vibrations applied to the rod end. In this study, formulas for the
upper and lower critical frequencies of rod stabilization are derived and analyzed. It is shown
that, in contrast to the case of high-frequency stabilization of an inverted pendulum with a
vibrating suspension point, the rod is stabilized at excitation frequencies of the order of the
natural frequency of transverse oscillations belonging to a certain region.

We consider a straight elastic rod of constant cross section, loaded by a periodic
longitudinal forceP(t) = P0 + Ptφ(ωt) applied to itsend. The equation of transverse
oscillations of the rod can be written as

m
∂ 2u
∂ t2 + γ

∂u
∂ t

+P(t)
∂ 2u
∂x2 +EJ

∂ 4u
∂x4 = 0, (24)

wherex is the coordinatealong the rod axis;t is the time;u(x, t) is the rod deflection function;
m is the mass per unit length;EJ is the flexural rigidity;γ is the damping coefficient;Pt and
ω are the excitation amplitude and frequency of the longitudinal vibration, respectively. It is
convenient to introduce non-dimensional parametersε = Pt/P1 andα = P0/P1−1 whereP1

is the firstEuler buckling load. The simply supported ends of the rod are considered. Fig.
4 presents the stabilization region in Chelomei’s problem. The singularities related to the
points DP and EP are discussed, see also [13, 12].

5. Conclusion

We have discussed interaction of eigenvalues of systems smoothly depending on multiple real
parameters. Diabolic and exceptional points have been mathematically described and general
formulae for interaction of eigenvalues at these points have been derived. This theory has a
very broad field of applications since any physical or mechanical system contains parameters.
Last applications of the interaction theory of eigenvalues are presented in [8, 11].
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Abstract. Numerical methods, especially the finite element method (FEM), have been 
widely used in computational fracture mechanics. However, modeling of the crack and its 
growth in the standard FE framework require that FE mesh coincidences with the internal 
boundary of the crack and desire some technique for remeshing. In the PAK FM&F software 
that is developed on the Faculty of Mechanical Engineering of the University of Kragujevac, 
beside standard FEM XFEM (eXtended Finite Element Method) and EFG (Element Free 
Galerkin Method) is incorporated. The XFEM is recently developed technique for modeling 
cracking within the finite element framework that use meshes independent of the crack 
configuration and thus avoid remeshing. In the XFEM a discontinuous function and 
asymptotic crack-tip displacement fields are added to the finite element approximation to 
account for the crack using the notion of partition of unity (PU). This enables the domain to 
be modeled by finite elements with no explicit meshing of the crack. Numerical integration 
for the enriched elements, linear dependence and the corresponding solution techniques for 
the system of equations, as well as the accuracy of the crack tip fields are addressed. For 
calculation stress intensity factors (SIFs) we used J-integral. In this paper equivalent domain 
integral (EDI) method for evaluation of the J-integral is presented. The developed numerical 
model for J-EDI method is incorporated in the PAK FM&F software. The J-EDI method for 
determination SIFs in the traditional FE, XFEM and EFG framework is used. 

 
Key words: Finite Element Method (FEM); eXtended Finite Element Method (XFEM); Element Free Galerkin 
Method (EFG); Partition of Unity Method (PUM); Stress Intensity Factors (SIFs); J-Equivalen Domain Integral 
Method (J-EDI method).    
 

1. Introduction  
 
The classical overall objective of fracture mechanics is the determinate of the rate of 
change of the shape of an existing crack. The corresponding computational requirement has 
been to obtain the fields - displacement, strain, stress and energy - from which driving force 
for crack propagation might be extracted. To determinate the distribution of stresses and 
strains fields in a cracked body subject to external loads or displacements there are many 
numerical methods: finite Difference Method, Finite Element Method, Boundary Element 
Methods, Extended Finite Element Method, Generalized Finite Element Method, and 
Element Free Galerkin Method.  

 
For physical problems whose solutions exhibit kinks, jumps, singularities or other special 
solution, the standard finite approximation requires considerable mesh refinement to 
resolve such features if the elements edges are not aligned with the discontinuities. Further 
if the discontinuity evolves with time, the nodes and elements must be updated 
continuously. For multiple discontinuities and three dimensional problems becomes rapidly 
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intractable. These provide the motivation for the development of a new class of 
computational methods called enriched finite element methods. Enriched methods have 
been concurrently developed by two research groups; in one, they are called the Extended 
Finite Element Method (XFEM), and other, they referred to as Generalized Finite Element 
Method (GFEM). Both methods rely on the partition of unity (PUM) approach introduced 
by Melenk and Babuska [1]. 

The eXtended Finite Element Method, XFEM, attempts to alleviate the computational 
challenges associated with mesh generation by not requiring the finite element mesh to 
conform to cracks, and in addition, provides using of higher-order elements or special finite 
elements without significant changes in the formulation. Basis of the method proposed by 
Belytchko and Black [2], were presented in [3-10] for the two-dimensional cracks. 

The essence of the XFEM lies in sub-dividing a model problem into two distinct parts: 
mesh generation for the geometric domain (cracks not included), and enriching the finite 
element approximation by additional functions that model the flaws and other geometric 
entities. Modeling crack growth in a traditional finite element framework is cumbersome 
due to need for the mesh to match the geometry of the discontinuity. Many methods require 
remeshing of the domain at each time step. In the XFEM there is no need for the remeshing, 
because the mesh is not changed as the crack grows and is completely independent of the 
location and geometry of the crack. The discontinuities across the crack are modeled by 
enrichment functions.  

The Element Free Galerkin methods (EFG) [11-15] are methods for solving partial 
differential equations with moving least squares interpolate. EFG methods require only 
nodal data; no element connectivity is needed. In a previous implementation of the EFG 
method, Lagrange multipliers were used to enforce the essential boundary condition. 
However, the use of Lagrange multipliers increases the cost of solving the linear algebraic 
equations. A new implementation is developed based on a modified variational principle in 
which the Lagrange multipliers are replaced at the outset by their physical meaning so that 
the discrete equations are banded. In addition, weighted orthogonal basis functions are 
constructed so the need for solving equations at each quadrature point is eliminated. 
Numerical examples show that the present implementation effectively computes stress 
concentrations and stress intensity factors at cracks with very irregular arrangements of 
nodes; the latter makes it very advantageous for modeling progressive cracking. 
 

2. The standard finite element method 
 
The standard finite element method (FEM) is a numerical approach by which this partial 
differential equation can be approximated. For physical problems whose solutions exhibit 
singularities standard finite element approximation requires mesh refinement. Finite 
element mesh must be such that the stress field characteristics are reproduced in the 
numerical solutions around of the crack tip. In homogeneous, isotropic, elastic material, the 

stress field at crack tip exhibit a 1/ r  singularity. Quarter Point (QP) Singular Elements is 
used for solution Fracture Mechanics problems. In 8-nodes isoparametric quadrilateral 
elements placing the mid-side nodes on or outside the ¼ of the side causes the Jacobian of 

transformation to become non positive definite. The 1/ r  singularity is obtained.  
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Figure 1. QP-element near tip of the crack tip 

 
The Stress Intensity Factors (SIF) by using QP elements is: 
  

 

2 2 1 1

2 2 1 1
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K u u u
h

 


 


u

u

     

     

 (1) 

   
where are: i  sliding and opening components of the displacement in the 1B 2 1  

2C oint  (see fig. 1). 
1u 2u , B , C  or

p 

High degree of mesh refinement is required for engineering accuracy even for simple 
geometry, loading and a single crack. Use QP elements in the standard FEM is necessary 

for achieved  1/ r  singularity around of the crack tip. 
 

3. Extended finite element method (XFEM) 
 

In this paper, the method of discontinuous enrichment is presented in general framework. 
We illustrate how the two-dimensional formulation can be enriched for the crack model. 
The concept of incorporating local enrichment in the finite element partition of unity was 
introduced in Melenk and Babuska [1]. The essential feature is multiplication of the 
enrichment functions by nodal shape functions. The approximation for a vector-valued 
function  with the partition of unity enrichment has the general form [1]: ( )hu x
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 enr
1 1

( ) ( ) ( )
N M

h
I I

I

N F 


 


 

 
 u x x x b


  (2) 

where IN , (1, )I N  are the finite element shape functions, , ( )F x (1, )M   are the 

enrichment functions and I
b  is the nodal enriched degree of freedom vector associated 

with the elastic asymptotic crack-tip function that has the form of the Westergaard field for 
the crack tip. The finite element shape functions form a partition of unity: ( )II

N 1 x . In 

particular case, for the crack, the enriched displacement approximation, using Heavisade 
and Near Tip functions, following [4-10], is written as: 

 
4

1

( ) ( ) ( ) ( )
u

a

b

h
I I I I

I
I

I

N H F 


 


 
 

  
  
 

 u x x u x a x b 
�

�

�






 (3) 

where 
I

u  is the nodal displacement vector associated with the continuous part of the finite 

element solution, Ia  is the nodal enriched degree of freedom vector associated with the 

Heavisade (discontinuous) function. The  ,x yx  denotes Cartesian coordinates in 2D 

space. We denote by u the set of all nodes in the domain, and a  the subset of nodes 

enriched with the Heavisade function, and b  is the subset of nodes enriched with the NT 

(Near Tip) functions. 
 

3.1. The enrichment functions 
 
The enrichment is able to take a local form only by enriching those nodes whose support 
intersects a region of a crack. Two distinct regions are identified for the crack geometry, 
precisely, one of them is the crack interior and the other is the near tip region as it is shown 
in fig. 2. In the Figure is shown a region of a crack for enrichment by H and NT functions.  
 

 
Figure 2. Regions for enrichment near the edges of the crack 

 
The circled nodes are enriched with a discontinuous function, while the squared nodes are 
enriched with NT functions. It can be noticed that this shape of enriching near the crack tip, 
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is used in [6-10]. In this paper we modified the modality of the nodes enriching near the 
crack tip (see next sections).  
 

3.1.1 Generalized heavisade function 
 
The interior of the crack ( is the enrichment – domain) is modeled by the generalized 

Heavisade enrichment function , where  takes the value +1 above the crack and 

–1 below the crack [6-10]: 

c
( )H X ( )H X

 

 
Figure 3. Illustration of the values of Heaviside function above and below of the crack 

 
*1 if ( ) 0

( )
*1 if ( ) 0

H
    
    

X X n
X

X X n
 (4) 

where  is the sample (Gauss) point, (lies on the crack) is the closest point to , and 

 is unit outward normal to crack at  (see fig. 3). 

X *X
*X

X

n
It can be seen that in the first published works [2], [3] above shape modeling of the 
discontinuity was not used. The formulation (4) begins to use due to practical numerical 
reasons. 
 

3.1.2 The near-tip crack functions 
 
The crack tip enriched functions ensure that the crack terminates precisely at the location of 
the crack-tip. The linear elastic asymptotic crack-tip fields serve as suitable enrichment 
functions for providing the correct near-tip behavior, and in addition, their use also leads to 
better accuracy on relatively coarse finite element meshes in 2D [2-10]. 
The crack tip enrichment functions in isotropic elasticity have form of the Westergaard 
field for the crack tip:  

 1 2 3 4( ) { , , , } cos , sin , sin sin , cos sin
2 2 2 2

F F F F F r r r r
         

x  (5) 

where  and r   denote polar coordinates in the local system at the crack tip. It can be noted 
that the second function of the set (5) is discontinuous over there crack faces [2], [3]. The 
discontinuity over the crack faces can be obtained using other functions like Heavisade 
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function (3), which have discontinuity. Let the element which contain the crack tip is 
denoted as CT element. In the papers [6-10] the discontinuity behind the tip in the CT 
element is accomplished by second function of the set (5). In this paper, the discontinuity in 
the CT element we have achieved with Heavisade function (4).  
 

3.2. The level set representation of the crack 
 
In this paper a crack is presented using the set of the linear segments. The crack is 
described by means of the tip position and level set of a vector valued mapping. A signed 
distance function ( ) x is defined over computational domain  using: 

 *( ) ( ) min
c

sign


      x
x n X X X X*  (6) 

where is the unit normal to  and  is the closest point to , see fig. 3. The crack is 

then represented as the zero level set of the function

n c
*X X

( ) X , i.e.: 

 ( ) 0 X  (7) 

The position related to the crack tip is defined through the following functions: 

 ( ) ( )CT  X X X  t  (8) 

where  is the unit tangent to  at the crack tip t c c and is coordinate of . The value CTX c
( ) 0 X  corresponds to the crack tip. We defined LS functions ( ) X  and ( ) X in the 

whole computational domain. The crack and the crack tip are represented like: 

  (9)  : ( , ) 0 ( , ) 0c t t     X X X 

In fig. 4, the definition of the ( ) x and ( ) x  around the crack is shown. For the crack 

representations linear interpolation has been used.  
 

 
Figure 4. Definition of the level set functions ( ) X  and ( ) X  around the crack 

The Heavisade step function (4) is modified using the LS function ( , )t X : 

85



 
Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 2011 P-05 

 
0

0
 

1 ( )
( ( ))

1 ( )

if
H

if





 

   

X
X

X
 (10) 

The Near Tip functions ( , ), 1,4F r    , that have form of the Westergaard field for the 

crack tip [3], also should be defined using the LS functions [6-9], to obtain polar 
coordinates in the local system at the crack tip (see fig. 5): 

 2 2 1 ( )
( ) ( ) ( ) ( ) tan .

( )
r and

  


  
X

X X X X
X

 (11) 

Apart from the other authors [6-10] we used NT functions only ahead the crack tip 
( ( , ) 0t X ), while behind the crack tip ( ( , ) 0t X ), we ensured discontinuity across the 

crack ( ( , ) 0t X ), using only the step function ( ( ))H  X . Therefore, the Westergaard 

field was used only for derivation of the asymptotic stress field ahead of the location near 
the tip i.e., ( , )t 0 X [6-9].  

 

4. Element free Galerkin method 
 
Unlike the representational methods discussed mesh free methods rely on a field solver 
different from standard FEM. EFG method is a mesh free method in which the 
approximating function is a linear combination of a basis function and is fit to data by a 
weighted quadratic function. The Moving Least-Square (MLS) approximation constructed 
entirely in terms of a set of interior nodes and a description of the boundaries of the model. 
The value of the desired function i.e., displacements, at any point is obtained by solving a 
set of linear equations [11-15]. 
 

 
Figure 5. Free points domain in relation to integration point 
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 the EFG method, due to the application of the MLS a

 is [11-15]: 

he 

oef hich are the functions of spatial coor

two-d i

In pproximation, displacement 

( , , ) ( )h hu x y z u x

 
1

( ) ( ) ( ) ( ) ( )
m

h T
j j

j

u p a


 x x x p x a x  (12) 

where ( )p x  are the basis functions of the coordinates of free points, and ( )a x  are tj

ficients, w
j

c dinates x . In general case, the basis 

functions for imensional problems (in th s paper, we have used linear base m =3):  
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here Ix to interpolated point x , and max I

d  I Id  x xw  is distance from free point 

defines the maximal area of weight function influe ce for each free point–influence radius. 

Coefficient

n

 c has differently defined in literature. In this paper, we have used definition 

ccording to [14-15]: a
 max I

c d  (20) 

In this case, the recommendation for the value of   is 0.4. We have adopted value for the 
coefficient 1Ik  . 

 

5 gral . Equialent domain integral method (EDI) for evaluation J-inte
 

6] r J-integral for two-dimensional crack 
s als. As shown in the fig. 6, J is the line 

integral surrounding a two-dimensional crack tip and is defined as:  

Rice [1  defined a path-independent contou
problem in linear and nonlinear elastic materi

 1 1 ,10
lim ,     , 1,2

S
j ij i jJ W u n d i j 

 
   

S

where W  is the strain nergy density give by: 



 e n 

 

 (21) 

1 1
W C     , , , , 1, 2

2 2ij ij ijkl kl ij i j k l   (22) 

and jn  is the outward normal vector to the contour integration, S  is around the crack tip 

(as s wn in fig. 6)ho , ij  is stress tensor, ij  is strain tensor,  is constitutive tensor and 

ponent  of the displacement.  

ijC kl

iu  is com of vector

 
 

Figure 6. Conversion of the contour integral into an EDI 
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ntegral given (21) is rewritten, by int
 the ED en efine the w o

d  (23) 

where  is contour (fig. 6), 

The EDI approach has the advantage that the effect of variable body forces can be included 
easily. The standard J-contour i by Eq. roducing a 
weight function  ,q x x  into I. H ce, we d  follo ing cont ur integral: 1 2

 1(W   ,1 )j ij i ju m q


 

0 S
         jm  is a unit vector outward normal to the 

orresponding contour (i.e. j jm n  and j jm n c on 0 on S ), and  is a 

functio

q weight 

n defined as 1q   inside the contour   and 0q   for the doma de .  

Taking the limit 

in outsi 
0S   leads to [18, 19]: 

, 
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pplying the divergence theorem to Eq. (24), we obtain the 
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A following expression: 

    , , ,
,

k ij i k kj j ij i k kjA A j
J u W q dA u W qdA         (25) 

w
vanish 

here  is the area enclosed by . Note that the addend in the above equation must 
for linear-elastic materials [6, 17, 20], so we have: 
A G

 , ,k ij i k kj jA
J u W q d   A  (26) 

. Due to fact that there is no analytical solution for this 
xample, numerical results obtained with EFG and XFEM were compared with 

corresponding ones obtained using standard FEM. In the standard FEM and EFG method, 
2D mesh with eight nodes per element is used. In the XFEM, linear four nodes elements are 
used.    
Effective stress for 2D turbine model without insulation, for the crack length 30 mm using 
FEM and XFEM is shown in fig. 7.  
 

This expression is analogous to the one proposed for a Surface Integral Based Method, to 
evaluate stress intensity factors. 

 

7. Numerical example 
 
In this example the stress intensity factor of the crack located in the steam turbine housing 4 
Thermal plant Kolubara is calculated
e
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b) 
Figure 7. Effective stress field of crack length by the a) FEM and b) XFEM 

(crack length 30 mm) 
 

The crack path is independent of the mesh structure, as it is shown in the fig. 7. The crack 
growth is considered in the 8 steps as well as in the literature [8,14,15]. 
 
Table 1. The comparative results for stress intensity factor KI 

 

a(mm) 20 25 30 35 40 45 50 55 60 

 
a) 

 

KI FEM 7.6 8.5 9.0 9.6 10.0 10.5 11.0 13.0 15.1 
KI XFEM 7.3 8.1 8.5 9.0 9.5 9.7 10.4 11.7 13.3 
KI EFG 7.8 8.4 8.9 9.6 10.4 11.3 12.3 13.9 15.8 
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FEM

XFEM

EFG

20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 65.00

0

2

4

6

Crack length [mm]  
Figure 8. Relationship between Stress Intensity Factor KI and crack length 

 
The results shown in the Table 1 were obtained using standard FEM, EFG and XFEM. The 
J-EDI approach for defining stress intensity factor was used in those methodologies. We 
have displayed only the opening mode stress intensity factor, KI, because it is dominating in 
this example. In the fig. 8, the relationship between stress intensity factor KI and crack 
length is shown. Increasing of the crack length from 20 mm to 60 mm causes increasing of 
the stress intensity factor, as it is illu

12

14

16

18

]
1
/2

8

10

strated in the fig. 8. The some difference in numerical 
sults colud be adressed to different order of element interpolation which is used in the 
FEM and EFG. 

8. Conclusion 

n by relatively high values 

pproaches, some numerical method 

(LSM). In the XFEM the Finite-element approximation is enriched by appropriate functions 

natural since the enrichment can be described and even constructed in terms of level set 

d programme 
is based on the standard FEM, EFG and XFEM. The advantage of XFEM and EFG related 
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Crack propagation is a process of evolutionary geometry drive
and gradients in crack front fields. The integration of all three fundamental aspect of the 
problem – computing local field quantities, ascertaining resulting material damage, and 
evolving the crack- can be had with a reach variety of a
as well as: XFEM, EFG, LSM, J-EDI. For the numerical simulation we apply a 
combination of the eXtended Finite-element method (XFEM) and the Level Set Method 

through the concept of partition of unity. The geometry of material interfaces and cracks is 
described by the LSM. The combination of both, XFEM and LSM, turns out to be very 

functions. The programme was write in FORTRAN and integrated in PAK FM&F [10] for 
considering different methodologies and its influence on the results. Develope

to the standard FEM is feasibility to use fixed finite element mesh, whereby the crack 
growth is independent of the mesh. 
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ABSTRACT. This work presents some methodologies for order reduction of parametrically 
excited nonlinear systems subjected to external inputs. This important class of problems 
arises in the analysis and control of structures with rotating components and periodic in-
plane loads or systems described by nonlinear differential equations representing dynamics 
about a periodic motion. The techniques presented are based on construction of a time-
varying invariant manifold. Two types of inputs are considered; namely, an external 
periodic excitations and a nonlinear, stabilizing state feedback control.  

In the first case we are interested in approximating an dimensional 
time-periodic nonlinear system of the form   

n

( ) ( , ) ( )rt t t  x A x f x G                                       (1) 

by a system of differential equations of a smaller dimension 

. In the above equation m  n   is a small positive number and is a given 

periodic input.  Order reduction for all three cases (viz., fundamental, sub and super 
harmonic) are considered.  The second problem deals with Next we consider an order 
reduction of a parametrically excited nonlinear closed-loop system of the form 

( )tG

       0 1, ,r rt t t t u     x Α x f x g g x
u

          (2) 

where  is a scalar state feedback. In both cases we apply 
Lyapunov-Floquét (LF) transformation and separate the dominant and the non-dominant 
(slave) states. Then the dominant dynamics represented by the reduced order model, can be 
decoupled from the non-dominant dynamics by constructing an invariant manifold relating 
the non-dominant states as nonlinear periodic functions of the dominant states [1]. The 
control problem (given by equation (2)) involves design of a linear as well as a nonlinear 
controller where the linear controller is designed using a symbolic approach that can place 
the Floquét multipliers in the desired locations [2].  Examples are included to demonstrate 
the effectiveness of the method.   

 
Keywords: Floquét multipliers, Time-periodic systems, Lyapunov- Floquét transformation, 
Order reduction, Invariant manifold 
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