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(*) Mathematical Institute SANU
Kneza Mihaila 36, 11000 Belgrade, Serbia

Mathematical Physics Group, University of Lisbon
e-mail: vladad@mi.sanu.ac.rs

(**) Faculty for Traffic and Transport Engineering
Vojvode Stepe 305, 11000 Belgrade, Serbia

e-mail: k.mijailovic@sf.bg.ac.rs

Abstract

Abstract

The theory of discriminantly separable polynomials has been initiated in a recent work
of one of the authors (V. Dragovic, Geometrization and generalizations of the Kowalevski
top, Comm. Math. Phys, 298 (2010)) in the context of pencils of conics and it has
been recognized there as one of the key features in integration procedure of the famous
Kowalevski top. The main property of such polynomials is that all discriminants are
expressed as products of polynomial in one variable each. Based on that characteristic, we
develope different methods of obtaining new integrable systems of differential equations
which we call the systems of the Kowalevski type. An integration procedure for such
systems leading to explicit genus two theta-functions formulae is presented.

1 Introduction

1.1 Discriminantly separable polynomials-an overview
In a very recent paper [4] of one of the authors of the present paper, a new approach to the
Kowalevski integration procedure has been suggested. It has been based on a new notion
introduced therein of discriminantly separable polynomials. A family of such polynomials
has been constructed there as pencil equations from the theory of conics

F (w,x1,x2) = 0,
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where w,x1,x2 are the pencil parameter and the Darboux coordinates respectively. (For classi-
cal applications of the Darboux coordinates see Darboux’s book [2], for modern applications
see the book [5] and [3].) The key algebraic property of the pencil equation, as quadratic
equation in each of three variables w,x1,x2 is: all three of its discriminants are expressed as
products of two polynomials in one variable each:

Dw(F )(x1,x2) = P(x1)P(x2)
Dx1(F )(w,x2) = J(w)P(x2)
Dx2(F )(w,x1) = P(x1)J(w)

(1)

where J,P are polynomials of degree 3 and 4 respectively, and the elliptic curves

Γ1 : y2 = P(x), Γ2 : y2 = J(s)

are isomorphic (see Proposition 1 of [4]) .

Let us recall here the definitions from [4]: A polynomial F (x1, . . . ,xn) is discriminantly
separable if there exist polynomials fi(xi) such that for every i = 1, . . . ,n

Dxi F(x1, . . . , x̂i, . . . ,xn) = ∏
j 6=i

f j(x j).

It is symmetrically discriminantly separable if

f2 = f3 = · · ·= fn,

while it is strongly discriminantly separable if

f1 = f2 = f3 = · · ·= fn.

It is weakly discriminantly separable if there exist polynomials f j
i (xi) such that for every

i = 1, . . . ,n
Dxi F(x1, . . . , x̂i, . . . ,xn) = ∏

j 6=i
f i

j(x j).

1.2 Kowalevski case-basic lines
As the name says motivation for introducing new class of systems called systems of Kowalevski
type gave us the famous Kowalevski top. Let us recall briefly that the Kowalevski top [10] is
a heavy spinning top rotating about a fixed point, under the conditions I1 = I2 = 2I3, I3 = 1,
y0 = z0 = 0. Here (I1, I2, I3) denote the principal moments of inertia, (x0,y0,z0) is the center
of mass, c = Mgx0, M is the mass of the top, (p,q,r) is the vector of angular velocity and
(γ1,γ2,γ3) are cosines of the angles between z-axis of the fixed coordinate system and the
axes of the coordinate system that is attached to the top and whose origin coincides with the
fixed point.
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Then the equations of motion take the following form, see [10], [7]:

2 ṗ = qr

2q̇ =−pr− cγ3

ṙ = cγ2

γ̇1 = rγ2−qγ3

γ̇2 = pγ3− rγ1

γ̇3 = qγ1− pγ2,

(2)

System (2) has three well known integrals of motion and a fourth integral discovered by
Kowalevski

2(p2 +q2)+ r2 = 2cγ1 +6l1
2(pγ1 +qγ2)+ rγ3 = 2l

γ2
1 + γ2

2 + γ2
3 = 1

(
(p+ ıq)2 + γ1 + ıγ2

)(
(p− ıq)2 + γ1− ıγ2

)
= k2.

(3)

A change of variables
x1 = p+ ıq

x2 = p− ıq

e1 = x2
1 + c(γ1 + ıγ2)

e2 = x2
1 + c(γ1− ıγ2)

(4)

transforms the four first integrals (3) into

r2 = E + e1 + e2

rcγ3 = G− x2e1− x1e2

c2γ2
3 = F + x2

2e1 + x2
1e2

e1e2 = k2,

(5)

with

E = 6l1− (x1 + x2)2

F = 2cl + x1x2(x1 + x2)

G = c2− k2− x2
1x2

2.

>From the first integrals, one gets

(E + e1 + e2)(F + x2
2e1 + x2

1e2)− (G− x2e1− x1e2)2 = 0

which can be rewritten in the form

e1P(x2)+ e2P(x1)+R1(x1,x2)+ k2(x1− x2)2 = 0 (6)

where polynomial P is

P(xi) = x2
i E +2x1F +G =−x4

i +6l1x2
i +4lcxi + c2− k2, i = 1,2
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and

R1(x1,x2) = EG−F2

=−6l1x2
1x2

2− (c2− k2)(x1 + x2)2−4lc(x1 + x2)x1x2 +6l1(c2− k2)−4l2c2.

Note that P from the formula above depends only on one variable, which is not obvious from
its definition. Denote

R(x1,x2) = Ex1x2 +F(x1 + x2)+G.

>From (6), Kowalevski gets

(
√

P(x1)e2±
√

P(x2)e1)2 =−(x1− x2)2k2±2k
√

P(x1)P(x2)−R1(x1,x2). (7)

After a few transformations, (7) can be written in the form
[
√

e1

√
P(x2)

x1− x2
±√e2

√
P(x1)

x1− x2

]2

= (w1± k)(w2∓ k), (8)

where w1,w2 are the solutions of an equation, quadratic in s:

Q(s,x1,x2) = (x1− x2)2s2−2R(x1,x2)s−R1(x1,x2) = 0. (9)

The quadratic equation (9) is known as the Kowalevski fundamental equation. Then,
Q(s,x1,x2) as a polynomial in three variables degree two in each of them satisfies

Ds(Q)(x1,x2) = 4P(x1)P(x2)

Dx1(Q)(s,x2) =−8J(s)P(x2), Dx2(Q)(s,x1) =−8J(s)P(x1)

with
J(s) = s3 +3l1s2 + s(c2− k2)+3l1(c2− k2)−2l2c2,

so it appeared to be an example of a member of the family of discriminantly separable poly-
nomials, as it was shown in [4] (Theorem 3). Moreover, all main steps of the Kowalevski
integration now follow as easy and transparent logical consequences of the theory of discrim-
inantly separable polynomials. Let us mention here just one relation, see Corollary 1 from [4]
(known in the context of the Kowalevski top as the Kowalevski magic change of variables):

dx1√
P(x1)

+
dx2√
P(x2)

=
dw1√
J(w1)

dx1√
P(x1)

− dx2√
P(x2)

=
dw2√
J(w2)

.

(10)

Notice here that the equations of motion (2) can be rewritten in new variables (x1,x2,e1,e2,r,γ3)
in the form:

2ẋ1 =−i f1

2ẋ2 = i f2

ė1 =−me1

ė2 = me2

(11)
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with two additional differential equations for ṙ and γ̇3, where m = ır and

f1 = rx1 + cγ3, f2 = rx2 + cγ3.

One can easily check that

f 2
1 = P(x1)+ e1(x1− x2)2

f 2
2 = P(x2)+ e2(x1− x2)2.

(12)

Further integration procedure is described in [10], and in the Subsection 2.3, we are going
to develop analogue techniques for more general systems in details.

2 On new integrable systems of Kowalevski type

2.1 Systems of Kowalevski type. Defintion

Now, we are going to introduce a class of dynamical systems, which generalize the
Kowalevski top. Instead of the Kowalevski fundamental equation (see formula (9)), we start
here from an arbitrary discriminantly separable polynomial of degree two in each of three
variables.

Given a discriminantly separable polynomial of the second degree in each of three vari-
ables

F (x1,x2,s) := A(x1,x2)s2 +B(x1,x2)s+C(x1,x2), (13)

such that
Ds(F )(x1,x2) = B2−4AC = 4P(x1)P(x2),

and
Dx1(F )(s,x2) = 4P(x2)J(s)
Dx2(F )(s,x1) = 4P(x1)J(s).

Suppose, that a given system in variables x1, x2, e1, e2, r, γ3, after some transformations re-
duces to

2ẋ1 =−i f1

2ẋ2 = i f2

ė1 =−me1

ė2 = me2

(14)

where
f 2
1 = P(x1)+ e1A(x1,x2)

f 2
2 = P(x2)+ e2A(x1,x2).

(15)

Suppose additionally, that the first integrals of the initial system reduce to a relation

P(x2)e1 +P(x1)e2 = C(x1,x2)− e1e2A(x1,x2). (16)
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The equations for ṙ and γ̇3 and m are not specified for the moment.

If a system satisfies the above assumptions we will call it a system of Kowalevski type. As
it has been pointed out in the Introduction, see formulae (6, 9, 11,12), the Kowalevski top is
an example of the systems of Kowalevski type.

The following theorem is quite general, and concerns all the systems of the Kowalevski
type.

Theorem 1 Given a system which reduces to (14, 15, 16). Then the system is linearized on
the Jacobian of the curve

y2 = J(z)(z− k)(z+ k),

where J is a polynomial factor of the discriminant of F as a polynomial in x1 and k is a
constant such that

e1e2 = k2.

Proof. Indeed, from the equations of motion on ei we get

e1e2 = k2,

with some constant k. Now, we get
(√

e1
√

P(x2)±√e2
√

P(x1)
)2

= C(x1,x2)− k2A(x1,x2)±2
√

P(x1)P(x2)k.

From the last relations, we get
(
√

e1

√
P(x2)

A
+
√

e2

√
P(x1)

A

)2

= (s1− k)(s2 + k)

and (
√

e1

√
P(x2)

A
−√e2

√
P(x1)

A

)2

= (s1 + k)(s2− k),

where s1,s2 are the solutions of the quadratic equation

F (x1,x2,s) = 0

in s. From the last equations we get

2
√

e1

√
P(x2)

A
=

√
(s1− k)(s2 + k)+

√
(s1 + k)(s2− k)

2
√

e2

√
P(x1)

A
=

√
(s1− k)(s2 + k)−

√
(s1 + k)(s2− k).

Since si are solutions of the quadratic equation F(x1,x2,si) = 0, using Viète formulae and
discriminant separability condition, we get

s1 + s2 =−B
A

−(s1− s2) =

√
4P(x1)P(x2)

A
.

(17)
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>From the last equation, we get

(s1− s2)2 = 4
P(x1)P(x2)

A2 .

Using the last equation, we have

f 2
1 =

P(x1)
(s1− s2)2

[
(s1− s2)2 +4e1

P(x2)
A2 A

]

=
P(x1)

(s1− s2)2

[
(s1− s2)2 +

(√
(s1− k)(s2 + k)+

√
(s1 + k)(s2− k)

)2
]

=
P(x1)

(s1− s2)2

[√
(s1− k)(s1 + k)+

√
(s2 + k)(s2− k)

]2
.

Similarly

f 2
2 =

P(x2)
(s1− s2)2

[√
(s1− k)(s1 + k)−

√
(s2 + k)(s2− k)

]2
.

>From the last two equations and from the equations of motion, we get

d x1√
P(x1)

+
d x2√
P(x2)

=−i

√
(s1− k)(s1 + k)

s1− s2
dt

d x1√
P(x1)

− d x2√
P(x2)

=−i

√
(s2− k)(s2 + k)

s1− s2
dt.

>From discriminant separability, one gets (see Corollary 1 from [4]):

dx1√
P(x1)

+
dx2√
P(x2)

=
ds1√
J(s1)

− dx1√
P(x1)

+
dx2√
P(x2)

=
ds2√
J(s2)

(18)

and finally
ds1√
Φ(s1)

+
ds2√
Φ(s2)

= 0

s1 ds1√
Φ(s1)

+
s2 ds2√
Φ(s2)

= ıdt,
(19)

where
Φ(s) = J(s)(s− k)(s+ k),

where Φ is a polynomial of degree up to six.

Thus, relations (19) define the Abel map on a genus 2 curve

y2 = Φ(s).

¤
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2.2 A new example of an integrable system of the Kowalevski type

Now, we are going to present a new example of system of the Kowalevski type.

Let us consider the next system of differential equations:

ṗ =−rq γ̇1 = 2(qγ3− rγ2)
q̇ =−rp− γ3 γ̇2 = 2(pγ3− rγ1)

ṙ =−2q(2p+1)−2γ2 γ̇3 = 2(p2−q2)q−2qγ1 +2pγ2.

(20)

After a change of variables

x1 = p+q, x2 = p−q,

e1 = x2
1 + γ1 + γ2, e2 = x2

2 + γ1− γ2,

system (20) becomes

ẋ1 =−rx1− γ3 ė1 =−2re1

ẋ2 = rx2 + γ3 ė2 = 2re2

ṙ =−x1 + x2− e1 + e2 γ̇3 = x2e1− x1e2.

(21)

We can write down the first integrals of system (21) in the next form

r2−2(x1 + x2)− e1− e2 = h

rγ3 + x1x2 + x2e1 + x1e2 =−g2

4

γ2
3 − x2

2e1− x2
1e2 =−g3

2
e1 · e2 = k2.

(22)

In order to write down explicit formulae for solution of system directly in terms of Weier-
strass ℘ function, we will suppose that constant of motion h = 0. Then, like in Kowalevski’s
case, from integrals (22) we get a relation in the form of (16)

(x1− x2)2e1e2 +
(

2x3
1−

g2

2
x1− g3

2

)
e2 +

(
2x3

2−
g2

2
x2− g3

2

)
e1

−
(

x2
1x2

2 + x1x2
g2

2
+g3(x1 + x2)+

g2
2

16

)
= 0.

(23)

Following the procedure described in Theorem 1 we get

dx1√
P(x1)

+
dx2√
P(x2)

=
ds1√
P(s1)

dx1√
P(x1)

− dx2√
P(x2)

=
ds2√
P(s2)

(24)

where P(x) denotes the polynomial

P(x) = 2x3− g2

2
x− g3

2
, (25)
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and s1, s2 are the solutions of quadratic equation in s:

F (x1,x2,s) := A(x1,x2)s2 +B(x1,x2)s+C(x1,x2)

= (x1− x2)2s2 +
(
−2x1x2(x1 + x2)+

g2

2
(x1 + x2)+g3

)
s

+ x2
1x2

2 + x1x2
g2

2
+g3(x1 + x2)+

g2
2

16
= 0.

(26)

Finally, we get

Proposition 1 The system of differential equations defined by (20) is integrated through the
solutions of the system

ds1√
Φ(s1)

+
ds2√
Φ(s2)

= 0

s1 ds1√
Φ(s1)

+
s2 ds2√
Φ(s2)

= 2dt,
(27)

where
Φ(s) = P(s)(s− k)(s+ k).

2.3 Explicit integration in genus two theta functions

This Section is devoted to explicit integration of the system (20). Integration procedure
will be done in two ways. The first one is based on Kowalevski [10] and uses properties of
elliptic functions. The second one follows Kötter [9] and Golubev [7]. A generalization of
Kötter transformation was derived in [4] for a polynomial P(x) of degree four. Here we will
reformulate such a transformation for P(x) of degree three.

We are going to consider here, as in [10], the case where the zeros li, i = 1, 2, 3 of the
polynomial P of degree three are real and l1 > l2 > l3. Denote

l = (l1− l2)(l2− l3)(l3− l1).

Following Kowalevski, we consider functions

Pi =
√

(s1− li)(s2− li), i = 1,2,3 (28)

and

Pi j = PiPj

(
ṡ1

(s1− li)(s1− l j)
+

ṡ2

(s2− li)(s2− l j)

)
. (29)

Then by simple calculations one gets

Ṗi j =
1
2

PiPj

Ṗ1 =
P3P13−P2P12

2(l2− l3)
, Ṗ2 =

P1P12−P3P23

2(l3− l1)
, Ṗ3 =

P2P23−P1P13

2(l1− l2)
.

(30)

We will now derive expressions for p, q, r, γ1, γ2, γ3 in terms of Pi, Pi j functions for i, j =
1, 2, 3.
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Denote by

dui =
dxi√

4x3
i −g2xi−g3

, i = 1,2.

Then
xi =℘(ui),

and dividing both equations of system (24) with
√

2 we see that

s1 =℘(u1 +u2), s2 =℘(u1−u2).

We use the next properties of ℘-function, see [10]:

℘(u1)+℘(u2) =−2
(l2

2 − l2
3)P1 +(l2

3 − l2
1)P2 +(l2

1 − l2
2)P3

(l2− l3)P1 +(l3− l1)P2 +(l1− l2)P3
,

℘(u1)−℘(u2) =
−2l

(l2− l3)P1 +(l3− l1)P2 +(l1− l2)P3
,

℘(u1) ·℘(u2) =−[ (l2− l3)(l2
1 + l2l3)P1 +(l3− l1)(l2

2 + l1l3)P2

(l2− l3)P1 +(l3− l1)P2 +(l1− l2)P3

+
(l1− l2)(l2

3 + l1l2)P3

(l2− l3)P1 +(l3− l1)P2 +(l1− l2)P3

]
.

(31)

After some calculations, we get the next expressions for variables p, q, r, γ1, γ2, γ3 in
terms of Pi and Pi j functions for i, j = 1,2,3:

p =
x1 + x2

2
=

℘(u1)+℘(u2)
2

=− (l2
2 − l2

3)P1 +(l2
3 − l2

1)P2 +(l2
1 − l2

2)P3

(l2− l3)P1 +(l3− l1)P2 +(l1− l2)P3
, (32)

q =
x1− x2

2
=

℘(u1)−℘(u2)
2

=− l
(l2− l3)P1 +(l3− l1)P2 +(l1− l2)P3

, (33)

r =− ṗ
q

=
1
2

(l1− l2)P12 +(l2− l3)P23 +(l3− l1)P13

(l2− l3)P1 +(l3− l1)P2 +(l1− l2)P3
, (34)

γ1 =
r2

2
− p2−q2−2p

=
((l1− l2)P12 +(l2− l3)P23 +(l3− l1)P13)

2

8((l2− l3)P1 +(l3− l1)P2 +(l1− l2)P3)
2

−
(
(l2

2 − l2
3)P1 +(l2

3 − l2
1)P2 +(l2

1 − l2
2)P3

)2 + l2

((l2− l3)P1 +(l3− l1)P2 +(l1− l2)P3)
2

+2
(l2

2 − l2
3)P1 +(l2

3 − l2
1)P2 +(l2

1 − l2
2)P3

(l2− l3)P1 +(l3− l1)P2 +(l1− l2)P3
,

(35)
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γ2 =−q(2p+1)− ṙ
2

=
l

((l2− l3)P1 +(l3− l1)P2 +(l1− l2)P3)
2

· [(l2− l3−2l2
2 +2l2

3)P1 +(l3− l1−2l2
3 +2l2

1)P2

+(l1− l2−2l2
1 +2l2

2)P3
]

− ((l2− l3)P2P3 +(l3− l1)P1P3 +(l1− l2)P1P2)
8(l2− l3)P1 +(l3− l1)P2 +(l1− l2)P3

− (l2− l3)P23 +(l3− l1)P13 +(l1− l2)P12

8((l2− l3)P1 +(l3− l1)P2 +(l1− l2)P3)
2

· (P3P13 +P1P12 +P2P23−P2P12−P1P13−P3P23) ,

(36)

γ3 =−(q̇+ rp)

=
1
2

(l2
2 − l2

3)P1 +(l2
3 − l2

1)P2 +(l2
1 − l2

2)P3

((l2− l3)P1 +(l3− l1)P2 +(l1− l2)P3)
2

· ((l1− l2)P12 +(l2− l3)P23 +(l3− l1)P13)

− l
2

P3P13 +P1P12 +P2P23−P2P12−P1P13−P3P23

((l2− l3)P1 +(l3− l1)P2 +(l1− l2)P3)
2 .

(37)

Now, we will perform integration following Kötter [9] and Golubev [7]. First, we will
formulate an extension of Kötter’s transformation for a degree three polynomial P(x) = 2x3−
g2
2 x− g3

2 .

Proposition 2 For a polynomial F (x1,x2,s) given with formula (26), there exist polynomials
α(x1,x2,s), β (x1,x2,s), P(s) such that the following identity

F (x1,x2,s) = α2(x1,x2,s)+P(s)β (x1,x2,s), (38)

is satisfied. The polynomials are defined by the formulae:

α(x1,x2,s) = 2s2 + s(x1 + x2)− x1x2− g2

4
β (x1,x2,s) =−2(x1 + x2 + s)

P(s) = 2s3− g2

2
s− g3

2
,

where P coincides with the polynomial from formula (25).

Proof. The proof follows by a direct calculation. ¤

Define

F̂ (s) =
F (x1,x2,s)
(x1− x2)2 ,

and consider the identity
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F̂ (s) = (s−u)2 +(s−u)F̂ ′(u)+ F̂ (u).

Then, from (38) we get

(s−u)2(x1− x2)2 +2(s−u)
(

u(x1− x2)2 +
B(x1,x2)

2

)

+α2(x1,x2,u)+P(u)β (x1,x2,u) = 0.

Corollary 1 (a) The solutions s1,s2 of the last equation in s satisfy an identity in u:

(s1−u)(s2−u) =
α2(x1,x2,u)
(x1− x2)2 +P(u)

β (x1,x2,u)
(x1− x2)2 ,

where P(u) is a polynomial defined with (25).

(b) Functions Pi satisfy

Pi =
α(x1,x2, li)

x1− x2
=

(
2l2

i −
g2

4

) 1
x1− x2

+ li
x1 + x2

x1− x2
− x1x2

x1− x2
. (39)

Now we introduce a more convenient notation

X =
x1x2

x1− x2
, Y =

1
x1− x2

, Z =
x1 + x2

x1− x2
.

Lemma 1 The quantities X ,Y,Z satisfy the system of linear equations

−X +
(

2l2
1 −

g2

4

)
Y + l1Z = P1

−X +
(

2l2
2 −

g2

4

)
Y + l2Z = P2

−X +
(

2l2
3 −

g2

4

)
Y + l3Z = P3.

(40)

The solutions of the system (40) are

Y =
(l2− l3)P1 +(l3− l1)P2 +(l1− l2)P3

−2l
,

Z =
(l2

2 − l2
3)P1 +(l2

3 − l2
1)P2 +(l2

1 − l2
2)P3

l
,

X =−( (g2 +8l2l3)(l2− l3)P1 +(g2 +8l3l1)(l3− l1)P2

8l

+
(g2 +8l1l2)(l1− l2)P3

8l

)
.

(41)
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Using Viète formulae for polynomial P(x) we can rewrite X in the form

X =
(l2− l3)(l2

1 + l2l3)P1 +(l3− l1)(l2
2 + l1l3)P2 +(l1− l2)(l2

3 + l1l2)P3

2l
.

Now, from the expressions for X , Y, Z we get

q =
x1− x2

2
=

1
2Y

,

p =
x1 + x2

2
=

Z
2Y

.

Expressions for r and γi, i = 1,2,3 can be derived in terms of Pi,Pi j functions from equa-
tions of the system (20), see formulae (32)-(37).

3 Integrable subclass of systems of the Kowalevski type

Now we will present a whole new class of integrable systems of the same type as systems
introduced in the previous section. We are looking for a system with possible first integrals
of the form

r2 = E + p2e1 + p1e2

rγ3 = F−q2e1−q1e2

γ2
3 = G+ r2e1 + r1e2

e1 · e2 = k2,

(42)

Here E,F,G, pi,qi,ri are functions of x1,x2.

Theorem 2 For a system which reduces to (14), (15), (16) with

fi = xmi
i · r + xni

i · γ3

for mi, ni ∈ Z, i = 1,2 and at least on of conditions m1 6= n1 or m2 6= n2 is valid, relations
(42) are satisfied for following coefficients:

p1 =
Ax2n1

1
(xm1

1 xn2
2 − xm2

2 xn1
1 )2 p2 =

Ax2n2
2

(xm1
1 xn2

2 − xm2
2 xn1

1 )2

q1 =
Axn1+m1

1
(xm1

1 xn2
2 − xm2

2 xn1
1 )2 q2 =

Axn2+m2
1

(xm1
1 xn2

2 − xm2
2 xn1

1 )2

r1 =
Ax2m1

1
(xm1

1 xn2
2 − xm2

2 xn1
1 )2 r2 =

Ax2m2
2

(xm1
1 xn2

2 − xm2
2 xn1

1 )2
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Ei =
x2n2

2 P(x1)+ x2n1
1 P(x2)±B(x1,x2)x

n1
1 xn2

2
(xm1

1 xn2
2 − xm2

2 xn1
1 )2 , i = 1,2

Fi =
Ei(x

2m1
1 x2n2

2 − x2n1
1 x2m2

2 )+ x2n1
1 P(x2)− x2n2

2 P(x1)
2xn1

1 xn2
2 (xn1

1 xm2
2 − xm1

1 xn2
2 )

, i = 1,2

Gi =
Eix

m1
1 xm2

2 (xm1
1 xn2

2 − xn1
1 xm2

2 )+ xm1+n1
1 P(x2)− xm2+n2

2 P(x1)
xn1

1 xn2
2 (xm1

1 xn2
2 − xn1

1 xm2
2 )

, i = 1,2.

Here by B(x1,x2) we denoted a function in two variables such that

B2(x1,x2) = 4A(x1,x2)C(x1,x2)+4P(x1)P(x2).

Proof. Replacing (42) into condition (15) with fi = xmi
i ·r+xni

i ·γ3, we get r2x2mi
i +2rγ3xmi+ni

i +
γ2

3 x2ni
i = P(xi)+ eiA(x1,x2). Collecting coefficients with ei we obtain system

p2x2m1
1 −2q2xm1+n1

1 + r2x2n1
1 = A(x1,x2)

p1x2m1
1 −2q1xm1+n1

1 + r1x2n1
1 = 0

Ex2m1
1 +2Fxm1+n1

1 +Gx2n1
1 = P(x1)

p1x2m2
2 −2q1xm2+n2

2 + r1x2n2
2 = A(x1,x2)

p2x2m2
2 −2q2xm2+n2

2 + r2x2n2
2 = 0

Ex2m2
2 +2Fxm2+n2

2 +Gx2n2
2 = P(x2)

(43)

with solutions:

p1 =
A(x1,x2)x

2n1
1

(xm1
1 xn2

2 − xm2
2 xn1

1 )2 , r1 =
A(x1,x2)x

2m1
1

(xm1
1 xn2

2 − xm2
2 xn1

1 )2 ,

p2 =
A(x1,x2)x

2n2
2

(xm1
1 xn2

2 − xm2
2 xn1

1 )2 , r2 =
A(x1,x2)x

2m2
2

(xm1
1 xn2

2 − xm2
2 xn1

1 )2 ,

F =
(x2n2

2 x2m1
1 − x2n1

1 x2m2
2 )E + x2n1

1 P(x2)− x2n2
2 P(x1)

2(x2n1
1 xm2+n2

2 − x2n2
2 xm1+n1

1 )
,

G =− (xm2+n2
2 x2m1

1 − x2m2
2 xm1+n1

1 )E− xm2+n2
2 P(x1)+ xm1+n1

1 P(x2)

x2n1
1 xm2+n2

2 − x2n2
2 xm1+n1

1

.

The second assumption is that the relation

(E + p2e1 + p1e2)(G+ r2e1 + r1e2)− (F−q2e1−q1e2)2 = 0 (44)

is in the form (16). According to (16), the coefficients of e2
i should vanish, so we get:

q1 =
A(x1,x2)x

n1+m1
1

(xm1
1 xn2

2 − xm2
2 xn1

1 )2 , q2 =
A(x1,x2)x

n2+m2
2

(xm1
1 xn2

2 − xm2
2 xn1

1 )2 .

Replacing these results into (44) it becomes
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A
(xm1

1 xn2
2 − xn1

1 xm2
2 )2 (Ae1e2 +P(x2)e1 +P(x1)e2 +ϕ(E)) = 0

with ϕ(E), a quadratic function of E

ϕ(E) =−E2 (xm1−n1
1 − xm2−n2

2 )2

4
+E

P(x1)

x
2n1
1

+ P(x2)

x
2n2
2

2
− (P(x1)x

2n2
2 −P(x2)x

2n1
1 )2

4x2n1
1 x2n2

2 (xn1
1 xm2

2 − xm1
1 xn2

2 )2
.

Finally, solving the quadratic equation

A
(xm1

1 xn2
2 − xn1

1 xm2
2 )2 ϕ(E) =−C,

we get the solutions

Ei =
x2n2

2 P(x1)+ x2n1
1 P(x2)±B(x1,x2)x

n1
1 xn2

2
(xm1

1 xn2
2 − xm2

2 xn1
1 )2 , i = 1,2. (45)

¤

Remark 1 The discriminant of

F (x1,x2,s) = A(x1,x2)s2 +B(x1,x2)s+C(x1,x2)

as a polynomial in s is factorizable

DsF (x1,x2) = B2(x1,x2)−4(x1− x2)2C(x1,x2) = 4P(x1)P(x2).

If we choose A(x1,x2), C(x1,x2) to be quadratic polynomials in each x1, x2 and P(x) to be a
polynomial of degree three or four, an integration of the systems which satisfy assumption of
Theorem 1, will be performed in terms of theta-function of genus two.

Remark 2 Relations (42) with values of pi,qi,ri,E,F,G obtained in Theorem 2 will repre-
sent either the first integrals or will define submanifold on which corresponding system is
integrable, as we will show on next example.

Example 1 Now we will apply Theorem 2 to the Kowalevski case, which has been briefly
presented in the Introduction. Denote by

A = (x1− x2)2,

B = x2
1x2

2−6l1x1x2−2cl(x1 + x2)− (c2− k2),

C = 6l1x2
1x2

2 +(c2− k2)(x1 + x2)2 +4lcx1x2(x1 + x2)−6l1(c2− k2)+4l2c2,

P(x) = x4−6l1x2−4clx2− c2 + k2

the polynomials that appear in the Kowalevski fundamental equation (9). Applying Theorem
2 we get

p1 = 1, p2 = 1, q1 = x1, q2 = x2, r1 = x2
1, r2 = x2

2.
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The expressions for E,F,G we will denote by Ei,Fi,Gi, i = 1,2 depending on choice of a sign
in the expression for E:

E1 = 6l1− (x1 + x2)2

F1 = x1x2(x1 + x2)+2cl

G1 =−x2
1x2

2 + c2− k2,

and

E2 =−x4
1−6x2

1l1−8clx1 + x4
2−6l1x2

2−8clx2−4c2 +4k2 +2x2
2x2

1−12l1x1x2

(x1− x2)2

F2 =
1

(x1− x2)2 (x4
1x2 + x3

1x2
2−12x2

1l1x2−2x2
1cl +2x1(k2− c2)−12lcx1x2

+ x1x4
2 + x2

1x3
2−12x1l1x2

2−2lcx2
2 +2x2(k2− c2))

G2 =−x2
1x2

2(x
2
1 + x2

2)+2x3
2x3

1−24l1x2
1x2

2 +(k2− c2)(x1 + x2)2

(x1− x2)2

+
8lcx1x2(x1 + x2)

(x1− x2)2 .

The expressions E1,F1,G1 correspond to the original Kowalevski case and for these val-
ues relations (42) are the first integrals of the Kowalevski’s top.

The expressions E2,F2,G2 correspond to a new system. By differentiating the first and the
third relation (42) for E2,F2,G2 instead of E,F,G, for a system which reduces to (14), (15),
(16) with fi = rxi + γ3 we get

ṙ =
ı

2r(x1− x2)3

[
(x5

2 + x5
1)r−8(k2− c2)γ3 +24lcrx1x2 +12l1γ3(x1 + x2)2

−2x2
1x2

2r(x1 + x2)−3x1x2r(x3
1 + x3

2)−4x1x2γ3(x2
1 + x2

2)

−4(k2− c2)r(x1 + x2)+4lcr(x2
1 + x2

2)+24l1x1x2r(x1 + x2)

+16clγ3(x1 + x2)+m(x1− x2)3(e1 + e2)ı
]
,

γ̇3 =
−ı

2γ3(x1− x2)3

[
x1x2γ3(x4

1 + x4
2)+4x3

1x3
2r(x1 + x2)+2(k2− c2)γ3(x2

1 + x2
2)

+2x2
1x2

2γ3(x2
1 + x2

2 + x1x2)−16lcγ3x1x2(x1 + x2)+4(k2− c2)x1x2(x1 + x2)

−32clx2
1x2

2r−24l1x1x2γ3(x2
1 + x2

2)−24l1x2
1x2

2r(x1 + x2)+4k2x1x2γ3

+(mx1ı+ γ3 + x1r)x1(x1− x2)3e2− (mx2ı+ γ3 + x2r)x2(x1− x2)3e1
]
.

Finally, by differentiating of the second relation

rγ3 = F2− x2e1− x1e2

and by substituting obtained expressions for ṙ and γ̇3, we get value for so far unknown func-
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tion m:

m = ır +
1

(x1− x2)3(rx1 + γ3)2e2− (x1− x2)3(rx2 +g)2e1

[4x1x2r3(x2
1x2

2(x1 + x2)+(k2− c2)(x1 + x2)−6l1x1x2(x1 + x2)−8clx1x2)

+4γ3r2((k2− c2)(x2
1 + x2

2 +4x1x2)+2x2
1x2

2(x
2
1 + x2

2 + x1x2)

−9l1x1x2(x1 + x2)2−12lcx1x2(x1 + x2))+4γ2
3 r(x1x2(x3

1 + x3
2)

+2x2
1x2

2(x1 + x2)−14clx1x2−15l1x1x2(x1 + x2)−3l1(x3
1 + x3

2)

+3(k2− c2)(x1 + x2)−5lc(x2
1 + x2

2))+4γ3
3 (x1x2(x2

1 + x22)−3l1(x2
1 + x2

2)

−4cl(x1 + x2)−6l1x1x2 +2(k2− c2))].
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Abstract. In this talk we present integrable variants of the Neumann systems on Vn,r . For
more details and further generalizations, see our paper [6].

1. Introduction

1.1. A Stiefel variety Vn,r ∼= SO(n)/SO(n− r) is the variety of r ordered orthogonal unit
vectors (e1, . . . ,er) in the Euclidean space Rn or, equivalently, the set of n× r matrices

X = (e1 · · ·er) ∈Mn,r(R)

satisfying the condition XT X = Ir, where Ir is an r× r unit matrix. Thus Vn,r is a smooth
subvariety of dimension N = rn−r(r+1)/2 in the space of n×r real matrices Mn,r(R) =Rnr

and the components of X are redundant coordinates on it. In particular, Vn,1 is a sphere Sn−1,
while both Vn,n and Vn,n−1 are diffeomorphic to SO(n).

The tangent bundle TVn,r is the set of pairs (X , Ẋ) subject to the constraints XT X = Ir,
XT Ẋ + ẊT X = 0. On the other hand, the cotangent bundle T ∗Vn,r can be realized as the set
of pairs of n× r matrices (X ,P) that satisfy the constraints

XT X = Ir, XT P+PT X = 0 . (1)

The canonical symplectic structure ω on T ∗Vn,r is the restriction of the canonical 2-form
in the ambient space T ∗Mn,r(R), ω0 = ∑n

i=1 ∑r
s=1 d pi

s∧ dei
s.

It is convenient to work with the redundant variables (X ,P). The Hamiltonian equations
with a Hamiltonian H(X ,P) read

Ẋ =
∂H
∂P

−XΠ, (2)

Ṗ =−∂H
∂X

+XΛ+PΠ , (3)

where Λ and Π are r× r symmetric matrix Lagrange multipliers uniquely determined from
the condition for the trajectory (X(t),P(t)) to satisfy constraints (1).
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1.2. The famous Neumann system on the sphere Sn−1 is defined as a natural mechanical
system with the Hamiltonian (see [13, 11]):

Hneum =
1
2
(p, p)+

1
2
(Ae,e), A = diag(a1, . . . ,an),

where the cotangent bundle T ∗Sn−1 is realized as a submanifold of R2n{e, p} given by the
constraints (e,e) = 1, (e, p) = 0. This system, together with the Jacobi problem on the
geodesic flow on an ellipsoid, provides one of the basic and most beautiful examples of
application of algebraic geometric tools to integrable systems (e.g, see [7, 12, 1]).

The Neumann systems on Vn,r that we consider have the kinetic energy of SO(n)×
SO(r)-invariant metrics ds2

κ (linear combinations of the Euclidean and normal metrics) and
the potential function

V =
1
2

tr(XT AX) =
1
2

r

∑
i=1

(ei,Aei). (4)

The systems are completely integrable the noncommutative sense, that is, the motion
occur on invariant isotropic tori of dimension less then the dimension of Vn,r (Theorem 2,
Section 2). In particular, for the motion without the Neumann potential, we get that the
geodesic flows of the metric ds2

κ is completely integrable in the non-commutative sense
(Theorem 3).

Two matrix Lax representations are presented. The first, a "big" one, given by Theorem
1 is closely related to the symmetric Clebsch–Perelomov rigid body problem [14]. For r = 1,
it was given by Moser in [11] and for r > 1 and the case of the Manakov type submersion
metrics by Reyman and Semenov–Tian-Shanski [15] within the framework of the R-matrix
method. Note that for r > 1 this Lax pair does not define a Neumann system on Vn,r uniquely
In contrast, the second (dual, or "small") Lax pairs, given by Theorem 4 are equivalent to the
Neumann systems with the Euclidean and normal metrics up to an action of a finite discrete
group. For the Neumann system with the Euclidean metric, the small Lax pair was first given
in the unpublished manuscript [9].

In Section 3 we give a geometric interpretation of the integrals of the Neumann systems
on Vn,r obtained from the dual Lax representation. Our geometric model generalizes the
celebrated Chasles theorem describing a geometric relation between the geodesic flow on an
ellipsoid and common tangent lines of confocal quadrics ([4, 11, 10]). The Chasles theorem
is adopted for the Neumann system on a sphere by Moser (see Theorem 4.10 in [12]).

2. The Neumann Systems and SO(n)×SO(r)-invariant geodesic flows

2.1. While on the sphere Sn−1 an SO(n)-invariant kinetic energy is unique (up to
multiplication by a constant factor), on the variety Vn,r with r > 1 there are many different
SO(n)-invariant metrics. We consider the kinetic energy defined as follows.

The Lie groups SO(n) and SO(r) naturally act on T ∗Vn,r by left and right multiplications,
respectively:

R · (X ,P) = (RX ,RP), R ∈ SO(n) (5)
(X ,P) ·Q = (XQ,PQ), Q ∈ SO(r). (6)

The actions (6) and (6) are Hamiltonian. The corresponding equivariant momentum
mappings Φ : T ∗Vn,r → so(n)∗ ∼= so(n) and Ψ : T ∗Vn,r → so(r)∗ ∼= so(r) are given by:

Φ(X ,P) = PXT −XPT , Ψ(X ,P) = XT P−PT X .
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The momentum mappings Φ and Ψ are invariant under the SO(r) and SO(n) actions,
respectively. Therefore, the kinetic energy given by

Hκ(X ,P) =
1
2
〈Φ,Φ〉+ κ

2
〈Ψ,Ψ〉=

1
2

tr(PT P)−
(

1
2

+κ
)

tr((XT P)2) (7)

is SO(n) × SO(r)-invariant. Within the class of the metrics ds2
κ determined by the

Hamiltonian functions (7) there is the normal metric (κ = 0) and the Euclidean metric
(κ = −1/2). Moreover, for r = 2 there is a unique value of κ , while for r > 2 there are
exactly two values, such that ds2

κ is an Einstein metric (see [8]).

2.2. The Hamiltonian of the Neumann system has the form

Hneum,κ(X ,P) =
1
2

tr(PT P)−
(

1
2

+κ
)

tr((XT P)2)+
1
2

tr(XT AX) (8)

and the corresponding Hamiltonian equations (3) take the form
Ẋ = P− (1+2κ)XPT X ,

Ṗ =−AX−XPT P+(1+2κ)PXT P+XXT AX . (9)
Note that Hamiltonians (8) are right SO(r)-invariant, so the momentum mapping Ψ is

conserved by the flows (9) for any parameter κ . In particular, for κ = 0 we get the Neumann
system with the normal metric given by

Ẋ = P−XPT X ,

Ṗ =−AX +PXT P+XΛ =−AX +PXT P−XPT P+XXT AX , (10)
while for κ = −1/2 we get the Neumann system with the Euclidean metric with the
corresponding Hamilton equations

Ẋ = P,

Ṗ =−AX +XΛ =−AX−XPT P+XXT AX . (11)

2.3. Although for different κ the flows (9) do not coincide, the derivatives of the momentum
Φ and of the symmetric matrix XXT are the same:

d
dt

Φ = [XXT ,A] ,
d
dt

(XXT ) = [Φ,XXT ] . (12)

As a result, the following theorem holds.

Theorem 1 Equations (9), in particular (10) and (11), imply the same n× n matrix Lax
representation with a spectral parameter λ :

d
dt

Lneum(λ ) = [Aneum(λ ),Lneum(λ )]

Lneum(λ ) = λΦ+XXT −λ 2A, Aneum(λ ) = Φ−λA.

The coefficients of the spectral curve Γ ⊂ C2{λ ,ν}: det(Lneum(λ )− µIn) = 0 give us
the commuting integrals of both systems, which can be expressed in the form

F = {tr(λ (PXT −XPT )+XXT −λ 2A)k |k = 1, . . . ,n, λ ∈ R}. (13)
By using Bolsinov’s completeness condition for a set of Casimir functions of the

pencil of compatible Poisson brackets on the reduced space (T ∗Vn,r)/SO(r) (see [2]) and
a construction of noncommutative integrable systems related to Hamiltonian actions of Lie
groups (see [3]), we obtain:
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Theorem 2 ([6]) Let all the eigenvalues of A be distinct. Then the Neumann systems (9),
in particular (10) and (11), are completely integrable in the non-commutative sense with
the non-commutative set of integrals given by (13) and by the components of the SO(r)-
momentum mapping Ψ. The generic trajectory (X(t),P(t)) corresponding to the maximal
rank of the momentum Ψ is quasi-periodic over isotropic tori of dimension

1
2

(
2r(n− r)+

r(r−1)
2

−
[ r

2

])
+

[ r
2

]
.

2.4. In particular, for the motion without the Neumann potential, we get

Theorem 3 ([6]) The geodesic flows of metrics ds2
κ with the Hamiltonian functions (7) are

completely integrable in the non-commutative sense. The complete algebra of first integrals
is

Φ∗(C∞(so(n))+Ψ∗(C∞(so(r))+C∞(T ∗Vn,r)SO(n)×SO(r),

where C∞(T ∗Vn,r)SO(n)×SO(r) is the algebra of SO(n)×SO(r)-invariant functions on T ∗Vn,r.

3. The Chasles theorems for Neumann flows

3.1 The dual Lax pair for the generalized Neumann system (11) was first given in
unpublished manuscript [9]. For r = 1 it gives the known 2× 2 Lax pair for the Neumann
system (e.g.,see [11]). In general, we have:

Theorem 4 ([6]) Up to the action of a discrete groupZn
2 generated by reflections with respect

to the coordinate hyperplanes in Rn,

(X ,P) 7−→ (SiX ,SiP), i = 1, . . . ,n,

Si(x1, . . . ,xn) = (y1, . . . ,yn), y j = x j, j 6= i, yi =−xi,

the Neumann flows (10) and (11) are equivalent to the following 2r×2r matrix Lax pair with
a rational spectral parameter λ

d
dt

L ∗
neum(λ ) = [L ∗

neum(λ ),A ∗
neum(λ )],

L ∗
neum(λ ) =

( −XT (λ In−A)−1P −XT (λ In−A)−1X
Ir +PT (λ In−A)−1P PT (λ In−A)−1X

)
,

where for system (10), respectively (11), one should put

A ∗
neum(λ ) =

(
XT P Ir

Λ−λ Ir −PT X

)
, A ∗

neum(λ ) =
(

0 Ir
Λ−λ Ir 0

)
,

where Λ = XT AX−PT P.

The statement is checked straightforwardly by using constraints (1) and the matrix
identities

A(λ In−A)−1 = (λ In−A)−1A = λ (λ In−A)−1− In .
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3.2. Let a(λ ) = (λ−a1) · · ·(λ−an). The spectral curve of L ∗
neum(λ ) can be written in form

|a(λ )L ∗
neum(λ )−wIn| ≡w2r +w2r−2a(λ )I2(λ )+· · ·+w2a2r−3(λ )I2r−2(λ )+a2r−1I2r(λ )= 0,

where I2l(λ ) are invariant polynomials in the components of the wedge products
e j1 ∧·· ·∧ e j j and

e1 ∧·· ·∧ er,

e1 ∧·· ·∧ er ∧ pi, i = 1, . . . ,r,

· · · · · · · · · · · · (14)
e1 ∧·· ·∧ er ∧ p1∧·· ·∧ pr.

Note that, due to the symplectic block structure of L ∗
neum(λ ), the coefficients at odd powers

of w in the spectral curve are zero.
In the case 2r ≤ n the polynomials can be written in form

I2(λ ) =
n

∑
i=1

a(λ )
λ −ai

(
(ei

1)
2 + · · ·+(ei

r)
2)+ ∑

1≤i< j≤n

a(λ )
(λ −ai)(λ −a j)

Φ2
i j ,

· · · · · ·
I2l(λ ) = ∑

Il

a(λ )
(λ −ai1) · · ·(λ −ail )

∑
Jl={ j1,..., jl}

(e j1 ∧·· ·∧ e jl )
2
Il

+ ∑
Il+1

a(λ )
(λ −ai1) · · ·(λ −ail+1)

∑
Jl ,1≤i≤r

(e j1 ∧·· ·∧ e jl ∧ pi)2
Ir+1

+ · · · ,

· · · · · ·
I2r(λ ) = ∑

Ir

a(λ )
(λ −ai1) · · ·(λ −air)

(e1∧·· ·∧ er)2
Ir

+ ∑
Ir+1

a(λ )
(λ −ai1) · · ·(λ −air+1)

r

∑
i=1

(e1∧·· ·∧ er ∧ pi)2
Ir+1

+ ∑
Ir+2

a(λ )
(λ −ai1) · · ·(λ −air+2)

∑
1≤i< j≤r

(e1∧·· ·∧ er ∧ pi∧ p j)2
Ir+2

+ · · ·

+∑
I2r

a(λ )
(λ −ai1) · · ·(λ −ai2r)

|Φ|I2r
I2r

, (15)

where Ik = {i1, . . . ik}⊂ {1, . . . ,n} is the multi-index with distinct indices 1≤ i1 < · · ·< ik ≤ n
and |Φ|IkIk is the k× k diagonal minor of the momentum matrix Φ corresponding to the multi-
index Ik. Note that, in view of definition of Φ,

|Φ|I2r
I2r

= (e1∧·· ·∧ er ∧ p1∧·· ·∧ pr)2
I2r

.

In the case 2r > n the polynomials I2l(λ ) have the same form with the only difference:
the terms with the wedge products of ei, p j of order > n are absent.

It follows that in both cases I2l(λ ) are polynomials in λ of degree n− l and that the
leading coefficients of I2(λ ), . . . ,I2r(λ ) produce trivial constants on V (r,n). Note that,
although the Lax matrix L ∗

neum(λ ) is not invariant under the right SO(r)-action, the spectral
curve and therefore all the integrals I2l(λ ) are SO(r)-invariant. Like the "big" Lax matrix
Lneum(λ ) in (13), the dual Lax matrix L ∗

neum(λ ) does not produce explicitly the momenta
integrals Ψi j.
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3.3. The components of forms (14) that appear in the last invariant polynomial I2r(λ ) have
a transparent geometric interpretation: they are Plücker coordinates of the 2r-dimensional
linear subspace (2r-plane)

Σ̄ = Σ̄(X ,P)⊂ Rn+r(x1, . . . ,xn,y1, . . . ,yr)

spanned by the columns of the 2r× (n+ r) matrix

V = V (X ,P) =




e1 · · · er p1 · · · pr
0 · · · 0
...

... Ir
0 · · · 0


 , (16)

Ir being the identity r×r matrix. Indeed, for any k,m(k < m), the Plücker coordinates of a k-
plane π in Rm(x1, . . . ,xm) spanned by independent vectors v1, . . . ,vk ∈Rm are the coefficients
GI of the polynomial

v1∧·· ·∧ vk = ∑
I

GI dxi1 ∧·· ·∧dxik ,

where I = {i1, . . . ik} ⊂ {1, . . . ,n} is the multi-index with 1≤ i1 < · · ·< ik ≤ n.
Then the Plücker coordinates of Σ̄ are given by all 2r× 2r minors of V . In particular,

the 2r× 2r minors that completely contain Ir give the Plücker coordinates of the r-plane
span(e1, . . . ,er)⊂ Rn.

Now consider the following family of confocal cones in Rn+r(x1, . . . ,xn,y1 . . . ,yr)

Q̄(λ ) =
{

x2
1

λ −a1
+ · · ·+ x2

n

λ −an
+ y2

1 + · · ·+ y2
r = 0

}
, λ ∈ R. (17)

Based on the method developed in [5], the following theorem is a first variant of a
generalization of the remarkable Chasles theorem.

Theorem 5 ([6]) Let the 2r-plane Σ̄(t) ⊂ Rn+r be associated to a generic solution
(X(t),P(t)) of the Neumann systems (10) and (11) on Vn,r as described above. Then Σ̄(t)
is tangent simultaneously to n−r fixed confocal cones Q̄(c1), . . . , Q̄(cn−r), where c1, . . . ,cn−r
are the roots of the invariant polynomial I2r(λ ).

One can show that for real solutions (X(t),P(t)) all these cones are real.
In the particular case r = 1, one can also consider the section of Σ̄ and of the family Q̄(λ )

by the subspace {y1 = 1}∼=Rn, which give respectively an affine line l(t) = p(t)+span{e(t)}
and the family of confocal quadrics

Q(λ ) =
{

x2
1

a1−λ
+ · · ·+ x2

n

an−λ
= 1

}
.

Then, due the above theorem, l(t) is tangent to n−1 fixed quadrics Q(c1), . . . ,Q(cn−r), and
we recover Moser’s variant of the Chasles theorem given for the Neumann system (see [12]).
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3.4. By analogy with the case r = 1, one can consider the restriction of family (17) to the
linear subspace {y1 = · · ·= yr = 1}:

Qr(λ ) = i−1 (
Q̄(λ )∩{y1 = 1, . . . ,yr = 1})

=
{

x2
1

a1−λ
+ · · ·+ x2

n

an−λ
= r

}
, (18)

where i : Rn → Rn+r is the natural inclusion i(x1, . . . ,xn) = (x1, . . . ,xn,1, . . . ,1). This gives a
family of confocal quadrics in Rn.

Further, the section of Σ̄ by the subspace {y1 = · · ·= yr = 1} defines an affine r-plane

Σ(t) = i−1 (
Σ̄∩{y1 = · · ·= yr = 1})⊂ Rn(x1, . . . ,xn),

which is spanned by the orthogonal vectors e1, · · · ,er and passes through the point p1 + · · ·+
pr. As a result, to a generic solution (X(t),P(t)) of the Neumann system on Vn,r one can
uniquely associate the moving r-plane

Σ(t) = p1(t)+ · · ·+ pr(t)+ span{e1(t), · · · ,er(t)}.
In contrast to the case r = 1, due to dimensional reasons, for r > 1 the r-plane Σ(t) is not
necessarily tangent to the quadrics Qr(c1), . . . ,Qr(cn−r). More precisely, since

d i
(
T(x1,...,xn)Q(λ )

)
= Ti(x1,...,xn)Q̄(λ )∩{y1 = 1, . . . ,yr = 1},

the tangency of Σ̄(t) and Q̄(ci), for a fixed t, either implies the tangency of the corresponding
affine r-plane Σ(t) and the quadric Qr(ci), or Σ(t) does not intersect Qr(ci). As a result,
one cannot formulate a natural generalization of the Chasles theorem in Rn that involves this
r-plane.

Another feature of the case r > 1 is that, although the first integrals given by the
polynomial I2r(λ ) are invariant with respect to the right SO(r)-action on (X ,P), the 2r-plane
Σ̄ and r-plane Σ do not have this property. Thus, a generic polynomial I2r(λ ) corresponds
to a whole family of 2r-planes (r-planes, respectively) that are tangent to the same set of
confocal cones and is obtained as the orbit of Σ̄ (Σ, respectively) under the right SO(r)-action.

Then, it natural to replace Σ̄ by the moving cylinder ∆̄(t), the union of 2r-planes
Σ̄(X(t)B,P(t)B) spanned by the columns of the 2r× (n+ r) matrices

V (X(t)B,P(t)B), B ∈ SO(r),

where V (X ,P) is given by (16). The cylinder ∆̄(t) is SO(r)-invariant and, due to the
construction, is tangent simultaneously to n− r fixed confocal cones Q̄(c1), . . . , Q̄(cn−r).

Next, the section of ∆̄(t) by the subspace {y1 = · · · = yr = 1} defines the moving
(2r−1)-dimensional cylinder

∆(t) =

{
∑
i, j

Bi, j pi(t) |B ∈ SO(r)

}
+ span{e1(t), · · · ,er(t)},

which is now an appropriate object for the second generalization of the Chasles theorem:

Theorem 6 ([6]) Let the (2r−1)-dimensional cylinder ∆(t)⊂Rn be associated to a generic
solution (X(t),P(t)) of the Neumann systems (10) or (11) on Vn,r as described above. Then
∆(t) is tangent simultaneously to n− r fixed confocal quadrics Qr(c1), . . . ,Qr(cn−r) of the
confocal family (18), where c1, . . . ,cn−r are the roots of the invariant polynomial I2r(λ ).
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Abstract. Here, it suggests and obtains a new algorithms of  PID control based on fractional 
calculus (FC) in the producing of technical gases, i.e air production cryogenic liquid.  
Production liquid air low pressure was first introduced by P. L. Kapica and includes 

production liquor air pressure 2 6 7p bar      and expansion in the gas turbine. For 

application in the synthesis of control input temperature and the flow of air expansion 
turbine, it is necessary to determine the appropriate differential equations linear’s part of the 
building guidance as well as the procedural object.  The paper presents a new robust control 

algorithms of PI D 
 type which based on using fractional calculus.  The objective of 

this work is to find out suitable settings for a fractional  PI D 
controller in order to 

fulfill  different design specifications for the closed-loop system, taking advantage of the 

fractional orders,   and  . Last, problem of discretization of proposed PI D 
 will be 

treated as a key step in digital implementation.  

 
 
 

1. Introduction  
 
In classical control theory, state feedback and output feedback are two important techniques 
in system control. While it is not satisfied in most cases, the former technique requires that 
all variables are obtained directly. Although output feedback may avoid the restriction of 
state feedback, rather strong conditions such as the strict positive real condition, output 
feedback passivity and minimum phase, etc., are often on the system. Specially, the PID 
controller is by far the most dominating form of feedback in use today. Due to its functional 
simplicity and performance robustness, the proportional-integral-derivative controller has 
been widely used in the process industries. Design and tuning of PID controllers have been 
a large research area ever since Ziegler and Nichols presented their methods in 1942,  [1]. 
Specifications, stability, design, applications and  performance of the PID controller have 
been widely treated since then [2,3].On the other hand, fractional calculus is a mathematical 
topic with more than 300 years old history, but its application to physics and engineering 
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has been reported only in the recent years. Moreover, it is remarkable the increasing  
number of studies related with the application of fractional controllers in many areas of 
science and engineering, where specially fractional-order systems  are of interest for both 
modeling and controller design purposes. It has been  found that in interdisciplinary fields, 
many systems can be described by the fractional differential equations i.e. in the fields of 
continuous-time modeling, fractional derivatives have proved useful in linear  
viscoelasticity, acoustics, rheology, polymeric chemistry, biophysics,etc. [4-6]. However, in 
the recent years, emergence of effective methods to solve differentiation and integration of 
noninteger order equations makes fractional-order systems more and more attractive for the 

systems control community. The fractional PD controller [7], the fractional 

PI controller [8], the fractional controller PI D   [6], the CRONE controllers [9,10], and 
the fractional lead-lag compensator [11] are some of the well-known fractional order 
controllers. In some of these works, it is verified that the fractional-order controllers can 
have better disturbance rejection ratios and less sensitivity to plant parameter variations 
compared to the traditional controllers. The fractional controllers have been used in many 
practical applications such as lateral and longitudinal control of autonomous vehicles [12], 
control of power electronic buck converters [13], control of robotic time delay systems [7], 
control of hexapod robots [14], and etc. 
In this paper, we suggest  and obtain a new algorithms of  PID control based on fractional 
calculus (FC) in the producing of technical gases, i.e air production cryogenic liquid. The 

objective of this work is to find out suitable settings for a fractional  PI D  controller in 
order to fulfill  different design specifications for the closed-loop system, taking advantage 
of the fractional orders,   and  . 

 

2. Fundamentals of fractional calculus  

Fractional calculus (FC) as an extension of ordinary calculus has a 300 years old history. 
FC was initiated by Leibniz and L`Hospital as a result of a correspondence which lasted 
several months in 1695. Both Leibniz and L`Hospital, aware of ordinary calculus, raised the 
question of a noninteger differentiation (order 1/ 2n  ) for simple functions. It had always 
attracted the interest of many famous ancient mathematicians, including L'Hospital, 
Leibniz,Liouville, Riemann, Grünward, and Letnikov [4-6]. Futher, the theory of fractional-
order derivative was developed mainly in the 19th century. In his 700 pages long book on 

Calculus, 1819 Lacroix [15]  developed the formula for the n-th derivative of , m – 

is a positive integer, 

my x

 
!

!
n m m nm

D x x
m n




 where  mn  is an integer. Replacing the 

factorial symbol by the Gamma function, he further obtained the formula for the fractional 
derivative 

   
 

 
1

1
D x x  

 
  


  

                                                  (1) 

where   and   are fractional numbers and Gamma function   z  is defined for  

as:   

0z 

 .                                    (2)   1

0

, ( 1) ( )x zz e x dx z z z


      
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On the other hand, Liouville (1809-1882) formally extended the formula for the derivative 
of integral order n  

,n ax n ax ax axD e a e D e a e arbitrary order                              (3) 

Using the series expansion of a function, he derived the formula known as Liouville`s first 
formula for fractional derivative, where   may be rational, irrational or complex. 

0

( ) na x
n n

n

D f x c a e




 



                                                           (4) 

where  . However, it can be only used for functions of the 

previous form. Also, it was J. B. J. Fourier,[16] who derived the functional representation 
of function 

 
0

exp( ), Re 0n n n

n

f x c a x a






    1
( ) cos

2
R R

f t f x d d    


                                      (5) 

where he also formally introduced the fractional derivative version. Since from 19th 
century  as a foundation of fractional geometry and fractional dynamics, the theory of FO, 
in  particular,  the  theory  of  FC  and  FDEs  and  researches  of  application  have  been  
developed rapidly in the world. The modern epoch started in 1974 when a consistent 
formalism of the fractional calculus has been developed by Oldham and Spanier,[4], and 
later Podlubny,[6]. Applications of FC are very wide nowadays, in rheology, 
viscoelasticity, acoustics, optics, chemical physics, robotics, control theory of dynamical 
systems, electrical engineering, bioengineering and so on, [4-12]. In fact, real world 
processes generally or most likely are fractional order systems. The main reason for the 
success of applications FC is that these new fractional-order models are more accurate than 
integer-order models, i.e. there are more degrees of freedom in the fractional order model. 
Furthermore, fractional derivatives provide an excellent instrument for the description of 
memory and hereditary properties of various materials and processes due to the existence of 
a ”memory” term in a model. This memory term insure the history and its impact to the 
present and future. A typical example of a non-integer (fractional) order system is the 
voltage-current relation of a semi-infinite lossy transmission line [17] or diffusion of the 
heat through a semi-infinite solid, where heat flow is equal to the half-derivative of the 
temperature [6]. 
 
 
2.1  Definition of  fractional differintegral  
 
As an essential preliminary consider some definitions concerning fractional derivatives. 
Fractional derivatives are typically treated as a particular case of pseudo-differential 
operators. Since they are nonlocal and have weakly singular kernels, the study of fractional 
differential equations seems to be more difficult and less theories have been established 
than for classical differential equations. Now, it is well known that, one may generalize the 

differential and integral operators into one fundamental tD  operator t which is known as 

fractional calculus: 
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The definition of fractional integral is described by  

    11
( ) ( ) , 0.

t

a t

a

D x t t s x s ds
 


  

                                   (7) 

where  is the well known Euler's gamma function. There are three kinds of widely used 

fractional derivatives, namely the Grunwald-Letnikov (GL) derivative, the Riemann-
Liouville (RL) derivative, and the Caputo (C) derivative. The GL derivative and RL 
derivative are equivalent if the functions they act on are sufficiently smooth. Besides, the 
RL derivative is meaningful under weaker smoothness requirements.  The G-L definition is 
given by     

(.)

     
 















hat

j

j

h
t

GL
a jhtf

jh
tfD

/)(

00
1

1
lim)(




  (8) 

where a, t are the limits of operator and [x] means the integer part of . As indicated 
above, the previous definition of GL  is valid for α > 0 (fractional derivative) and for α < 0 
(fractional integral) and, commonly, these two notions are grouped into one single operator 
called differintegral.  The RL derivative is given as: 

x

 ,,1),()( nntxDDtxD n
ta

n
t

RL
a                                      (9) 

and the Caputo derivative  

 ,,1),()( nnntxDDtxD nn
tat

C
a                                     (10) 

where  is the classical -order derivative. Moreover, previous expressions 
show that the fractional-order operators are global operators having a memory of all past 
events, making them adequate for modeling hereditary and memory effects in most 
materials and systems. Also,  for the RL derivative, we have 
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But for the Caputo derivative, we have   
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Obviously,  varies continuously with , but the Caputo derivative 

cannot do this. On the other side, initial conditions of fractional differential equations with 
Caputo derivative have a clear physical meaning and Caputo derivative is extensively used 
in real applications.  For numerical calculation of fractional–order differ-integral operator 
one can use relation derived from the GL definition. This relation has the following form: 

  ,, nDRL
a  n
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where L is the "memory length", h is the step size of the calculation,   
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 x  is the integer part of x  and  
jb


 is the binomial coefficient given by 

 
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1
1 1( ) ( )

jb , b b
j
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 
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 
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 
                                            (15) 

For convenience, Laplace domain is usually used to describe the fractional integro-
differential operation for solving engineering problems. The formula for the Laplace 
transform of the RL fractional derivative has the form: 

 
1

1
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00

n
st k k

t t
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e D f ( t )dt s F( s ) s D f ( t )  
 


t
 




   (16) 

For 0  (i.e., for the case of a fractional integral) the sum in the right-hand side must be 
omitted). A geometric and physical interpretation of fractional integration and fractional 
differentiation can be found in Podlubny’s work [18]. 
 
 

3. Basic ideas of PI D   feedack type control 
 
In recent years, fractional calculus has been applied in the modeling and control of various 
kinds of physical systems, as it is well known and documented in many control theories or 
in the literature data. In what concerns the area of automatic control, the fractional-order 
algorithms are extensively investigated. Thanks to the widespread industrial use of PID 

controllers, even a small improvement in PID features, achieved by using DPI , could 
have a relevant impact. Recently, published results [8-12] indicate that the use of a 
fractional-order PID controller can improve both the stability and performance robustness 
of feedback control systems. In [6],Podluny proposed a generalization of the PID controller 

namely fractional PID ( ) where DPI   and   are the order of integration and 

derivation respectively that can be real numbers. In fact, in principle, they provide more 
flexibility in the controller design, with respect to the standard PID controllers, because 
they have five parameters to select (instead of three). However, this also implies that the 
tuning of the controller can be much more complex. Therefore classical design method may 
not be applied directly to adjust all fractional controller parameters. In order to address this 
problem, different methods for the design of a fractional order PID (FOPID) controller have 
been proposed in the literature. Further research activities are running in order to develop 
new tuning rules for fractional controllers, studying previously the effects of the non integer 
order of the derivative and integral parts to design a more effective controller to be used in 
real-life models. Some of these technics are based on an extension of the classical PID 
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control theory. To this respect, in [19] the extension of derivation and integration order 
from integer to non integer numbers provides a more flexible tuning strategy and therefore 
an easier achieving of control requirements with respect to classical controllers. In [20] an 
optimal fractional order PID controller based on specified gain margin and phase margin 
with a minimum ISE criterion has been designed by using a differential evolution 
algorithm. In [21] a tuning method for fractional PID controller based on Ziegler-Nichols-
type rules was proposed. Monje et al., [22] present a frequency domain approach based on 
the expected crossover frequency and phase margin. A state-space tuning method based on 
pole placement was also used (see [23]). Recent tuning method based on Quantitative 
Feedback Theory (QFT) are presented in [24]. In this paper, a fractional order PID 
controller ( PI D  ) is used to control the production process of technical gases as follows: 

0 0( ) ( ) ( ) ( )p d t i tu t K e t K D e t K D e t                                         (17) 

 The most common form of a fractional order PID controller is the PI D   controller [6], 
involving an integrator of order   and a differentiator of order   where  ,   can be any 

real numbers. The transfer function of such a controller has the form  
     ( ) , , 0c p I DG s K K s K s                                     (18) 

The integrator term is s , that is to say, on a semi-logarithmic plane, there is a line having 
slope −d. /dec. Clearly, selecting 1  

0,

, a classical PID controller can be 

recovered. The selections of 1, 0, 1,      

D

respectively corresponds 

conventional PI & PD controllers. All these classical types of PID controllers are the 

special cases of the fractional PI controller given by (17), see Fig. 1. It can be 

expected that the controller   may enhance the systems control performance. One 

of the most important advantages of the  controller is the better control of 
dynamical systems, which are described by fractional order mathematical models. Another 

advantage lies in the fact that the 

D

P

PI
DPI

DI controllers are less sensitive to changes of 
parameters of a controlled system [6-12]. This is due to the two extra degrees of freedom to 
better adjust the dynamical properties of a fractional order control system. However, in 

theory, itself is an infinite dimensional linear filter due to the fractional order in 
differentiator or integrator.  

DPI

 
Figure 1. Generalization of the FOPID Controller: From point to plane 

 
Fractional order controllers such as CRONE controller, TID controller, fractional PID 
controller  and lead-lag compensator, [25]  have so far been implemented to improve the 
performance and robustness in the closed loop control systems. As compared to 
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conventional PID compensators, the TID compensator allows for simpler tuning, better 
disturbance rejection, and smaller effects of plant parameter variations on the closed-loop 
response.  Feedback control system compensator of the PID type is provided, wherein the 
proportional component of the compensator is replaced with a tilted component having a 

transfer function . The resulting transfer function of the entire compensator more 
closely approximates an optimal loop transfer function, thereby achieving improved 
feedback control performance.  On the other hand, the CRONE control was proposed by 
Oustaloup in pursuing fractal robustness [9], [10] where  “fractal robustness” is used to 
describe the following two characteristics: the iso-damping and the vertical sliding form of 
frequency template in the Nichols chart.  Also, it is possible to extend the classical lead-lag 
compensator to the fractional-order case which was studied in [26]. The fractional lead-lag 
compensator is given by 

ns /1

r

h

b
r s

s
CsC 
















/1

/1
)( 0                                                       (19) 

where  0,0 0  Chb   and  1,0r .Transfer functions such as (18) are not easy to 

implement for computational purposes. Simulations are usually carried out with software 
prepared to deal with integer powers of s only. Hardware implementations of controllers are 
nowadays usually achieved with electronic components allowing implementation of usual 
integer transfer functions easily, while how fractional transfer functions can be achieved 
with them is not clear at all. This makes the task of finding integer order approximations of 
fractional transfer functions a most important one where fractional transfer functions are 
usually replaced by integer transfer functions, with a behavior close enough to the one 
desired, but much easier to handle. Approximations are available both in the s-domain and 
in the z-domain. Moreover, one may find that many discretization schemes reported in 
literature which can be classified as either direct or indirect. The distinction is made based 
on whether an auxiliary continuous-time (s domain) approximation is constructed in the 
process. With direct methods, an intermediate continuous time approximation is not 
necessary, while with indirect methods such analogue approximation must be created. Most 
of the direct methods start with a suitable discrete approximation of the first order 
derivative or integral. Discretization scheme is then obtained by truncating some expansion 
of an appropriate non-integer power of the selected approximation. For example, a method 
based on power series expansion (PSE) of Euler operator,[27], or continued fraction 
expansion (CFE) is applied to Tustin operator,[28]. Further direct schemes are reported in 
[29-30]. Indirect methods are constructed in two steps where in the first step, a finite 
dimensional, continuous time approximation of the target fractional order system is found 
such as Oustaloup’s rational approximation (ORA), [31] or sub-optimum H2 rational 
approximation ,[32]. Once a satisfactory continuous-time approximation has been found, 
the second step of each indirect method is to find its discrete-time equivalent,as follows: 
approximations of  Euler and Tustin, response invariant transformations (impulse-invariant 
and step invariant) and others, see[33]. 
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4. Mathematical model of cryogenic process of mixing of two gaseous airs flows at 
different temperatures before entrance of expansion turbine 

 
Cryogenics is the science and technology dealing with temperatures less than about 120 K, 
although this historical summary does not adhere to a strict 120K definition. The techniques 
used to produce cryogenic temperatures differ in several ways from those dealing with 
conventional refrigeration. Also, liquid air is air that has been cooled to very low 
temperatures(cryogenic temperatures) so that it has condensed to a pale blue mobile liquid. 
To protect it from room temperature, it must be kept in a vacuum flask. In practice, these 
two areas often overlap and the boundary between conventional and cryogenic refrigeration 
is often indistinct. Significant reductions in temperature often have very pronounced effects 
on the properties of materials and the behavior of systems. New way to technical 
production liquid air work is obtained by C. Linde at the end of the nineteenth century. On 
with the help of the reversing heat exchangers, slightly used cooling air, which appears in 
the damping of the higher of the lower pressure, the successful simple and economical 
production liquor large amounts of air. Production liquid air low pressure was first 
introduced in 1938. by the Russian academician P. L. Kapitsa, and includes production 
liquor air pressure  2 6 7p b  ar  and expansion in the gas turbine. So, expansion turbine 

in the air production liquid used for expansion air with thermodynamics state  ,p pP p T  to 

state  ,k k K p T  lowering when the air temperature with   at  and the pressure   with pT kT

pp  at . Expansion of cold air after the start of equipment and waste heat arising due to 

exchange heat with the environment during the work. The amount of air that expansion in 
the gas turbine, according to [34], does not 25  exceed the amount of usable air. The air 
from the compressed state 1 turbocompressor, Fig. 2,(b) and cool to the state of the 2nd 
compressed air with pressure  are in the reverse exchangers heat, where the cold to the 

state of 3rd Part of the air with the environment reverse heat state 3* and part of the state 3, 
which consists 

kp

%

2p

 /m kg kge of compressed air, are in expansion turbine where the expansion 

achieved by the state 8, where pressure . Because of loss coefficient and other non-

reverse expansion is not adiabatic line to state 8 , but to state 8, which is right. Place for 

removal of air state 4 elected to state 8, at the end of expansion, is in the area near the upper 
border curve (in the TS diagram 

1p

ad

1,x 0  on  1 3 K  above the temperature saturated  

steam. Basic devices of the plant are (ТК –turbocompressor, H -  refrigerator air, RR –
reverse exchangers heat, ET – expansion turbine, RK - exchangers heat i.e. air condenser, 
PV-damping valve) 
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Figure 2. Scheme for plant liquid air flow pressure (a) and TS diagram of the process (b) 

 
Liquid air quantity can be determined on the basis of heat balance,[34]: TVm

    2 ,
' 1 /7 10 4 8h m h m i m h h q kJ kgeTV TV do                             (20) 

where are  /q kJ kgdo - heat from the environment brought by air, kg  /m kg kgTV  - 

mass liquid air,  /em kg

0doq 

kg  - mass air which expansion in expansion turbine. In the ideal 

case when the  and  liquid air mass is  1 10 0nrT T T   

10 2 4 8 4 81 2

' ' '

10 7 10 7 10 7 10 7

eTV

h h h h h hh h
m m m

h h h h h h h h

  
   

   'e




                               (21) 

The main advantage of the procedure Kapic's according to the toe cap in relation to other 
procedures production liquid air [35] to be in the low pressure  still does not have to 

spend inordinate work for production liquid 
2p

 1 kg  air. Since the turbine is capable of much 

greater bandwidth than the reciprocating compressor is adapted to this process for large 
plants such as the face in practice. For qualitative assessment of gas turbine, with 
thermodynamics’ point of view is used isentropic (internal) level of utility which is 
determined by the following terms: 

, 0,80 0,85
h h T Tp ph k k

T Th h h T Tp pk k
 

 
    

   
                     (22) 

For the development of the expansion works after refrigeration air, in the " Factory of 
technical gas” in Bor, built two expansion turbines, one gas turbine is always in operation, 
the other in the reserves, and the factory in preparation for the start after longer delays both 
turbine running in parallel. Energy received in expansion turbine in the work spent to drive 
fan that absorptive air from the atmosphere, regardless of air flow in the gas turbine. 
Ventilator compressed air and thus prevent an unlimited increase in the number of turbine 
rotor speed, a compressed air is emissive in the atmosphere which is not justified from the 
energy aspect. Technical adiabatic  the work of expansion of air in gas turbine is: 
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    
1

3
, 10 / 1 1 / ; /t ad p k pl k k R T p p kJ





  
    

 
kg                           (23) 

Power returned to the turbine - effective power, the expansion  /m kg s  of the pressure  

to  have the value: 
pp

kp

 , ;eT i m t ad T mN N m l kW                                            (24) 

where are:  iN kW  - the internal (isentropic)  gas turbine power,  m - mechanical degree 

of utility gas turbines (due to friction in the bearings and stuffing box).  

 1   3 /5 Nx t g hi t m     - deviation values flow from the nominal value of gas’s air flow at 

the entrance to the expansion turbine: 37600 /56G mNN h    
,      2 5ix t  t K -value of 

temperature deviation from the nominal value of gas’s air temperature at the entrance to the 
expansion turbine,  5N 124T K ,    1 1( ) t Kz t - value of temperature deviation from 

the nominal value of temperature gas’s air environment with exchangers,heat  1N 153T K , 

   2 3( )z t  t K -value of temperature deviation from the nominal value of temperature  

air with the end of the cold  heat exchangers  3 101NT K ,    Ay t m

946

m

A

- deviation value 

position of the nominal value of the position control valves TV  14AN  ,7Y mm , 

   By t m

946TV B

m


- deviation value position of the nominal value of the position control valves, 

30, 2BNY  mm .On Fig. 3 it is presented diagram of process and symbolic-

functional scheme with relevant  variables. 
 
4.1. System description of mechatronic system in state space 
 
For application in the synthesis of proposed control input temperature and the flow of air 
expansion turbine, it is necessary to determine the appropriate differential equations linear’s 
part of the cryogenic process of mixing of two gaseous airs flows at different temperatures 
before entrance of expansion turbine. Linear’s differential equations that describe the work 
process are given as appropriate equation of state and output as follows 

     

   

0,2 0 45,736 28,07 0 0
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0 0,2 0,174 0,085 0,088 0,112

1 0

0 1z

x t x t u t

x t x t

    
           

 
  
 

i

 z t




   (25) 

or,  in condensed form is 

           ,u z ix t Ax t B u t B z t x t Cx t                             (26) 
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Figure  3. Diagram of the process  (а) symbolic-functional scheme (b) 

 

where corresponding vectors are,    ( )
T

A Bu t y t y t    ,    1 2( )
T

z t z t z t    , and 

, , ,u ZA B B C

(W s

are matrices with appropriate dimensions. From the above it is clear that model 

presents a MIMO system( multiple input, multiple output) where the number of inputs 
being to equal  to that of outputs, system us square and it is possible  to apply  a control 
strategy uncoupling, whereby each of the inputs is made affect presented by one output 
only.In that way, one may obtain  so called  non-interactive system where is transfer 
function of given system is decoupled, diagonal, and nonsingular matrix. To decouple 

the system, a new input is introduced by means of feedback 

)

( )u t

   ( )c cu t K x t F v t                                                           (27) 

where are  -th row of matrix C and ic i
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....... 1, 0,
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m u

c A B

j c A Bc A B
N N p j n
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 
            
      
  

 (28) 

So, one can obtain   

1 2 11 11 1
1 2, ... m

Tpp p
c c mF N K N c A c A c A                          (29) 

 
The transfer function  of the original system is ( )W s
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   1

45.736 28.07

0.2 0.2( )
0.174 0.85

0.2 0.2

u
s sW s C sI A B

s s
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 
      
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                                           (30) 

and after applying new control i cF . Taking into account  

the proposed procedure f , c

s

o

   1
( ) u c uW s C sI A B K B

  

r cF K  it follows 

1 2 1 2

1 1

[1 0], [0 1], 0, 0,

, ,u c u c u

c c p p

N B F B K B A 

   
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                                  (31) 

and                                            1 1/ 0
( )

0 1/

s
W s C sI

s
  

   
 

                                           (32) 

Now, decoupling system is 

1 1

2 2 10.088 0.112

x v

2x v z


  


 z

                                            (33) 

 
5.  The proposed fractional PIDs 
 
Unlike conventional PID controller, there is no systematic and rigor design or tuning 

method existing for  PI D   controller.  Here, design goals are choosing suitable   and 
  as well as  load disturbance rejection.The controller parameters are the proportional gain 

pK , the derivative gain dK , the integral gain iK , as ell as  noninteger order  of derivative  w

  and integrator  ,Eq. 34. Load disturbances are typically low frequency signals and 

their attenuation  is a very important characteristic of a controller. It is shown [1], that by 
maximizing the integral gain iK , the effec of load disturbance at output will be minimum. t 

 ( ) , , 0p I D
c

K s K K s
G s

s

  

  
 

                                  (34) 

Here, in order to obtain step response, simulation model has been developed using Simulink 
Library of  MATLAB by using a special toolbox for non-integer control. For the simulation 
purpose, here we present the Crone approximation algorithm. It is based on the 
approximation of a function of the form: 

( )C s ks , R                                                               (35) 

which uses a recursive distribution of  poles a N nd N  zeros:  

,

1

,

1
s


( ) ,

1

N
z n

n

p n

C s k
s









                                                      (36) 

Gain  is adjusted so that if  is 1 then k  k ( ) 0C s dB  at . Zeros and poles are 1 /rad s

found side a frequency interval in  ,l h   an for a  d are given, positive  , by  
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For a negative   the role of zeros and poles is interchanged. The controller is reckoned 
from , , ,lk h   and . Here, they are presented simulation results  for N 1ix , Fig.4 

1, 1, 0.1, 0.99, 0.99p d iK K K            50, 20, 10, 0.9, 0.8p d iK K K        

 
a)                                                                                    b) 

  Figure 4.   a)  step response of 1ix , for 1, 1, 0.1, 0.99, 0.99p d iK K K        

                b) )  step response of 1ix , for 50, 20, 10, 0.9, 0.8p d iK K K        

and  for 2ix  as follows, Fig.5: 

1, 1, 0.1, 0.99, 0.99p d iK K K       ,   30, 10, 40, 0.9, 0.5p d iK K K        

 
a)                                                               b) 

  Figure 5.   a)  step response of 2ix , for 1, 1, 0.1, 0.99, 0.99p d iK K K        

                b) )  step response of 2ix , for 30, 10, 40, 0.9, 0.5p d iK K K        

 
 
6. Discussion  
 

Here, in this paper it is proposed  new robust control algorithms of PI D   type which 
based on using fractional calculus  in the control of producing of technical gases, i.e air 
production cryogenic liquid.  Design goals are suitable setting  the controller parameters 
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p, ,i dK K K ,  noninteger order  of derivative   and integrator   to fulfill  different design 

specifications for the closed-loop system, for example, load disturbance rejection. Also, the 

problem of discretization of proposed PI D   is considered as a one of  important  steps in 
digital implementation. In order to obtain step response, simulation model has been 
developed using Simulink Library of  MATLAB by using a special toolbox for non-integer 
control. 
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Abstract.   A statistical approach to rupture of a disordered two-dimensional (2D) triangular 
lattice consisting of fragile nonlinear springs is used to elucidate some generic effects of the 
microstructural disorder and the strain rate on dynamic response of, and the damage 
evolution in, the low fracture energy materials. The emphasis is on the neighborhood of the 
critical point of the brittle response - the stress peak, the threshold of homogeneous-to-
heterogeneous phase transition. The simulation results reveal increase of the mean and 
decrease of the standard deviation of the macroscopic tensile strength with increase of the 
structural and geometrical order till the “theoretical strength” saturation. At the same time, 
the increase in lattice disorder results in increase of the mean and standard deviation of the 
stress-peak damage energy rate, followed by the decrease of the same in the softening 
phase. Expressions are proposed to model the mean tensile strength dependence on the 
strain rate and the rate-driven change of damage energy during softening. The linearity of 
the rate dependence of the stress-peak macroscopic response parameters is observed and 
discussed.  

 
 

 
1. Introduction 
 
Brittle materials, such as ceramics, rocks, concrete, are frequently used in civilian and 
military applications for design of structures exposed to extreme dynamic loads. These 
applications require a thorough knowledge of the physics of high rate deformation of said 
materials, which is complex and subtle and influenced substantially by stochastic and 
random factors. The considered phenomena are, therefore, often too recondite to be 
modeled theoretically. Besides, although damage evolution by its very nature spans spatial 
scales, it has been recently suggested by Mastilovic et al. [12] that the governing spatial 
scale of damage and rupture phenomena in the low-fracture energy materials changes with 
the loading rate: the high-rate damage is governed by events at the submicroscopic scales 
while the medium-rate damage is governed substantially, if not predominantly, by 
cooperative phenomena at the mesoscopic scale (“the disorder of micro-texture controls the 
macroresponse”; [20]). Last but not least, the complexity of analytical and computational 
modeling is further burdened by a lack of detailed test data with respect to direct 
measurements under the high-rate tensile loading [13]. 
  
The present conference paper contains mainly the results recently published in the 
International Journal of Damage Mechanics [13, 14], which were focused on analysis of 
stochastic damage evolution of the dynamically loaded brittle systems. An objective of this 
research effort is to gain insights into some salient features of the deformation dynamics of 
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brittle solids, with emphasis on the ceramic materials with the inferior grain boundary 
strength and low fracture energy. With these materials in mind, the strain rate range of these 
“virtual” experiments, [10 s-1, 1×109 s-1]—tentatively labeled medium-to-high—reaches the 
theoretical limit, 19

000 10  s ; defined by the limit failure strain, ε0=0.001, and a 

temporal parameter of the order of Debye’s atomic vibration period, τ0 =10-12 s [19].  
 
Although a variety of experimental techniques are used to study the dynamic behavior of 
materials, the lower and upper ends of the range investigated herein are explored most 
commonly by the split Hopkinson pressure bar (up to the strain rates of 104 s-1) and the 
plate impact tests (108 s-1), respectively [1]. It is important to point out that the direct 
comparison of results obtained by these two techniques is somewhat tentative [2] since the 
former is performed under one-dimensional (1D) stress conditions while the latter is 
performed under 1D strain conditions. On the other hand, the lattice simulation results 
presented herein are obtained at various strain rates are under practically identical stress 
conditions. Furthermore, the lattice simulations replicate rather well the underlining 
phenomenology of the sample response including the essential features of rate-dependent 
fracture and deterioration of the effective stiffness, and provide an elementary intuition on 
the phenomena [12]. Consequently, in spite of the recognized limitations and drawbacks [4, 
5, 16, 18, 23], the lattice simulations prove a useful tool for qualitative analysis of universal 
trends of the dynamic behavior of brittle materials since they:  

i. make possible the “virtual experiments” [10] into the regions that are still beyond 
capabilities of the presently available experimental techniques,  

ii. offer detailed insights in the deformation process due to the practically unlimited 
control over the computer experiments,  

iii. incorporate both aleatory variability and epistemic uncertainty in a straightforward 
manner [12].  

 
The natural randomness of the mesoscale material texture is an example of the aleatory 
variability. The inherent disorder is, in the course of deformation, further enhanced by the 
extrinsic disorder due to the damage evolution that is governed by the local fluctuations of 
energy barriers quenched within the material and the local fluctuations of stress. The 
nonlocal and nonlinear character of these far-from-equilibrium processes is such that 
concepts of strain and damage based on spatial and temporal averaging are, at best, 
conditionally acceptable [8]. Nevertheless, the overall quantities exhibit universal trends [4] 
despite the random character of the local fluctuations of mechanical fields. 
 
 
2. Simulation model 
 
The present model is used extensively in the past to investigate stochastic damage evolution 
in low-fracture energy systems ([12, 13, 14] and references cited therein), thus, only a gist 
of the method is summarized herein. The idealized brittle mesoscale (tensile test) specimen 
is represented by a virtual 2D structure: a Delaunay simplicial graph dual to an irregular 
honeycomb system of Voronoi polyhedra representing, for example, grains of a ceramic 
material. In general, the identification of the microconstituent that dominates the 
macroresponse is a problem-specific task [17], which is at core of the definition of the 
representative volume element. In the present framework, the grain boundaries (“the most 
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common examples of weak interfaces in brittle materials” [9]) are considered to provide 
direct, first-order effects on the overall dynamic response; the average grain facet size 
defines the model resolution length, ; and the other microheterogeneities and defects 

(resulting in the local stress and strain fluctuations) on a smaller scale are accounted for by 
stiffness and strength distributions [7]. Consequently, the microstructural texture is 
represented by a network of grain boundaries while the cracking is necessarily 
intergranular. The size of grains and strength of grain boundaries in a polycrystalline 
ceramics are distinctively stochastic parameters.  

cl

 
The “continuum particles” [24] located in lattice nodes interact with their nearest neighbors 
through the nonlinear central-force links (defined by the Hook potential in tension and the 
Born-Meyer potential in compression).  The coordination number z and link length  define 
the randomness of the lattice morphology. The model is geometrically and structurally 
disordered since the equilibrium distances between particles and their mutual link stiffness 
are sampled from their respective distributions within the range     2  and 

  kkk   2 . The geometrical-order parameter,  10  , and the structural-order 

parameter, (0    1), define bandwidths of the geometrical and stiffness disorder [12]. 
The link-rupture criterion is defined in terms of the critical link elongation 
ij = ij / 0ij = cr = const. 
 
The unnotched tensile specimen is a square of side length L = 1.9 mm. The problems of the 
loading at extremely high rates, including the uniform load distribution, are solved by 
imposing an instantaneous initial velocity field to the lattice in the loading direction, 

  111 0 xtx   , and perpendicular to it,    
2102 0 xtx     , defined in the terms of the 

prescribed strain rate, LL 1 . (The preceding coordinates refer to the centroidal 

coordinate system and  0
 is the apparent plane-strain Poisson’s ratio [11].) Subsequently, 

at t > 0, only velocity of the particles located at the longitudinal boundaries (x1 = ±L/2) is 
controlled, 21 L1x   ; while the motion of all other particles is governed by the 

Newton’s equation of motion, discretized in time and integrated using one of many finite-
difference algorithms to obtain the particle trajectories. Effects of this loading procedure are 
described in [12]. 
 
Finally, it is worthwhile to note that no attempt is made in this study to follow the 
procedures developed in [21] for constructing a mechanically equivalent lattice capable of 
matching the physical properties of polycrystalline ceramics, which would be futile keeping 
in mind the stated objectives. This, the reduced-units geometric and structural lattice 
parameters are: the coordination number 6z , the average equilibrium distance between 
particle sites 1 cl , the average link stiffness 50k , and the rupture strain of the links 

%1.0cr . The set of 30 simulations per each strain rate are performed on two lattices 

characterized by substantially different disorder levels labeled tentatively as:  
 Large disorder (LD): (α, β) = (0.02, 0.5), and  
 Small disorder (SD): (α, β) = (0.2, 0.9).  

If no distinction is made between the large disorder and small disorder model, the 
simulation results refer to the later. 
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3. Results 
 
The first set of results refers to simulations performed at four strain rates (  = 10, 
1×103, 1×105, and 1×107 s-1) by using 30 different statistical realizations of the geometrical 
and structural disorder governed by the selection of the pseudorandom-number-generator 
seed. The basic tensile strength statistics is presented in Table 1 for the two sets of 
simulations performed on the models characterized by two different disorder levels (LD and 
SD) defined previously.  
 
Table 1.  Basic statistics of the dynamic tensile strength data for the large-disorder and small-disorder 

models (LD—SD) 
 

0Em     
 log  

[1/s] 
MEAN 
[×10-3] 

STANDARD DEVIATION 
[×10-3] 

RATIO OF NON-OUTLIER 
MAX. & MIN. 

1 0.0887—0.264 0.0155—0.0148 1.94—1.25 
3 0.235—0.343 0.0115—0.0152 1.32—1.17 
5 0.482—0.659 0.00209—0.0183 1.08—1.01 
7 1.07—1.07 0.00185—0.000780 1.07—1.00 

 
These results, recently published in [13], are in qualitative agreement with the experimental 
observations that the static tensile strength of brittle materials can be exceeded by an order 
of magnitude by the dynamic tensile strength introduced by shock waves [3]. The 
simulation results also confirm the relatively modest rate sensitivity of brittle materials at 
lower loading rates dominated by the subcritical crack growth. A single dominant 
macrocrack evolves from the most “favorably” positioned among weak links, which 
eventually results in a catastrophic failure along nearly-straight macro fracture at a small 
macro damage density level. The rapid strength ascent, depicted schematically in Figure 1 
at two disorder levels, coincides with the transition of fracture pattern from a couple of 
dominant macrocracks to the web of uniformly distributed microcrack clusters [12, 13]. It 
should be emphasized that while stress and damage energy time histories for low and high 
strain rates generally reveal the brittle properties of the failure process1, those in Figure 2, 
corresponding to this transition, reveal a number of quasi-ductile characteristics; most 
notably, the relatively significant damage accumulation in the hardening regime and the 
pronounced softening regime. These features are result of collective behavior of the 
microcracks comprising the web of microcrack clouds [12]. The reduction of tensile 
strength stochasticity in this strain rate range is attributed to the averaging effect within 
these clusters [25]. 
  
The scatter of strength data for the four loading rates and two material disorder levels, 
presented in Table 1, is depicted schematically by the shaded areas in Figure 1. The large 
scatter corresponding to   = 10 s-1 is reduced to a single line at   = 1×107 s-1, which is 

                                                 
1 The linear stress increases with time and the sudden drop upon failure with negligible 
damage accumulation prior to failure. 
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indicative of the substantial reduction of the tensile-strength scatter close to the “upper-
plateau” loading rate range [13]. This suggests that the theoretical strength, defining the 
upper limit strength, is—similar to elastic properties—a deterministic property defined 
primarily by the chemical bonding (that is, at the atomic scale) and relatively insensitive to 
the subtle features of the material mesoscale texture [12]. The evident transition from the 
stochastic to the deterministic behavior—reflected by the reduction of the strength 
dispersion and change of damage evolution patterns discussed in [12]—is more pronounced 
in the case of the large microstructural disorder. It is observed that for the limit case of a 
slightly perturbed ideal lattice (α, β) = (0.99, 0.99) the strength scatter practically 
disappears, which suggests that the stochasticity of the materials response results from the 
structural disorder [13]; interestingly, the difference between the upper and lower strength 
thresholds remains and is reduced to 4.10 m

th
m  .  

 

 
 
Figure 1. Schematic representation of the rate sensitivity of tensile strength outlining the ordering effect of kinetic 
energy and the effect of geometrical and structural disorder.  
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Figure 2. Typical time histories of the normal stress and damage energy at 1 . The indices, m and f, 

refer to the stress peak and post peak (softening) quantities, respectively. 

5
1 101  s

 
The importance of the microstructural events that take place at the critical point: the stress 
peak is worth to emphasize [23]. The present focus is on the stress-peak and post-peak 
damage energy rates (Tables 2, adopted from [13]). It should be noted that while the stress-
peak damage energy rate is defined unambiguously, the post-peak damage energy rate 
reported herein refers to the maximum damage energy rate in the softening regime 
corresponding to the final deformation phase (as depicted in Figure 2) for the avalanche-
type failures, but not necessarily in general. 
 

Table 2.  Statistics of the stress-peak (
Dm ) and the post-peak (

Df ) damage energy rates at the two 

levels of model disorder 
 

 log  
[1/s] 

MEAN / STANDARD DEVIATION 
(×103) 

1 0.0034 / 0.0030 1.2 / 0.36 0.0027 / 0.0028 1.5 / 0.56 
3 0.27 / 0.25 2.1 / 0.84 0.22 / 0.10 2.6 / 1.7 
5 22. / 1.1 37. / 1.0 25. / 1.3 55. / 2.1 
7 6400. / 800. 11000. / 4200. 3600. / 680. 7600. / 400. 

Dm  
Df  

Dm  
Df   

LARGE DISORDER SMALL DISORDER 

 
First, it is interesting to note, from the simulation results, that for the displacement-
controlled tension the mean value of the stress-peak damage energy rate scales reasonably 
well with the strain rate. More detailed investigation [14] revealed the linear dependence of 
the form 
 
  (1)  .1 ConstDm  
 
which is presented schematically in Figure 3 (the hollow squares). 
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Second, the increase of geometrical and structural disorder results in increase of both the 
mean value and the standard deviation of the  data. On the other hand, the basic 

statistics of the post-peak damage energy rate ( ), presented in Table 2, reveals that the 

higher stress-peak damage energy rates—characteristic of the more disordered model—are 
followed by the lower post-peak (softening) damage energy rates, both in terms of the mean 
value and the data scatter [13].  

Dm

Df

 
Figure 3 also illustrates effect of the loading rate on the time, tm, at which the stress peak is 
reached (the solid circles). This stress-peak time is tentatively affiliated with time-to-failure 
in [14] for two reasons: (i) the sample would fail at the stress-peak for the stress-controlled 
test, and (ii) the prevalent opinion, matured over the last two decades, is that the softening 
is not an intrinsic material property [7, 23]. All data points in Figure 3 represent mean 
values of 30 statistical realizations per strain rate for the SD model. The linearity  
 
 .  (2) Consttm 

 
is evident from Figure 3. As indicated in [14], Equation (2) is identical to the empirical 
relationship between creep rate and time to rupture for the constant-stress quasi-static 
loading [22], and the strain-controlled brittle creep fracture [6].  It also bears similarity with 
the time to failure derived in [15] by combining the main ideas of continuum damage 
mechanics and statistical and kinetic theories of strength. 
 
 

 
 
Figure 3. Change of the mean stress-peak parameters with the strain rate: the damage energy rate (hollow squares) 
and the time (solid circles). 
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The remarkable hardening of the brittle response with the rate increase, discussed 
previously [12, 13], is illustrated in Figure 4. The solid circle represents the mean strength 
obtained from 30 different statistical realizations at the five selected strain rates for the 
small-disorder model. The hollow circles depict one single realization at eight additional 
strain rates. The increase of the loading rate results in increase of the mean tensile strength, 
limited by the two horizontal asymptotes (

0m  and ) dependent on the system disorder 

[13].  The loading rate increase also results in reduction of the response stochasticity caused 
by the averaging effect of collective behavior of microcrack systems, which smoothens the 
randomness at the macroscopic scale. Another effect of that increasingly adiabatic 
deformation and damage is the diminishing flaw-sensitivity of brittle materials with the 
loading-rate increase [12]. 

th
m

 
Based on the simulation results, the following expression  
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was proposed [14] to capture general features of the mean tensile strength dependence on 
the strain rate. The parameter   0, m

th
mmm SS    is a measure of hardening and A, 

C, and   are fitting parameters. As indicated on Figure 4, the crossover strain rate   

corresponds to . It should be noted that the theoretical strength, 

associated by Grady [3] with the Hugeniot elastic limit obtained from shock compression 
experiments, is attained here by the virtual tensile experiments. The demonstrated disorder 
dependence of the hardening parameter Sm [13] suggests that the degree of structural 
heterogeneity of brittle solid governs substantially the process of activation and nucleation 
of micro-defects. (Roughly, the parameters A and 

2/)0m



( th
mm  

  define the onset of the strength rapid 

increase, while C defines gradient of that increase.) 
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Figure 4. Rate dependence of the mean tensile strength. Solid line represents a fit obtained by using Equation (3) 

with parameters: A=4.7, C=12, and . 15101 
  s

 
 The rate-driven change of the damage energy rate during softening is investigated in detail 
by Mastilovic [14] and summarized in the logarithmic plot in Figure 5. The hollow squares 
represent the mean of 30 statistical realizations for the small disorder lattice while the solid 
circles mark results of one single realization at the given rates. Note that, due to the 
observed reduction of the data scatter with the strain rate increase, any arbitrarily selected 
physical realizations at the high rates should represent reasonably well the mean value. The 
dashed line in Figure 5 represents the best fit of the simulation data: 
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where H1 and H2 are fitting parameters and eq

Df
 is the strain rate corresponding to the 

stress-peak damage energy rate equilibrium ( ) that marks the minimum of the 

curve in Figure 5 [14]. 
Dm 
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Figure 5. Change of the ratio of damage energy rates in the post-peak and peak regions of stress-strain curve with 
the strain rate. Dashed line represents the fit obtained by using Equation (4) with given fitting parameters. 
         
It is obvious that the asymmetric data fit in Figure 5, defined by Equation (4), formally 
tends to infinity for both loading limits (the quasi-static and the “infinite”), but for different 
reason:  and , respectively. In reality, the maximum possible strain 

rate in the material,  (Introduction), provides the finite limit for , while the stress 

peak is by definition associated by non-zero  (albeit very small and temporal-resolution 

dependent for the low rate “limits”). 

0lim
0


 Dm





 Df



lim

0 Df

Dm

 
4. Summary 
 
This study elucidates some universal trends that contribute to understanding of basic 
principles governing high-rate mesomechanics of disordered low-fracture-energy solids. An 
expression proposed to model the mean tensile strength dependence on the strain rate for 
the entire strain rate range is discussed. Although the fundamental arguments to support the 
form of this expression could not be provided at present, it appears simple and robust 
enough to capture reasonably well the entire rate-driven strength evolution with only a few 
experiments. 
 
The damage dynamics is investigated based on change in the damage energy rate 
accompanying damage evolution in the critical point neighborhood. It is observed [14] that 
the medium of the transitional range rates (Region 2 in Figure 4), = 3×105 s-1, is 

characterized by the absence of change of the damage energy rate in the peak neighborhood 
( ) and corresponds to an atypical stress-strain curve exhibiting many features of 

the quasi-ductile behavior. 

eq

DmDf  

 
The linearity of the rate dependence of the stress-peak macroscopic response parameters is 
observed and modeled. These models, based on simulation results, bridge the scales by 
offering connection between the macroscopic response parameters at the stress peak (tm, 
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Dm ) and the microscopic failure criterion (εcr) for the dynamic loading within the wide 

range of the strain rates that encompasses variety of damage mechanisms. 
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Abstract. As found by experiments quasi rate independent materials (QRI) describe very
well behavior of steels in very wide range of strains and strain rates ([3],[4]). This property
has been combined with tensor representation modeling using a generalized associative flow
rule based not on the yield function but on a more general loading function. Seemingly rate
independent QRI producing incremental evolution equations show rate sensitivity by means
of variability of yield stress with stress rate. On the other hand transverse isotropy appears in
metal forming issues like in rolled car body sheets [18]. Here an extension of tensor generators
and invariants is needed to include the preferred anisotropy direction. Such a procedure has
been made here. In addition we believe that the results of this paper are applicable to dynamic
deformation of orthogneiss rocks treated recently in [5].

Keywords: Viscoplasticity, QRI materials, reactor stainless steels, orthogneiss rock

1. Introduction and preliminaries

Theoretical consideration of viscoplasticity has become an important issue for finite element
codes which pretend to perform calculations of complex structures with a high precision.
In a majority of them (like ABAQUS, ADINA, MARC, etc.) evolution equation for plastic
strain rate is of associate type, i.e., it is perpendicular to yield surface in stress space. As
another essential simplification yield function is firmly connected to the second invariant of
the deviatoric stress, so called J2 invariant. This leads to coaxiality of plastic stretching and
stress deviator tensors. Such a surface most commonly is based on the above–mentioned
unique flow curve. It should be noted that usually yield function is detected from tension
tests and then applied to calculation during arbitrary stress–strain histories appearing in real
structures. This procedure could produce significant errors destroying geometrical accuracy
which FEM codes offer.

The best check for a theory is to compare it to experiments. We have at the disposal
experiments performed in Dynamic testing laboratory of JRC-Ispra, Italy with specimen
made of austenitic stainless steel AISI 316 in the range of small, medium and high strain
rates from 0.001 s−1 to 1000 s−1. The testing has been done mainly at room temperature.
Calibration of the theory shortly sketched below is explained in detail in [4].

Let us devote few words about the notions used in this paper. For finite elasto-visco-
plastic strains it is commonly accepted for a considered body that aside from undeformed
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configuration (χ0) and deformed current configuration (χt) there exists a local reference
configuration of natural state elements (νt)[4]. Then, Kröner’s decomposition rule [6, 7] holds
in the following form:

FP := F−1
E F, (1)

where
F is the deformation gradient tensor,
FE the elastic distortion tensor and
FP the plastic distortion tensor,

determined by the mappings (χ0)→ (χt), χn → (χt) and (χ0)→ (νt), respectively.
In the next section for brief review of constitutive models we will need the plastic

stretching tensor being equal to

DP = sym(LP)≡
1
2
(LP +LT

P)

determined by the symmetric part of plastic “velocity gradient” tensor

LP = (DtFP)F−1
P .

Here aside of the usual notation where the superimposed dot stands for material time
derivative, we have applied DtA ≡ ˙A for arbitrary A .

Concerning state variables we will use plastic strain and stress. As an invariant measure
of plastic strain the Hill’s logarithmic tensor

εεεP = lnVP = 0.5ln
(
FPFT

P
)

(2)

is chosen here. Its principal advantage lies in the fact that it is a deviatoric tensor. In other
words, its three principal invariants read

π1 = trεεεP = 0, π2 = trεεε2
P ̸= 0, π3 = trεεε3

P ̸= 0, (3)

if plastic volume change is neglected. In the above definition, the polar decomposition
theorem for the plastic distortion tensor has been applied by means of

FP = RPUP = VPRP,

where R−1
P = RT

P holds for the plastic rotation tensor.
Let the second Piola-Kirchhoff stress, related to (νt)-configuration, be denoted by S. It

is connected with the Cauchy (“true”) stress via the expression

S = detFEF−T
E TF−1

E .

By means of its deviatoric part dev(S) ≡ Sd and Hill’s logarithmic plastic strain the
following set of invariants will be used throughout this paper. ‡:

γ := {s1,s2,s3,π2,π3,µ1,µ2,µ3,µ4}, (4)

where

s1 = tr S, s2 = trS2
d , s3 = trS3

d , µ1 = tr{SdεεεP},

‡ The choice of the deviatoric stress is motivated by the traditional approach in the existing plasticity papers. Of
course, everything derived in this chapter holds if instead of devS ≡ Sd we use the invariants formed by means of S.
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µ2 = tr{Sdεεε2
P}, µ3 = tr{S2

dεεεP}, µ4 = tr{S2
dεεε2

P}.

Finally, let us mention that in papers oriented to experiments it is customary to use the
following notations:

σeq ≡
(3

2
s2

)1/2
, Dtε p

eq ≡
(2

3
tr{D2

P}
)1/2

, (5)

and names equivalent stress and equivalent plastic strain rate, respectively. They are used
throughout this paper.

2. QRI viscoplasticity

2.1. Quasi rate independence

It is known fact that initial yield stress under dynamic loading depends on strain rate or stress
rate: at higher stress rates the initial stress yield is larger. On the other hand, the phenomenon
of delayed yielding inherent to some metals and alloys is observed [4]: stress under dynamic
loading exceeds its static value and plasticity starts after a certain time called delay time. Let
plastic deformation commence at time t∗. Denote by Y the initial equivalent dynamic yield
stress, i.e. Y = Y

(
σ̇eq(t∗)

)
. Its static counterpart, the initial equivalent static yield stress, is

denoted here by Y0 ≡ Y ,
Then, the accumulated plastic strain is governed by corresponding constitutive equation

having the following form [8]:

ε p
eq(t) =

∫ t

0
J(t − τ) σ̇eq(τ)dτ and Dtε p

eq(t) = J(0)Dtσeq(t), (6)

where J(t−τ)= {0 ifτ < t∗, and exp(−M ) ifτ > t∗}. Here M is an “universal” constant for
tension and shear at strain rates introduced and determined in [8] for the extremely wide range
from 10−3[s−1] to 10[s−1]. This holds for reactor steels with large percentage of Nickel and
Chromium as well as for ferritic steels. A calibration of experiments dealt with orthogneiss
rocks as reported in [5] is in progress. It is expected that a similar behavior will be met. The
first type of evolution equations used here is referred as MAM model [8]. Below, we use
a simplified version of the model. The evolution equation for the plastic stretching (plastic
“strain rate”) is shortly is described by the following tensor representation:

DP = Λ ∑Γα Hα , (7)

For the time being, scalars Γ1,Γ2, . . . and tensors H1,H2, . . . are not specified but the
experimental evidence acquired at the Dynamic testing laboratory of JRC, Ispra (cf. [8])
strongly suggests that the scalar coefficient Λ takes the form:

Λ = η (σeq −Y )
(σeq

Y0
−1

)λ Dtσeq exp(−M ). (8)

Inserting of (8) into (7) leads to an evolution equation seemingly characteristic for rate
independent materials. However, the rate dependence appears in stress rate dependent value
of the initial yield stress Y , which has a triggering role for inelasticity onset. A model based
on (8) could be named as “quasi rate independent”. It is worth noting that the obtained
evolution equations are endochronic permitting scaling of plastic strain rate, replacing time
as independent variable by the von Mises equivalent stress. This is useful for calibration in
very wide strain rate range from low to almost impact strain rates.
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Note about the universal constant: Regardless of the form of a constitutive model for the
stainless steel AISI 316H, the exponent λ = 0.554 whereas the “universal” material constant
was found to have the value: M = 7.26

2.2. MAM model for isotropic materials

According to ([9]) the increment of plastic strain tensor is perpendicular to a loading surface
Ω = const where Ω depends on stress, temperature and Pattern of Internal Rearrangement
(PIR). Translating this statement into the language of the previous section an evolution
equation for plastic stretching should hold in the following form ([9]):

DP = ∂SΩ(S,T,PIR). (9)

Here PIR is described by anholonomic internal variables representing crystal slips over active
slip systems. Due to its significance, the whole first paper of this monograph is devoted to
the related geometric issues.

The plastic deformation “gradient” (i.e. distortion) tensor is incompatible, represents
also slips and may reflect transformation of anholonomic coordinates. Thus, taking into
account that plastic rotation tensor may be either fixed or taken to be unity, it was assumed in
[8] that in the above equation PIR may be represented by the plastic strain tensor. Moreover,
we extend the above evolution equation inserting in it a scalar function Λ which must account
for the linear connection between rates of Mises equivalent stress and equivalent plastic strain
rate. The structure of Λ is shown in (8). Therefore,

DP(DtS,S,εεεP,T ) = Λ ∂SΩ(S,εεεP,T ), (10)

where Rice’s loading function depends on temperature and the above given invariants, i.e.,

Ω = Ω(γ,T ) ≡ Ω(s1,s2,s3,π2,π3,µ1,µ2,µ3,µ4,T ).

Suppose that damage is negligible until localization onset and that this function is
approximated by a fourth order polynomial with respect to S and first order in εεεP. With
such an approximation we would have [4]:

2Ω = a1s2 +(a2 +a4µ1)(s1s2 − s3)+
1
2

a3s2
2 +

1
3

a5(3µ3s2 −2µ1s3). (11)

Therefore, applying tensor representation to the evolution equation for plastic stretching
allows the next equation:

DP = Λ
4

∑
α=1

Γα(γ)Hα (12)

with the next tensor generators:

Y0 H1 = S− 1
3

1 trS ≡ devS ≡ Sd ,

Y 2
0 H2 = dev(S2

d),

H3 = εεεP,

Y0H4 = dev(SdεεεP + εεεPSd) (13)

152



and corresponding scalar coefficients depending on the listed invariants in the following
manner:

Γ1 = a1 +a2s1 +a3s2 +a4µ1 +a5µ3,

Γ2 =−3
2
(a2 +a4µ1)−2a5µ1,

Γ3 =
1
2

a4(s1s2 − s3)−
2
3

a5s3, (14)

Γ4 = a5s2.

The coefficient Λ has the form (8) given above.
Calibration of the MAM-model was done in [4] for a AISI 316H stainless steel.

The material constants of this model were found to be: A = {a1,a2,a3,a4,a5} =
{0.925, −0.065, −0.039, 0.017, −0.134} with λ = 0.554 and correlation constant η =
0.985.

Two special cases of the loading function leading to reduced forms of the evolution
equation (12) have remarkable simplicity.

◦ If a4 = 0 and a5 = 0, then the plastic stretching is of third–order power of stress. The
loading function becomes

2Ω = a1s2 +a2(s1s2 − s3)+
1
2

a3s2
2. (15)

◦ For the second–order stress–dependent plastic stretching the loading function is
specified with only two material constants

2Ω = a1s2 +a2(s1s2 − s3). (16)

2.3. Transversely isotropic materials

When the material body possesses a single preferred anisotropy direction, say N⃗, then the
arguments of the evolution equation (7) have to be extended to include the diadic N ≡ N⃗⊗ N⃗.
If N⃗ is unit vector then N⃗ · N⃗ = trN = 1. Therefore,

DP = Λ∂SΩ(S,εεεp,N) ,

Ω = Ω(S,εεεp,N) (17)

Accordingly the set of invariants to be used as the source of tensor generators reads:

s1 = trS, s2 = trS2
d , s3 = trS3

d ,

π1 = trεεεp = 0, π2 = trεεεp
2, π3 = trεεε3

P, π4 = trNεεεp, π5 = trNεεεp
2,

µ1 = trSdεεεp, µ2 = trS2
dεεεp, µ3 = trSdεεεp

2, µ4 = trS2
dεεεp

2,

κ1 = trNSd , κ2 = trNS2
d ,

λ1 = trNSdεεεp,λ2 = trNS2
dεεεp,λ3 = trNSdεεεp

2, λ4 = trNS2
dεεεp

2

Suppose now that Ω is a polynominal of third order in S and linear in εεε . Then the loading
function has the following form:
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2Ω = a0s2
1 +a1s2 +a2s3 +a3s1s2 +a4s3

1 +a5s1µ1 +

a6s1µ2 +a7s2µ1 +a8µ2 +

b1κ2
1 +b2κ2 +b3κ3

1 +b4κ1κ2 +b5κ1s1 +

b6κ1s2 +b7κ2s1 +b8µ1κ1 +b9κ1µ2 +

b10κ1s1µ1 +b11κ2s1 +b12κ2µ1 + (18)

c1λ1s1 + c2λ1s2
1 + c3λ1s1 + c4λ1κ1 + c5λ1κ2

1 +

c6λ1κ2 + c7λ2κ1.

For convenience, we introduce notations:

ā1 ≡ a1, ā2 ≡ a2, ā3 ≡ a5, ā4 ≡ a7,
b̄1 ≡ b1, b̄2 ≡ b2 b̄3 ≡ b6,
b̄4 ≡ b8, b̄5 ≡ b9, b̄6 ≡ b7,
c̄1 ≡ c1 c̄2 ≡ c2 c̄3 ≡ c5,

If damage is neglected, then trDP = 0 holds. On the other hand, the plastic stretching vanishes
when stress is absent i.e. DP/S=0. With these two restrictions number of relevant material
constants is much smaller so that is reduced into

2Ω = ā1s2 + ā2 (s3 − s1s2)+ ā3

(
s1µ1 −

3
2

µ2

)
+ ā4µ1s2 +

b̄1

(
1
9

s2
1 +κ2

1 −
2
3

s1κ1

)
+ b̄2

(
1
9

s2
1 +κ2 −

2
3

s1κ1

)
+

b̄3

(
−1

3
s1s2 +κ1s2

)
+ b̄4

(
µ1κ1 −

1
2

µ2

)
+

b̄5

(
−1

3
s1µ2 +κ1µ2 +κ1s1µ1 −µ1κ2

)
+ (19)

c̄1 (s1λ1 −3λ1κ1 +π4s1κ1)+

c̄2

(
λ1s2

1 −3s1λ2 −9λ1κ2 +9κ1λ2 −
1
9

π4s3
1 −6π4κ3

1 +6π4κ1κ2

)
+

c̄3
(
λ1κ2

1 −λ1κ2 −π4κ3
1 +π4κ1κ2

)
.

Special case of negligible plastic strain µ1 ≈ 0, µ2 ≈ 0, λ1 ≈ 0, λ2 ≈ 0, π4 ≈ 0.

2Ω ≈ ā1s2 + ā2 (s3 − s1s2)+ b̄1

(
1
9

s2
1 +κ2

1 −
2
3

s1κ1

)
+

b̄2

(
1
9

s2
1 +κ2 −

2
3

s1κ1

)
+ b̄3

(
−1

3
s1s2 +κ1s2

)
(20)

For further analysis only the simplest evolution equation following from the above reduced
loading function is shown:
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DP = ā1Sd + ā2

(
3
2

S2
d − s1Sd − s21

)
+

b̄1

(
1
9

s11+κ1N− 1
3

s1N− 1
3
κ11

)
+

b̄2

(
1
9

s11+
1
2

NSd +
1
2

SdN− 1
3

s1N−1
3
κ11

)
+ (21)

b̄3

(
−1

3
s1Sd −

1
6

s21+
1
2

s2N+κ1Sd

)
2.4. Classical theory of transversely isotropic materials

In classical theory of plasticity of transversely isotropic materials the evolution equation is
based on the equivalent stress:

σ2
eq =

3
2

(
s2 +

1
2

R̄κ2
1

)
and the corresponding yield function

f =
1
3

σ2
eq

h(εPeq)
= 1

Then

DP = ∂S f =
1

2h(εpeq)
∂Sσ2

eq =
1

2h(εpeq)
(Sd + R̄κ1N) . (22)

Comparing these expressions with the simplest loading function in MAM theory we see that
anisotropy coefficient R̄ is proportional to b̄1. However this classical theory does not contain
either coefficients b̄2 and b̄3 or new invariant expressions present in (21). Indeed analyzing
data in [12] we conclude that evolution (22) is not able to cover deformation behavior of car
body sheet.

2.5. Some loading histories

In order to illustrate significance of coefficients in (21), let us consider some special cases of
loading calculating plastic stretching from the simplest evolution equation:

(a) longitudinal uniaxial tension:

S = σ

 1 0 0
0 0 0
0 0 0

=⇒

DP =

(
a1

3
σ − a2

6
σ2 +

b1 +b2

9
σ +

2b3

6
σ2

)
=

 2 0 0
−1 0

−1

 .

κ =
DP22

DP11
=−1

2
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(b) transverse uniaxial tension

S = σ

 0 0 0
0 1 0
0 0 0

=⇒ DPαβ = 0,α ̸= β ,

DP11 =−a1

3
σ +

a2

6
σ2 − 4(b1 +b2)

9
σ +

4b3

6
σ2

DP22 =
2a1

3
σ − a2

3
σ2 +

2(b1 +b2)

9
σ − 5b3

9
σ2

DP33 =−a1

3
σ +

a2

6
σ2 +

2(b1 +b2)

9
σ +

b3

9
σ2

κ = 6
2(b1 +b2)−b3σ

6a1 −3a2σ2 +8(b1 +b2)−8b3σ

(c) longitudinal-transverse shear

S = τ

 0 1 0
1 0 0
0 0 0

=⇒

DP =


a2τ2/2+2b3τ2/3 a1τ +b2τ/2 0

a2τ2/2−2b3τ2/3 0
Sym −a2τ2 −b3τ2


κ = 1− 6b3

3a2 +4b3

(d) transverse shear

S = τ

 0 0 0
0 0 1
0 1 0

=⇒ DP =

 −2δ 0 0
δ 0

Sym a1τ/δ


where

δ ≡ 1
2

a2τ2 − 1
3

b3τ2

κ =−1
2

3. Some concluding remarks

In the above loading cases to the direction of plastic strain a special attention is given.
Meaning of coefficients b2 and b3 will be analyzed especially with relation to plastic strain
induced anisotropy and transition form isotropy to transverse isotropy by previous loading.
However, an immediate conclusion could be made now. Namely the coefficient b3 is
indispensable either for longitudinal-transverse shear or for the case of pure transverse shear.
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Abstract. It happens very often that we want to design a cantilever beam, while all project 
requirements are not fully known. Namely, we know roughly what the structure should 
realize. In classical optimization standard procedure should be applied in order to satisfy all 
the pre-requirements. What happens if the requirements can only be described, but not 
explicitly set? This paper starts from the premise that some requirements are expressed 
linguistically. We want that the length and the largest deflection of a cantilever beam are 
suitable to satisfy the predetermined conditions. Also, the goals are that the bending stress 
and the largest deflection have to be less than the allowable maximum value. The objective 
of this paper is: on known constraints and known fuzzy goal functions we must execute 
fuzzy projecting of a beam. Constraints are: the length of cantilever beam and its deflection, 
while the goal functions are maximum bending stress and maximum deflection. On this 
basis, with known cross-sectional dimensions, we can determine the maximum cantilever 
beam load. 

 
 
 
 

1. Introduction  
 
Optimization in any field of science, in any problem, provides a solution that satisfies the 
criteria prescribed in advance. Optimization problems are very often present in design of 
machines and their elements, optimal control, in finding the optimal trajectory of the 
system... In defining the optimal criteria there is a situation that some parameters of the 
system get advantage over the other parameters. A particular problem is the multi criteria 
optimization. In such cases we are never sure whether that we choose the right criteria, and 
in particular, whether the criteria are defined in an appropriate manner. What happens in 
cases where the criterion of optimality does not have clear boundaries? Today, there are 
available several procedures being able to successfully do mentioned job for us. 
In case of the optimization problems with an analytical solution without special restrictions, 
existing methods provide an exact optimal solution. When the mentioned situation occurs in 
problems with analytical solution, usually expressed like derivatives of functions, the final 
solution may depend on the numerical skills. However, in those cases, the well-known 
classical methods of optimization are present. 
Unconventional methods of optimization, in the cases without precisely defined constraints 
and optimality criteria, began its development about 20 years ago. More of these methods 
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are presented in [1]. A separate analysis of the process of optimization in engineering 
problems, using fuzzy logic is given in [2]. However, available methods have their 
disadvantages. The aim of this paper is to improve existing methods for optimization of 
fuzzy systems, so that the results are more realistic. 
 

2. Theoretical postulation  
 
Consider a function )(xfy  . It is necessary to determine the optimal solution *x , for 

which the function )(xfy   has a maximum value, whereas we need to be satisfied n 

constraints [2], for example 
 

nixfi ,...,2,1,0)(                                                                                             (1) 

 
All constraints can be represented by a set A  
 

 nixfxAAAA in ,...,2,1,0)(|...21  ,                                              (2) 

 
where is  0)(|  xfxA ii . That way we get to the optimal solution *x  defined as 

follows 
 

 )(max)( * xfxf
Ax

 .                                                                                                    (3) 

 
In case of conflicting constraints and nonentity of analytical solutions, pre-defined problem 
can be expressed in a different way, using elements of fuzzy logic. Then, constraints 
presented with a set A , can be represented in an appropriate way, i.e. new set A , which is 
adopted in fuzzy set. This fuzzy set is the best way to set limits. It is now necessary to write 
the function )(xfy   in the form of fuzzy. This can be done as follows [3], using the 

membership functions 
 

mM

mxf
xB 




)(
)( ,                                                                                                      (4) 

 
where are: )(inf xfm

Xx
  and )(sup xfM

Xx
 . A set X denotes an area in which we look for 

the optimal solution, and a fuzzy set B is an appropriate goal function. Relation (4) is 
suitable for determining the maximum values, but in case you need to minimize a function, 
does not give proper results, and the membership functions of the goal function should be 
represented in the form of  
 

mM

mxf
xB 




)(
1)( .                                                                                                 (5) 

 
Obviously, the fuzzy solution obtained as BAC  , i.e. 
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 )(),(min)( xxx BAC   ,                                                                                       (6) 

 
and the optimal value *x  determined by the relation 
 

Xxxx CC  ),()( *  .                                                                                    (7) 

 
If the goal functions and constraints are in conflict, fuzzy decision is taken in the form of 
[2] 
 

 1,0),()1()()(   xxx BAC .                                                     (8) 

 
Applying the previous expression, in practice, does not yield to satisfactory solutions. 
 
 

3. Problem of multicriteria optimization 
 
Suppose the constraints given by fuzzy sets niAi ,...,2,1,  , and the goal functions with 

fuzzy sets mjBj ,...,2,1,  . The corresponding membership functions are )(x
iA  and 

)(x
jB . Suppose that all constraints and all goal functions have not the same significance 

for the determination of the optimal solution. 
Based on the above analysis it follows that the membership function of constraints 

 





n

i
AiA x

M
x

i
11

)(
1

)(  ,                                                                                           (9) 

with 



n

i
Ai

Xx
xM

i
1

1 )(sup  , while i  represent the weight coefficients for certain 

constraints. The same can be determined and the membership functions of goal, i.e. 
 





m

j
BiB x

M
x

j
12

)(
1

)(  ,                                                                                        (10) 

where is 



m

j
Bi

Xx
xM

j
1

2 )(sup  , and j  are the weight coefficients for certain goals. 

In this case, fuzzy solution is obtained using (6), and the optimal solution is determined by 
relation (7). 
 

4. Example 
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Suppose that the cantilever beam (Fig. 1.) of length l and square cross section with 

cma 4 is loaded with force F


on its end. The cantilever beam is made of material whose 

elastic modulus is
2

4101,2
cm

kN
E  , and allowed bending 

stress MPa200 .  
It is well known, in this case, that the maximum value of 

bending stress and deflection can be determined by: 
xW

Fl
  

and 
xEI

Fl
f

3

3

 , where are 
6

3a
Wx   and 

12

4a
I x  . 

Constraints are: ml 2  and mmf 4 . Also, we ask that deflection at the end of 

cantilever beam of the length m1  is as close as possible to mm0 . The goals are: to be sure 
the deflection does not exceed mm4 , and that allowed bending stress does not 
exceed MPa200 . All constraints and all goals are equally significant to us. On this basis, it 

is necessary to determine the intensity of force F


.  
Using the given constraints, we can introduce them in the form of fuzzy sets 

 



















4

40

0

4
,

21

10

2 1

11

1

1

1

1

c

cc
f

d

d

d

d
l .                                       (11) 

 
Previously shown functions express our demand that the length of a cantilever beam should 
be approximately m1 , and the deflection is as small as possible and never exceeds mm4 . 
Functions (11) remind us to the membership function expressions, which are interconnected 
[4-5]. Transformation of the previous function, for  1,0x , we get 

 



















4

10

0

1
)

4
(,

15,0

5,00

22

2
)

2
(

21 x

xxf
x

x

x

x

xl
x AA  .        (12) 

 
Using (2) we obtain the membership function of constraints (Fig.2.) 
 
















1
3

1
3

1
0

1

2
)(

x

x

x

x
xA .                                                                                    (13) 

Fig.1.

l

161



 
Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 2011 A-08 

 

0,0 0,5 1,0
0,0

0,5

1,0


A
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
A

1 
A

2


A

 
Fig.2. 

As the goal functions of the linear functions of force F


, membership functions of goal 
functions can be expressed as  
 

 1,0,)
4

(,)
200

(
21

 xx
f

xxx BB  ,                                            (14) 

 
so xxB )( . Then, based on (6) (Fig.3.) 

 

0,0 0,5 1,0
0,0

0,5

1,0

*x


C


B

A

x



 
Fig.3. 

 











15,0

5,00

1
)(

x

x

x

x
xC ,                                                                                  (15) 

whence, using (7), it follows that the optimal solution 5,0* x . Therefore, obtained 

solutions are: ml 1 , mmf 2 , MPa100 , and the required intensity of the force is 

 

  kNf
l

EI

l

W
F xx 27,027.0,07.1min

3
,min

3








   

 
Applying relation (9) and (10), we get 
 

   1,0,)(
1

)(,
1

3

1
3

1
0

1
2

3
3

)(
1

)(
2

*

1

* 












 xxx
M

x
x

x

x

x
x

M
x BBAA  ,     (16) 

as it is shown in Fig.4.  
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*
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

 
Fig.4. 

Then   **1
2

3
xx  , ie. 6,0* x . Now the solutions are: ml 2,1 , mmf 4,2 , 

MPa120 , and the required intensity of the force is 
 

  kNf
l

EI

l

W
F xx 32,032.0,28.1min

3
,min

3








   

  
 

5. Conclusion 
 
This paper discusses the process of optimization using fuzzy sets. Theoretically, an 
optimization problem with the presence of more than one constraint and one goal function 
is considered. This procedure is generalized for the case of more constraints and more goal 
functions. It is especially considered the case when all the fuzzy constraints and fuzzy 
objective functions have the same practical significance. Improvement of existing methods, 
in order to obtain more realistic solutions, is done by a procedure of bringing the 
membership function to their maximum value. Theoretical studies of this optimization 
process are shown in the example of a cantilever beam. 
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ABSTRACT. This paper analyzes zero-sum differential games for jump diffusion 
processes under incomplete state vector information. The problem is described by nonlinear 
stochastic equation with standard Wiener processes and compensated Poisson random 
measures. This problem is transformed by generalized Foker-Plank-Kolmogorov equation 
into deterministic dynamic game with distributed parameters. Necessary and sufficient 
conditions by which the solution of the game could be defined are presented. Finally, 
special cases of the problem with complete (full-feedback optimal control) and without 
information (open-loop optimal control), are observed in this paper. 
 
Keywords: Zero-sum stochastic dynamic games, distributed parameters dynamic games, 
stochastic differential games with incomplete information, jump diffusion processes, 
functional Krotov's. 
 
1. INTRODUCTION 
 
The problem of stochastic differential games with zero-sum with two players under 
complete information vector state system considered in 1 in which conditions for 
existence and unity of viscose solution of respective Hamilton-Jacobi-Belman-Isaacs 
equations are given, a corresponding problem for stochastic dynamics games with jump 
diffusion processes considered in works 10, 11. In the mentioned work summary of 
earlier works which mentioned this problem are given. One of the first works considering 
problems of stochastic differential games of N-persons with a complete vector of state 
information (without jump and control in diffusional member) is work 2. In 5  authors 
consider simpler problem ( similar to the problem previous work) for antagonistic games 
diffusion system with jump and incomplete state vector information. 
The problem of stochastic differential games with control and with open loop is given in  
7, Similar problem to be discussed here for differential stochastic games consider optimal 
control for system with random structure in 3, and for systems with fix structure in cited 
references in the above paper. The problem of antagonistic differential game with 
distributed parameters is considered in a similar way used here, is given in 4. 
In the second part of this work presents stochastic differential equations which explain the 
dynamics of the differential games with price of the game in the form of general Bolcas 
problem. After responsive generalized equations Foker-Plank-Kolmogorov for density of 
distribution of probability vector of state system are given it is shown how the initial 
problem is transformed into antagonistic differential game with distributed parameters. In 
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. FORMULATION OF THE PROBLEM  

ynamic zero-sum two players stochastic differential games for jump diffusion processes is 

the third part are defined requirements which have to be fulfilled in order to attain the 
solution for the differential games with partial information on the state of the system vector. 
The fourth part gives some conclusion remarks. 
 
 
2
 
D
described by following nonlinear stochastic differential equations   
 

),(
~

)),(),(),((

)())(),(),(,())(),(),(,()(

dzdsNzsvsusx

sdBsvsusxsdssvsusxsbsdx

nR







 

,)( 00 xtx     ,, 10 ttTs        (1) 

 
here the state vector x has n coordinates, and B is d – dimensional standard Brownian 

t p y ize

 (2) 

 
here p(t,x) – density probability of the state vector and satisfy the  Fokker-Plank-

       (3) 

 

here with  Auv marked operator defined of the equation  (4), and with  will be marked 

)  

w
motion. Vectors γ and z have l-dimension and matrix σ is n×d –dimension, 

)(),(
~

dzdsdzdsN  - is compensated Poisson random measure Controls u and v take 

mpact metric spaces U and V. State vector x  have four parts 

( 1x , 2x , 3x , 4x ) dimension –minimum 0 and maximum n. Control u from first two parts 

an  t es an v from x , x and times, vector x  is unknown for two players. Cost 

functional where the firs la er intends to maxim  and the second one to minimize is 
given in  4 

1t

values from relevant co

d im , d 2 3 4

)),,(()),,(),,,(),,(,( 1032210
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xtpdxdtxxtvxxtuxtptfJ
t Rn

  
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where - notational conventions for partial derivatives in time and relevant vector 

state components- respectively and by repeated indexes in equation (4)  it is assumed to be 
addition. In the initial moment (t0) normed density of probability p0(x), is known and for 
indefinite values of components of the state vector has in every moment of time t (t0,t1) 
value for p equal 0. Matrix a is defined as  a product of the relevant matrix in diffuse 
component and its transposed value. 

jit  ,,

Set of the admissible values for p and controls u and v we will mark with  D (d=(p,u,v)D). 
The basic problem to be solved here is then 
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where with (*)  are denoted those values which respond to the solution of the given game 
and other variables take values from admissible set of  D. 
 
3. EXTENSION PRINCIPLE AND STOCHASTIC DIFFERENTIAL 
    GAMES  WITH JUMP 
 
Lets consider a set Z of continuously differentiable functionals  S(t,p(x)): TPR which 
for each  t from T  have the continuous variation derivative continuous variation derivative  
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Now we can present functional R in the following shape 
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or shorter 
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where with H represents 
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         (10) 
In above expressions m  denotes  components of the state vector  whose coordinates are 
known by the first or second player. For matrix component a with fixed value of t from set 
T  we will assume that they have derivatives from second row by x  for vector b,γ to have 
derivatives by x and matrix elements a and vector b,γ,λ and corresponding Jacobian 
transformation for conjugate operator in equation (3)are piecewise- continuous function in t 
for all x (xRn).  These assumptions mean specified constrains and on a admissible controls 
u and v. 
Now we can formulate theorem by which are determined necessary and sufficient 
conditions for existence of the solution for the given game and appropriate value function  
of the game.  
 
 
Theorem 1. If there  exist an functional  S*(t,p*(x))Z and controls of both of players  
u*(t,x1) and v*(t,x1) such to fulfill the conditions 
 
1.   ,0*)*,*,,( vuptR
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then there is a solution of antagonistic stochastic differential games with incomplete 
information of the state vector and respective cost of the game (5).  
 
Proof. Lets consider the following functional (Krotov): 
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using expression for functional  R  and expression for total time- derivative  of functional S  
we get that 
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Equation (12) can be applied for the solution of the game, so  S*=J* is  the value of the 
criteria (3), which corresponds to the solution of the game. The functional  S*  represents 
the value of criteria (2), for the solution of the game  is the direct consequence of condition 
Isaacs  2. ( which satisfied all values of admissible variables in expression for H ) and  3. in 
theorem 1 [10]. It can be showed using Krotov method, that for fix values of controls  u*  
or v*  is not possible to get a smaller  value or a bigger value of the criteria (2) from the 
value of functional S*. 
With proof of theorem 1. We will give the procedure how optimal values can be determined 
of control of both players u* and v*. Lets consider  functional in expression for  H: 
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S
uv     

         (13) 
so optimal values now u* and v* have following shape: 
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         (15) 
where m1, m2, m3, m4 marked dimension four part vector x. 
 
For the simpler problem without jump, when controls of both players participate only in 
vector b in equation (1), the solution is given in work [2] . This solution has a specific 
cases, solution for the problem with full information on the state and without information 
on the state. The problem here is not a deterministic problem with distributed parameters 
but an stochastic problem with concentrated parameters. 
Similar solution is for the general problem (1), (2) with full information of the state of the 
system given in [10]. Here requirements that describe viscose solution of  Hamilton-Jacobi-
Bellman-Isaacs equations are given. The requirements which have to be fulfilled for 
existence of the solution of the stochastic differential game without information of the state 
vector given in [7] . Appropriate optimal values for u* i v* may be derived for formulas  
(14) and (15) where instead of integral on x2  we have appropriate q when we have full 
information on the state and when we don’t have information on the state- integration is 
done in whole space of the state (on x). In this case this controls can be determined over  
Krotovs functional and depends only on state vector.  
 
 
4. CONCLUSION 
 
Conditions defined in theorem 1 represent necessary and sufficient requirement for 
existence of solution of  antagonistic stochastic differential game and its transformation in 
deterministic differential antagonistic game with distributed parameters. Required 
conditions may be defined in the form of maximum principle for antagonistic game with 
distributed parameters. The problem of stochastic differential games with insufficient 
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information on the state of the system is solved here in accordance with closed loop with 
known coordinates of the state. When we have full information of the state of the system 
we have full closed loop and we don’t have the information on the state of the system then 
we have a problem with open loop. 
More general problem with incomplete state information (without jumps) is considered in 
[6].   
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ABSTRACT. This paper analyzes stochastic optimal control for jump diffusion processes 
under incomplete state vector information. The problem is described by nonlinear 
stochastic equation with standard Wiener processes and compensated Poisson random 
measures. This problem is transformed by generalized Foker-Plank-Kolmogorov equation 
into deterministic optimal control with distributed parameters. Necessary and sufficient 
conditions by which the solution of the optimal control are presented. Finally, special cases 
of the problem with complete (full-feedback optimal control) and without information 
(open-loop optimal control), are observed in this paper. 
 
Keywords: Stochastic optimal control, distributed parameters optimal control, stochastic 
optimal control with incomplete information, jump diffusion processes, functional Krotov's. 
 
 
1. INTRODUCTION 
 
The problem of stochastic optimal control with jump diffusion processes under complete 
information vector state system considered in 1 in which conditions for existence and 
unity of viscose solution of respective Hamilton-Jacobi-Belman-Isaacs equations are given. 
Stochastic optimal control with jump diffusion processes also considered in 8. In the 
mentioned work summary of earlier works which mentioned this problem are given. One of 
the first works considering problems of stochastic optimal control with incomplete vector 
of state information (without jump and control in diffusional member) is work 2. In 5  
authors consider simpler problem ( similar to the problem previous work) for optimal 
control diffusion system with jump and incomplete state vector information. 
The problem of stochastic optimal control with open loop is given in  7. Similar problem 
to be discussed here is related to optimal control for system with random structure in 3, 
and for systems with fix structure in cited references in the above paper. The problem of 
antagonistic differential game with distributed parameters is considered in a similar way 
used here, is given in 4. 
In the second part of this work presents stochastic differential equations which explain the 
dynamics of the control system with price in the form of general Bolcas problem. After 
responsive generalized equations Foker-Plank-Kolmogorov for density of distribution of 
probability vector of state system are given it is shown how the initial problem is 
transformed into optimal control with distributed parameters. In the third part are defined 
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

sufficient conditions for optimal control with partial information on the state of the system 
vector. The fourth part gives some conclusion remarks. 
 
 
 
2. FORMULATION OF THE PROBLEM  
 
Dynamic for jump diffusion processes is described by following nonlinear stochastic 
differential equations   
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where the state vector x has n coordinates, and B is d – dimensional standard Brownian 
motion. Vectors γ and z have l-dimension and matrix σ is n×d –dimension, 

- is compensated Poisson random measure Controls u take values 

from relevant compact metric spaces U. State vector x  have two parts ( , ) dimension 

–minimum 0 and maximum n. Control u depend from first part state vector ( -known 

state) and times, and - is unknown coordinate. Cost functional where to maximize is 

given in  4 

)(),(
~

dzdsdzdsN 

2x

1x 2x

1x

)),,(()),(),,(,( 1010

1

0

xtpdxdtxtuxtptfJ
t

t Rn

      (2) 

 
where p(t,x) – density probability of the state vector and satisfy the  Fokker-Plank-
Kolmogorov equations 9 
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where - notational conventions for partial derivatives in time and relevant vector 

state components- respectively and by repeated indexes in equation (4)  it is assumed to be 
jit  ,,
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addition. In the initial moment (t0) normed density of probability p0(x), is known and for 
indefinite values of components of the state vector has in every moment of time t (t0,t1) 
value for p equal 0. Matrix a is defined as  a product of the relevant matrix in diffuse 
component and its transposed value. 
Set of the admissible values for p and controls u and v we will mark with  D (d=(p,u,)D). 
The basic problem to be solved here is then 
 

*,)),(()),(),,(),((sup *
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        (5) 

           
where with (*)  are denoted those values cptimal control solution of the problem. 
 
 
 
3. EXTENSION PRINCIPLE AND STOCHASTIC OPTIMAL 
    CONTROL  WITH JUMP 
 
Lets consider a set Z of continuously differentiable functionals  S(t,p(x)): TPR which 
for each  t from T  have the continuous variation derivative  
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or shorter 
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In above expressions m  denotes  components of the state vector  whose coordinates are 
known. For matrix component a with fixed value of t from set T  we will assume that they 
have derivatives from second row by x  for vector b,γ to have derivatives by x and matrix 

173



 
 
 
 
 
 
Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 2011                A-10 

 
elements a and vector b,γ,λ and corresponding Jacobian transformation for conjugate 
operator in equation (3)are piecewise- continuous function in t for all x (xRn).  These 
assumptions mean specified constrains and on a admissible controls u . 
Now we can formulate theorem by which are determined necessary and sufficient 
conditions for existence of the solution for optimal control.  
 
 
Theorem 1. If there  exist an functional  S*(t,p*(x))Z and controls u*(t,x1) such to fulfill 
the conditions 
 
1.  ,0*)*,,( uptR  

 

2.   ,0))(*,( 1 xptG
 
then there is a solution of stochastic optimal control with incomplete information of the 
state vector condition (5) holds.  
 
Proof. Lets consider the following functional (Krotov): 
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using expression for functional  R  and expression for total time- derivative  of functional S  
we get that 
 

)),(()),(),,(,(

)),(()),((
1

0

010

100

dxpJdxdtxtuxtptf

xtpdxpF
t

t Rn
  

 

    (12) 

Equation (12) can be applied for the solution optimal control, so  S*=J* is  the value of the 
criteria (2), which corresponds to the solution of the optimal control. It can be showed using 
Krotov method, that for fix values of controls  u*  is not possible to get a bigger value of 
the criteria (2) from the value of functional S*. 
With proof of theorem 1. We will give the procedure how optimal values can be determined 
of control u* . Lets consider  functional in expression for  H: 
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so optimal values now u* have following shape: 
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For the simpler problem with jump, when controls participate only in vector b in equation 
(1), the solution is given in work [5] . This solution has a specific cases, solution for the 
problem with full information on the state and without information on the state. The 
problem here is not a deterministic problem with distributed parameters but an stochastic 
problem with concentrated parameters. 
Similar solution is for the general problem (1), (2) with full information of the state of the 
system given in [1] and [8]. Here requirements that describe viscose solution of  Hamilton-
Jacobi-Bellman-Isaacs equations are given. The requirements which have to be fulfilled for 
existence of the solution of the stochastic optimal control without information of the state 
vector given in [7] . Appropriate optimal value for u* may be derived for formula  (14) 
where instead of integral on x2  we have appropriate q when we have full information on the 
state and when we don’t have information on the state- integration is done in whole space 
of the state (on x). In this case this controls can be determined over  Krotovs functional and 
depends only on state vector.  
 
4. CONCLUSION 
 
Conditions defined in theorem 1 represent necessary and sufficient requirement for 
existence of solution of  stochastic optimal control and its transformation in deterministic 
optimal control with distributed parameters. Required conditions may be defined in the 
form of maximum principle for optimal control with distributed parameters. The problem of 
stochastic optimal control with insufficient information on the state of the system is solved 
here in accordance with closed loop with known coordinates of the state. When we have 
full information of the state of the system we have full closed loop and we don’t have the 
information on the state of the system then we have a problem with open loop. 
More general problem with incomplete state information (without jumps) is considered in 
[6].   
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A NOTE ON KASNER METRIC

Dragi Radojević
Mathematical Institute SANU, Knez Mihailova 36, Belgrade, Serbia
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Abstract. n a recent paper Stephen Hawking offered an interesting answer to the question
of what happened before the beginning of the expansion of the Universe. We used the Kasner
metric to illustrate that idea.

In a recent paper [2], Stephen Hawking offered an interesting answer to the question of
what happened before the beginning of the expansion of the Universe:

" At this time, the Big Bang, all the matter in the Universe, would have been on top of
itself. The density would have been infinite. It would have been what is called a singularity.
At the singularity, all the laws of physics would have been broken down. This means that the
state of the universe, after the Big Bang, will not depend on anything that may have happened
before, because the deterministic laws that govern the universe , will break down in the Big
Bang. The universe will evolve from the Big Bang, completely independently of what it was
like before. Even the amount of matter in the universe, can be different to what it was before
the Big Bang, as the Law of Conservation of Matter, will beak down at the Big Bang.

Since events before the Big Bang have no observational consequences, one may as well
cut them out of the theory, and say that time began at the Big Bang. Events before the Big
Bang are simply not defined, because there is no way one could measure what was happened
at them."

We shall try to illustrate this idea using the Kasner cosmological model [1].
Kasner cosmological model is presented by the metric

ds2 = t2p1 dx2 + t2p2 dy2 + t2p3 dz2−dt2

along with the "Kasner condition "

p1 + p2 + p3 = 1
(

p1
)2 +

(
p2

)2 +
(

p3
)2 = 1

These are two equations with three unknown constants. We could "solve" this system of
equations by giving to one of the unknown constants the desired value.

If we are free to suppose 2p3 = 1
4 , we could get

p1 =
7±√77

16
, p2 =

7∓√77
16

, p3 =
1
8

and in such a special case we obtaine
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ds2 = t2p1 dx2 + t2p2 dy2 +
√√

t dz2−dt2 (†)

The component g33 of the metric tensor is not defined for t < 0 , and so we have the
beginning of the universe ( and time ).

Another feasible choice could be 2p3 = 1
2 , and so

p1 =
3±√21

8
, p2 =

3∓√21
8

p3 =
1
4

and this possibility provides —the metric

ds2 = t2p1 dx2 + t2p2 dy2 +
√

t dz2−dt2 (‡)

In such a case g33 =
√

t , and it is not defined for t < 0 , so we can choose the
beginning !
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MOND teorija
Modifikacija Njutnovske dinamike

Veljko Vujičić
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1. Uvod

Pod pojmom Modifikacija (lat. modificatio) ovde se podrazumeva: izmena, preinačenje,
tačnije odredjenje. Prema tome značenje naslova MOND - Modifikacija njutnovske
dinamike podrazumeva izmene ili utanačenje klasične i nebeske mehanike, u pojedinostima,
kao i opštih osnova dinamike. U naslovu svog genijalnog dela [1] ističu se dve reči
MATEMATIČKI PRINCIPI nauke o prirodi - Philosophiae naturalis principia mathematica‡
iza čega je nastala, po svemu velika knjiga, koja sadrži: Osnovne definicije, aksiome ili
zakone kretanja, leme, teoreme, zadatke, pretpostavke, pojave i pravila umnog rasudjivanja.
Autor ovog napisa smatra da svako otstupanje od tih principijelnih stavova jeste Modifikacija
Njutnove dinamike, što ćemo kratko nazivati MOND teorija - Modified Newtonian Dynamics.
To je znatno opštije od tog naziva koji smo preuzeli iz WIKIPEDIA, the free encyclopedia,
koja se vezuje za ime Mordehai Milgrom (1983), fizičhara Weizmann Instituta u Izraelu.[2]
§

‡ Pri obeležavanju jedne godišnjice izdavanja ove Njutnove knjige, u Kagujevcu 22. i 23. oktobra 1987. godine,
profesor beogradskog univerziteta B.A. Aničin napisao sledeće:“Pisac ovih redova (Aničin) je smišljao školski
zadatak u kojem se materijalna tačka kreće po poligonu pod dejstvom impulsivne centralne sile, u nameri da zadatak
objavi; pretražio je literaturu inašao ga rešenom kod Njutna. Dodir sa ovom starom knjigom donio mu je svest o
tome koliko je danas slabo poznat sadržaj Principia ali i svest o dan današnjoj predavačkoj vrednosti ovog dela,
posebno kada je reč o pedagogiji centralnog kretanja.

I baš tu gde izgleda da u svetu nedostaju knjige sa kratkim , jasnim i operativnim komentarom mi imamo delo iz
pera jednog..., nećete verovati, ni mehanočara, ni matematičara, ni fizičara, vef̧ilozofa Branislava Petronijevića.
Knjiga ima svega 64 strane, ali obuhvata skoro sve značajne teoreme, date korak po korak, skoro sasvim sa
orginalnim Njutnovim oznakama, što znatno olakšava poredjenje.’
§ From Wikipedia, the free enciclopedia. In Phfysics Modified Newtonian dynamics - MOND is a hypothesis that
proposed a modification of Newton’s law of gravity to explain the galaxy rotation problem. When the uniform
velocity of rotation galaxies was first observed, it was unexpected because Newtonian theory of gravity predicts that
objects that are farther out will have lower velocities. For example, planets in the Solar System orbit with velocities
decrease as their distance from the Sun increases.

MOND was proposed by Mordehai Molgrom in 1983 as a way to model this observed uniform velocity data.
Milgrom noted that Newton’s law for gravitation force has been verified only where gravitational acceleration
is large, and suggested that for extremely low accelerations the theory may not hold MOND theory posits that
acceleration is not linearly proportional to force at low values.

MOND was stands in contracts to the more widely accepted theory of dark matter. Dark matter theory suggests
that each galaxy contains ahead of as yet undeniable type od matte that provides an overall mass description different
from the observed description of normal matter. This dark matter modifies gravity so as to cause the uniform rotation
velocity data.
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Prva i opšta modifikacija Njutnove teorije javlja se upravo od matematičara uporedom sa
razvojem matematičke analize. Njutn je svoje delo ispisao logički po principima i simbolima
euklidske geometrije duži i njihovih odnosa. Post njutnovska dinamika napisana je rečnikom
i relacijama osavremenje matematiǩe analaize. Nastoijalo se pri tom da matemativ cke
transformacije ne menjaju prirodu dinamičkih objekata, ali je bilo i ne malih zastranjavanja.
Sledeći Hamiltonov način svodjenja diferencijalnih jednaǐna drugog reda, na diferencijalne
jednačine dva puta više diferencijalnih jednačina prvog reda, uveden je sasvim nenjutnovski
pojam “Dinamički sistemi" u kojim su ispuštena osnovna svojstva njutnovske dinamike.
Dinamika je nauka o silama, a u tako zvanim “dinamičkim sistemima” ne figurišu sile, niti
svojstva mehanike. Istorijski gledano, modifikacija Njutnove teorije počela je i nastavljala se
daleko pre ove nodifikacije, ali se drukčije nazivala i naziva, kao: Ojler-Lagranžova analitička
mehanika ili Hamiltova mehanika. Njutn je zasnovao svoju teoriju na aksiomama poput
geometrije, a Ojler i Lagranž na osnovu svojih principa. U svom predgovoru Njutn kazuje da
racionalna mehanika ima dva zadatka; jedan, ako su poznati atributi kretanja, da se odredi sila
i drugi, ako je poznata sila, da se tačno odredi kretanje. Medjutim, Hamilton u svojoj teoriji
postavlja samo jedan zadatak - da se prointegrali 2n diferencijalnih jednačina, bez pomena
reči i pojma sile, koji leži u osnovi Njutnove dinamike. Na toj osnovi razvijena je velika
teorija dinamičkih sistema i neinvarijantno integralenje ldinearnih diferencijalnih jednačina
prvog reda i proučavanje stabilnosti integrabilnih i neintegrabilnih sistema.

U cilju veće tačnosti razdvojmo poimanje reči Njutnova i njutnovska. Pod pojmom
Njutnova podrazumevaćemo onako kako je Njutn pisao, a pod njutnovska klsičnu mehaniku,
kako su to drugi autori pisali.

Najprostiji primer zastranjivanja je drugi Njutnov aksiom ili zakon kretanja. Ne mali
broj autora klasične mehanike nazivaju taj aksiom Osnovna jednačina kretanja i zapisuju je
u obliku

d
dt

(mv) = F, (1.0)

a drugi, tačnije, taj zakon pišu u obliku

m
dv
dt

= F. (1.1)

To je velika razlika, što će se videti u daljem izlaganju. Pokazaće se da jednačina (1.0) ne
nastaje po drugoj Njuytnovoj aksiomi ili zakonu kretanja. Kao takva nije u opštem tačna,
pogotovo ne kao njutnovski opšti zakon kretanja tela.

MOND

Njutn je svoje matematičke principe o kretanju počeo sa osam definicija, osnovnih
definicija kojim se utvrdjuju pojmovi:

1. masa,
2. količina kretanja,
3. sila inercije,
4. sila,
5. centripetalna sila,
6. apsolutna veličina centripetalne sile,
7. ubrzavajuća veličina centripetalne sile,
8. pokretačka veličina centripetalne sile.
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MOND1.
Umesto tuh osnovnih Njutnovih definicija i njihovih tumačenja, dovoljno je za razvijanje

teorijske mehanike 5 opštih definicija, stim što se pre definisanja uvode tri preprincipa:[3]
1. Postojanja,
2. Invarijantnosti, i
3. Kauzalne odredjenosti.
Svako odstupanje u razvijanju teorije mehanike, koje ne zadovoljava ova tri preprincipa,

ne može se smatrati mehanikom.
Posle toga slede osnovne definicije:
1. brzine,
2. impulsa ili količine kretanja
3. ubrzanja,
4. sile inercije,
5. dejstva sile.
Naš pristup ne bi trebalo shvatiti kao negiranje Njutnovih matematičkih principa teorije

o kretanju tela, nego kao preinačenje i popboljšanje opisa kretanja tela. Sam Njutn je ukazivao
na modifikaciju pravilima rasudjivanja.

Pravilo IV

“ U eksperimentalnoj fizici tvrdjenja, izvedena iz savršenih pojava pomoću navoda, ne
uzimasjući u obzir suprotna tvrdjenja, treba se opredeliti za vernije ili tačnije, ili približno
tačne, dok se ne otkriju takve pojave, po kojim ’ce se oni isključiti. Tako treba postupiti da
novi navodi ne bi poništili tvrdjenja.”

U cilju veće jasnosti ovde se se polazi od predprincipa: postojanja, kauzalne odredjenosti
i invariijantnosti.

Preprincip postojanja.
Na osnovu nasledjenih, postojećih i stečenih znanja mehanika polazi od toga da postoje:

tela, rastojanja, vreme.([3], str. 13-15).

Dakle, prihvatamo da postoje tela, rastojanja i vreme. Za neprebrojivo mnoštvo
raznoraznih tela ustanovljeno je jedno svojstvo M koje se naziva masam.

Za raznorazna moguća rastojanja ustanovljerno je jedno svojstvo ili atribut L, koju ima
dužina l.

Za sva trenutna, mala, velika i prekidnog i neprekidnog trajanja kretanja i relativnog
mirovanja uvedeno je jedno svojstvo T , zvano vreme.

Preprincip kauzalne odredjenosti.
Tačnost odredjivanja atributa kretanja zavisi od stepena tačnosti merenja parametara

objekta.
Rastojanja, njihove promene i drugi činioci kretanja tela jednoznačno su odredjeni u

toku celog vremena, kako u budućnosti, tako i u prošlosti, i to onolikom tačnošću, koliko su
poznate odrednice kretanja u bilo kojem odredjenom trenutku vremena.

Princip invarijantnosti.

Kretanje i svojstva kretanja tela ne zavise od forme iskaza: utvrdjena istina o kretanju
i zapisana jednom u odredjenom obliku nekog jezika jednako je sadržana u zapisu drugog
oblika ili drugog pisma.
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Do sada smo navedena svojstva ili atribute nazivali dimenzije ili fiziv cke dimenzije
zapisivali

dim m = M, dim l = L, dim t = T.

Medjutim, kako u matematici reč “dimenzija” najčešće se koristi kao broj elemenata, tj. mera
nekog elementa mnoštva, a u fizici kao jedinice mera svojstava, ovde ćemo prirodna svojstva
kretanja tela nazivati atriburima‖ i pisati:

atrm = M, atr l = L, atr t = T. (1.2)

Definicije

I. Brzina kretanja v, te i kretanje, je promena rastojanja u toku vremena, tj

v =
dr
dt

. (1.3)

Njeno svojstvo je

atrv = LT−1. (1.4)

II. Proizvod mase i brzine je impuls kretanja ili količina kretana,

p = mv, atrp = MLT−1.. (1.5)

III. Ubrzanje w je promena brzine po bremenu v po vremenu t, tj.

w =
dv
dt

.atrw = LT−2. (1.6)

IV Rroizvod mase objekta i ubrzanja je inerciona sila, tj

I = mw, atr I = MLT−2. (1.7)

Ova značajna definicija ustanovljava svojstvo svake sile F proizvodom MLT−2, tj.

atrF = MLT−2. (1.8)

Kao takva sila menja brzinu u toku vremena, te je proporcionalna ubrzanju, čiji je faktor
proporcionalnosti masa objekta ili tela. Masa je reprezent svakog tela kao celine, a vezuje
se za jednu tačku kao centar inercije tela. Tu tačku nazivamo materijalna ili masena tačka.
Razlikuje se od pojma geometrijske i topološke tačke, po tome što, pored položaja pretstavlja
i masu tela.

V. Dejstvo je prirodna skalarna invarijanta, koje se javlja kao integral impulsa kretanja i
pomeranja, tj.

A =
∫

p ·dr. atrA = MLT−1. (1.9)

Isto svojstvo ima i dejstvo sile,¶

A (F) =
∫ (∫

F ·dr
)

dt. (1.10)

Četvrta Njutnova definicija izjednačuje pojam sile i pojam dejstva, jer piše:

‖ l. Atribut - svojstvo, karakteristika, priroda ,...
¶ O prirodi dejstva videti više u radu [4].
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Napadna sila je dejstvo, proizvedeno nad telom, da bi se izmenilo njegovo stanje
mirovanja ili ravnomernog pravolinijskog kretanja.

U pojašnjenju svoje definicije se dodaje:“Sila se pojavljuje jedinstveno samo u dejstvu i
podle prekida dejstva ne ostaje u telu.” ([1], str 26)

Svoj treći aksiom ili zakon Njutn je ispisivao pomoću reči “dejstvo”. Neki autori
Racionalne mehanike prevode taj zakon na srpski: “Akciji odgovara uvek jednaka reakcija
suprotnog smera ili dejstva dvaju tela jednog na drugo uvek su jednaka i suprotno usmerena.”
Pri tom zadržavaju reči Action i Reaction. Pri ograničenom kretanju vezama, pojmom
“reakcija” tumači se kao sila, kojom se veza protivi akciji-sili.

Tu nejasnoću otklanja naša definicija V, kojom se karakteriše fizičko svojstvo dejstva
A ,

atrA = MLT−1, (1.11)

Nazivi i formile raznih dejstava iskazuju se odgovarajućim rečima, kao: Dejstvo
impulsa kretanja, Dejstvo sile, Dejstvo energije, Dejstvo momenta sile, ..., ali svojstvo dejstva
(1.11) ostaje jedno te isto pri svim matematičkim transformacijama.

Dakle, naša prva modifikacija (MOND1) ne menja prirodu stvari, nego preinačuje
definicije potrebnih pojmova o kretanju tela.

2. MOND 2

Princip dejstva sile i protivdejstva

Umesto tri aksiome ili zakona kretanja ovde se polazi od jednog opšteg principa, kojeg
smo nazvali Princip dejstva sile i protivdejstva.

Autor ove modifikacije polazi od jednog principa, koji je nazvao Princip dejstva sila.
Pod pojmom “princip” u mehanici podrazumevamo jedan opšti razumni analitički stav
analitičke dinamike, na osnovu kojeg i uvedenih definicija može razviti cela teorija o kretanju
realnih objekata.

Imenovanje 1. Dejstvo A (F) neke sile F je integralna skalarna invarijanta

A (F) =
∫ t

t0

(∫ r

0
F ·dr

)
dt, (2.1)

kojim se iskazuje promena položaja bjekta pod dejstvom sile F u toku vremena t− t0.
Imenovanje 2. Negativno dejstvo (2.1) sile inercije (IV) nazivać Protivdejstvo

A (I) =
∫ t

t0

(∫ s

0
I ·dr

)
dt, (2.2)

Na osnovu tako imenovanih pojmova u osnovu mehanike uvodimo Princip dejstva sile i
protivdejstva rečima:

Dejstvo sile jednako je protivdejstvu, što se iskazuje matematičkom simbolikom:

A (I) = A (F),

odsnosno

A (I) =
∫ t

t0

(∫ s

so

I ·dr
)

dt =
∫ t

t0

(∫ r

0
F ·dr

)
dt. (2.3)

Ovaj princip obuhvata sve tri Njutnove aksiome ili zakona kretanja. Zaista,
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Prvi zakon. Ako je dejstvo sile A (F) = 0, sledi da je
∫ t

t0

(∫ r

ro

I ·dr
)

dt = 0−→
∫ r

ro

I ·dr = 0. (2.4)

Odavde dalje sledi da je potrebno i dovoljno, saglasno definiciji IV, da bude

I = m
dv
dt

= 0−→ v = c. (2.5)

Ova relacija simbolizuje prvi Njutnov aksiom ili zakon dinamike.

Drugi Njutynov zakon. Istim postupkom na osnovu (2.4) sledi da je
∫ r

ro

I ·dr =
∫ s

ro

F ·dr,

i dalje
∫ r

ro

(F− I) ·dr = 0.

Pri bilo kojem pomeranju dr dobija se potreban i dovoljan uslov da je

I = F, (2.6)

što predstavlja u suštini drugi Njutnov zakon ili Osnovnu jednačinu kretanja u Dalamberovom
obliku.

Sa logičkog stanovišta pojam zakona se razlikuje od pojmova jednačina, lema ili
teorema bez obzira na prisutne zapise u nekim udžbenicima fizike ili mehanike. Njutn je
veoma jasno razdvoio te pojmove. Samo je tri svoje aksiome nazvao zakonima, pozivajući
se na eksperimentalne dokaze prethodnika Hajgensa, Keplera i Galileja. Na osnovu tih
znanja - zakona, pojava i razumskih zaključivanja opisuje atribute kretanja pomoću pedloga i
teorema. Zkoni se ne izvode pomoću prethodno znanih matematičih relacija, kao što se to čini
sa teoremama. U jednom autoritativnom univerzitetskom udžbeniku piše da drugi Njutnov
zakon glasi:

Promena kretanja proporcionalna je sili i zbiva se u pravcu sile.
Zatim se nepravilno objašnjava: “U vektorskom obliku drugi Njutnov zakon glasi

d
dt

(mv) = F,

gde je F vektor sile i predstavlja rezultantu savih sila koje deluju na telo. Kad se pretpostavi
da se masa menja za vreme kretanja,m = const., i sem toga da je m > 0, kao što je Njutn
prećutno pretpostavio, drugi Njutnov zakon svodi se na oblik

m
dv
dt

= F, (2.7)

koji predstavlja osnovnu vektorsku jednačinu dinamike..”
S obzirom na veliki značaj ovog zakona neophodno je da se primeti slede:

1. Jednačina (1.0) ne predstavlja Njutnov aksiom ili zakon. Tekst zakona, kao što se
vidi, ne pominje pojam količine kretanja mv, koji figuriše u toj jednačini. Ovako ili onako ne
može da se menja aksiom ili zakon, jer iz zakona ne mogu da slede mnoga tvrdjenja (teoreme)
dinamike, kao što to slede iz zakona (2.7).

2. Pretpostavka da li je masa ovakva ili onakva ne može da menja zakon. Naprotiv iz
zakona će slediti, kakvo može biti kretanje i sila.
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3. Šta više, jednačina (1.0) nije tačna u fizičkom smislu, jer ne opisuje verno
odgovarajuće kretanje raketa ili tela sa reaktivnim silama.

Ta greška je verovatno nastala zbog nepotpunog čitanja Njutnovog dela. Njutn je
definisao “količinu kretanja”, ali ne i pojam “kretanje”kojim se kazuje drugi aksiom ili
zakon kretanja. Medjutim u pojašnjenju svoje osnovne definicije VIII piše: “Ubrzavajuća
sila (čitaj: ubrzanje, prim V.V) odnosi se prema pokretačkoj (čitaj: sili), kao brzina prema
količini kretanja. Zaista, količina kretanja je proporcionalna brzini i masi, a pokretačka sila
je proporcionalna ubrzanju i masi” Pojam kretanje nije definisao, ali u opširnoj Njutnpvpj
POUKI kazuje da su vreme, prostor, mesto i kretanje opšte poznati pojmovi. Ipak tačka IV
ukazuje na “kretanje koje je premeštanje tela iz jednog mesta u drugo”.

Promena količine kretanja. Jednačina (1.0) izvodi se na osnovu zakona (2.7), a ne
obratno. Formalno ako levoj i desnoj strani jednačine (2.7) dodamo dm

dt v, tj.

m
dv
dt

+
dm
dt

v = F+
dm
dt

v,

dobiće se
d
dt

(mv) = F∗, (2.8)

gde je sada F∗ = F + dm
dt v. Ta konstatacija pokazuje da sile nisu formalni brojevi, nego

raznorazni uzročnici kretanja, čije je svojstvo MLT 2.
Raznovrsnost sila lepo pokazuje Njutnova teorema IV prve knjige ([1], str. 78-80).

Dokažimo tu teoremu ovde analitički.
Data je jednačina trajektorije u obliku kružne linije

R =
√

x2 + y2. (2.9)

i diferencijalne jednačine kretanja materijalne tačke mase m po kružnoj liniji, saglasno
zakonu (2.7), su

m
dẋ
dt

= Fx, m
dẏ
dt

= Fy.

Treba odrediti veličinu sile F =
√

F2
x +F2

y .

Dva uzastopna izvoda jednačine (2.9) po vremanu daje

ẋ2 + ẏ2 + xẍ+ yÿ = 0,

ili, s obzirom na prethodne diferencijalne jednačine kretanja,

v2
or + x

Fx

m
+ y

Fy

m
= 0.

S obzirom da je x = Rcosθ , y = Rsinθ ; Fx = Fcosθ , Fy = Fsinθ , nalazimo da je

F =−m
v2

R
. (2.10)

Teorema je dokazana. Sila je direktno proporcionalna kvadratu brzine i obrnuto
proporcionalna poluprečniku kružnice ako je brzina konstantna. Ali ako je i veličina brzine
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konstantna, onda je sila proporcionalna masi materijalne tačke. Pri jednom obrtu po kružnici,
obima 2Rπ za vreme T , biće

F =−m
4π2R2

RT 2 =−m
4π2

T 2 R = k1R, (2.11)

gde je k1 jedan konstantni faktor proporcionalnosti. Može se kazati: da je sila koja dejstvuje
na materijalnu tačku po kružnici direktno proporcionalna poluprečniku kružnice ili masi
materijalne tačke.

Suština stvari neće se promeniti ako se razlomak (2.11) pomnoži brojem

1 =
Rn−1

Rn−1 ;

formula će znatno izmeniti oblik, ali ne i značenje,

F =−m
4π2

T 2
Rn+1

Rn .

Njutn posebno ističe šestu posledicu u kojoj uzima vrednost Keplerovske konstante,

a3

T 2 =
R3

T 2 ,

, tj. slučaj ada je n = 2. Tada se dobija da je

F =−m
4π2

T 2
R3

R2 =−m
µ
R2 ,

gde je

µ =
4π2R3

T 2 .

za keplerovska kretanja konstanta.

Treći Njutnov aksiom.
Treći Njutnov zakon je iskazan pojmom Action - dejstvo, s tim što je Njutn svojom

definicijom IV identifikovao pojam sile sa pojmom dejstva, tj. da dva tela dejstvuju jednon
na drogo akcijom F. Znatan broj autora knjiga o mehanici ne tumače dosledno Njutnovu
teriju, te na taj način modifikuju Njutnovu dinamiku. Najbitnije odstupanje od Njutnovih
matematičkih principa o kretanju tela jeste Hamilonova mehanika. Po Njutnu u mehanici je
sila F i jednaka reakciji −R, te sledi

F =−R,

ili

F1 =−F2. (2.12)

Medjutim naš princip dejstva sile i protivdejstva za kretanje dva tela - dve materijalne
tačke tvrdi da je:

∫ t

t0

∫ r1

r01

F1 ·dr1dt =
∫ t

t0

∫ r1

r01

I1 ·dr1dt, (2.13)

∫ t

t0

∫ r2

r02

F2 ·dr2dt =
∫ t

t0

∫ r2

r02

I2 ·dr2dt, (2.14)

To su velike i suštinske razlike.
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Prva i najvažnija razlika je se odnosi na svojstva - fizičke dimenzije. Sila ima svojstvo
1.7, a dejstvo sile (1.10). Drukčuje rečeno, to su različiti atributi kretanja.

Druga zamerka se ispoljava u nesigurnost o saglasnosti prve i treće Njutnove aksiome.
Prva aksioma kazuje da telo ostaje u mirovanju ili ravnomernom pravolinijskom kretanju. To
bi po jednačini (2.12) moglo da znači da je zbir sila dva medjusobna dejstva tela jednak nuli,
i dalje da su dva tela u medjusobnom ravnomernom pravolinijskom kretanju, što je protivno
pojavnom stanju u prirodi stvari. Dva tela mogu se kretati nezavisno jedan od drugog, mogu
se približavati, ostajati na istom mestu, rastojanju ili se udaljavati jedno od drugog. Najprostiji
ubedljiv i svakom dostupan opit je: ako ispustite jedan predmet iz ruke, ubrzano će krenuti
prema Zemlji. Ali ako taj predmet vežete nekom vezicom, čiji godrnju kraj držite u raci, telo
ce mirovati ako miruje ruka, ili ce se pokrenuti za pokretom ruke.

Ovaj prost primer, kao što se može odmah zaključiti, ne predstavlja samo dva tela, nego
ima dodatni materijalni objekt-vezu, odredjene dužine. Dakle nije reč o dva nezavisna tela,
nego o sistemu dva tela, koja povezuje neka realna veza, koja se može pretstaviti jednačinom

r2− r1 = ρρρ(t), (2.15)

U mehanici je poznato da takve idealne veže skrivaju silu, koja se približno tačno odredjuje
silom +,

R =−λ grad f . (2.16)

Primenom principa dejstva sile i protivdejstva na kretanje dva tela, masa m1 i m2 na rastojanju

ρ(t) = |r2− r1|,
pri uslovu (2,15) imamo dve jednačine kretanja, odnosno

m1
d2r1

dt2 = F1, (2.17)

m2
d2r2

dt2 = F2, (2.18)

gde jednačinu (2.15) možemo napisati u obliku

f = ρ2 = (x2− x1)2 +(y2− y1)2 +(z2− z1)2−ρ2 = 0

Diferencijalne jednačine kretanja (2.17) konkretizuju se pomoću (2.16):

m1ẍ1 = λ (x2− x1) = X1,

m1ÿ1 = λ (y2− y1) = Y1,

m1ẍ1 = λ (z2− z1) = Z1;

m2ẍ2 =−λ (x2− x1) = X2,

m2ÿ2 =−λ (y2− y1) = Y2,

m2z̈2 =−λ (z2− z1) = Z2.

Očigledno je da postoji 6 diferencijalnih i jedna konačna jednačina, momoću kojih se
megu odrediti 6 koordinata vektora sila i jedan množilac veze λ . Uporedjenjem desnih strana
jednačina, zbog jedinstvenog značenja parametra λ , dobija se da je:

X2 =−X1, Y2 =−Y1 =, Z2 =−Z1,

+ Vidi detaljnije “Sile veza”[3]
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tj.

F1 =−F2,

što znači, da su sile uzajamnog dejstva po veličini i pravcu jednake, a po smeru suprotne. To
je saglasno s trtećom Njutnovom aksiomom.

Prema navedenom dokazano je da iz našeg principa dejstva sila i protivdejstva,
proizilaze sve tri Njutnove aksiome ili zakona, sa dodatkom ili pojašenjenjem razdvajanja
pojmova sile i dejstva sile.

Drugi izvod po vremenu jednačine rastojanja (2.15) svodi se na:

d2ρρρ
dt2 =

d2r2

dt2 − d2r1

dt2 .

Sobzirom na (2.17) i (2.18) dobija se

F2

m2
− F1

m1
=

d2ρρρ
dt2 ,

ili

F2 =−F1 =
m1m2

m1 +m2

d2ρρρ
dt2 .

Primer dva tela. Posmatrajmo dva tela masa m1 i m2, čije položaje i rastojanje odredjuje
relacija (2.15). Prvi i drugi izvodi veze (2.15) po vremenu su:

ṙ2− ṙ1 = v2−v1 = ρ̇ρρ,

r̈2− r̈1 = v̇2− v̇1 = ρ̈ρρ.

Zamenom ubrzanja iz jednačina (2.17) i (2.18) u prethodnu relaciju dobija se

v̇2 =
F2

m2
, v̇1 =

F1

m1
,

a odatle proizilazi sila uzajamnog privlačenja dva tela u obliku

F =
m1m2

m1 +m2
ρ̈ρρ .

Pretpostavimo li da je materijalna tačka mase m1 masa Sunca M¯, a druga materojalna tačka
mase m2 oznaǎva masu bilo koje planeta mp dobiće se formula veličine sile uzajamnog
privlačenja Sunca i planeta

F =
M¯mp

M¯+mp
ρ̈ρρ .. (2.19)

Pomnožimo li skalarno ovu jednačinu jediničnim vektorom ρ0 = ρ
ρ dobija se, dobija se

veličina sila uzajamnog privlačenja dva tela,

F =
M¯mp

M¯+mp

ρ̇2 +ρρ̈− v2
or

ρ
. (2.20)

Primetno je da se ova formula znatno razlikuje od njutnovske formule uzjamnog privlačenja
bilo koja dva tela Sunčevog planetarnog sistema.

F = k
m¯mp

ρ2 , (2.21)
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gde je je k takozvana “univerzalna konstanta gravitacije” čija je tabulisana brojna vrednost

k = 6,672×1011kgm3 s−2.. (2.22)

Sobzirom da formule (2.21) i (2.22) čine osnovu teorije klasične nebeske mehanike,
neophdodno je u teoriji MOND dokazati preimućstvo formule (2.20), nad njutnovkom
formulom (2.21).

Osnovna i bitna razlika izmedju formula (2.20) i (2.21) je u tome što formula (2.21)
pokazuje da je sila funkcija rastojanja, a formula (2.20) pokazuje da je sila zavisna od masa,
rastojanja i od kvadrata brzine.

Po njutnovskom trećem zakonu može se tumačiti da na pojedino telo dejstvuje
istovremeno i sila jednog i sila drugog, koje se kao takve poništavaju, pa bi proizilazilo,
da prema prvom Njutnovom zakonu kreću ravnomerno i pravolinijski, što faktički nije baš
tako. Formula (2.20) kazuje da se radijalna sila poništava samo pri uslovu ako je

ρ̇2 +ρρ̈ = v2
or. (2.23)

tj. kad je veličina centripetalne sile

Fcp =
m1m2

m1 +m2

v2

ρ
jednaka veličini centifugalne sile

Fc f =
m1m2

m1 +m2

ρ̇2 +ρρ̈
ρ

,

ili, kako je S. Simić∗primetio da se ova jednačina (20) može svesti na oblik

Fρ =
m1m2

m1 +m2

(ρρ̇).

ρ
.

gde

(ρρ̇).

ρ
ukazuje na prome nu impulsa kretanja duž rastojana tela.

Napomenimo još da formula (21), koju nazivaju “opsti zakon gravitacije”, odražava
Njutnovu teoremu VII (III knjige, naslovljene O SISTEMU SVETA). Ta primedba znači
da formula (21) nije zakon prirode, kako se uči u školama, nego matematičko tvrdjenje
izvedeno na osnovu prethodnih teorema, koja ne opisuje verno kretanje Meseca. “ Mesec pod
jednovremenim dejstvom privlačenja Zemlje i Sunca kreće se po orbiti oko Zemlje, daleko
od Keplerovske.” ”Lunarna teorija - jedna od najtežih problema nebeske mehanike - razvijala
se sasvim različito od drugh planetarnih teorija.”([5], str.9, [6])

Ovde se polazi polazi od osnovnih stavova klasične mehanike i matematičke analize.
Kako i tu postoji nesaglasje izmedju stručnjaka visokih znanja i akademskih zvanja, citirajmo
nekoliko Nutnovih stavova, važnih za rešavanje naslovljenog problema.

Isak Njutn ([1], str.2) Racionalna mehanika je učenje o kretanjima, proizvedenim bilo
kakvim silama, i o silama, poptrebnih za proizvodjenje bilo kakvog kretanja, tačno izloženo i
dokazano.

Od 8 Njutnovih definicija 4 se odnose na centripetalne sile:
∗ Dr Slavko Simić, Matematički instirut SANU.
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Def. V: Centripetalna sila je ona koja tela privlači ili gura prema nekoj tački kao
središtu, ili što izaziva da mu na neki način teže da dodju do njega.

Def. VI: Apsolutna veličina centripetalne sile jeste njena veća ili manja mera prema
dejstvu uzorka, koji je kružno rasprostire do središta okoline.

Def. VII: Ubrzavajuća veličina centripetalne sile proporcionalna je brzini koju
proizvodi u datom vremenu.

Def. VIII: Pokretačka veliv cina centripetalne sile proporcionalna je kretanju, koje
proizvodi u datom vremenu.

POJAVA VI: Mesec opisuje radijusom, povučenim ka centru Zemlje, površine
proporcionalne vremenu. ([2], str. 509).

TEOREMA III (Treća knjiga): Sila kojom se Mesec održava na svojoj orbiti, usmerena
je ka Zemlji i obrnuto je proporcionalna kvadratima rastojanja položaja od centra Zemlje.

POUKA: Do sada smo nazivali tu silu, sa kojom se nebeska tela zadržavaju na svojim
orbitama, centripetalnim, ali kako se pokazalo da je to privlačenje, tako ćemo je ubuduće
nazivati privlačenjem.

Da bi izbegli prisutne nejasnoće i nedoslednosti citirajmo i treći Keplerov zakon ([7],
str. 55):

“Proporcija izmedju vremena perioda bilo koje dve planete tav́ cno je jednaka
polutronoj prpoporciji njihovih srednjih rastojanja.”

Sobzirom da je reč o kretanju o ravni, pogodno jr upotrbiti ravanski polarni koordinatni
sistem. Tada se naf̌ormula (2.20) dobija prostiji oblik:

F =
m1m2

m1 +m2
(ρ̈−ρθ̇ 2). (2.24)

Primetimo da je F = 0 ako je ρ̈ = ρθ̇ 2, kao i to da je

F =− m1m2

m1 +m2

v2
or

ρ
, , (2.25)

ako je ρ = const. ‘ Saglasno sa navedenim nespornim relacijama, autor ovog rada predložio
je rešenje problema paradoksa Mesečevog kretanja na Prvom srpskom (26 YU) kongresu
teorijske i primenjene mehanike, 10-13 aprila 2007. godine, Kopaonik, Srbija, i razdelio
tekst rada DINAMIČKI PARADOKS TEORIJE MESEČEVOG KRETANJA (Jedno rešene
vekovnog problema). Ali kako rad nije tada našao mesta u plikacijama Kongresa, ovde
navodimo izvode iz tog rada; U celosti je objavljena ta verezija na engleskom jezziku [16].

Osnovni prilog tih radova pokaazali su da sila Sunčevog privlačenja Meseca nije veća,
kako se smatra u literaturi, od sile Zenljinog privlačenja Meseca, nego je sila Zermljinog
privlačenja veća više od 3 puta od odgovarajuće sile Sunca.

Primer. Za tabulisane vrednosti:
masa Zemlje M⊕ = 5,97×10)24 kg, masa Meseca 0.739×1024 kg,
rastojanje Meseca od Zemlje ρ = 384400km,
srednja brzina Meseca vor = 1,02kms−1

dobija se

F⊕ = 0.987839876 ·1,022 = 0,002673 ·10−3.
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Za Sunce:

m¯ = 1,9891 ·1030kg, ρ¯ = 149,6 ·106km, v¯ = 19,5kms−1, v⊕ = 29,8kms−1,

vor = 29,8+1,02−19,5 = 11,32kms−1,

dobija se

F̄ = 0,999999
11,322

149,6 ·106 = 0,856559 ·10−3.

Sledi da je F⊕ = 3,1262566 F̄ , što dokazuje naše tvrdjenje da je sila plivlačenja Zemlje veća
od privlačne sile Sunca, koje se odnose na Mesec.

3. MOND3

3.1. Deferencijalne jednačine kretanja planeta

“Ovo je vektorska diferencijalna jednačina kretanja oko Sunca [8]

m
d2r
dt

=− f
m(M +m)

r3 r, (3.1)

gde je M masa Sunca, a m masa planete, a f predstavlja jednu konstantnu koja važi za ceo
Sunčev sistem i koja izražava jednu opštu osobinu materije u tom delu vasione”. ([8], str.18)
U nastavku iste knjige (strana 30) nalazi se jednačina

a3

T 2 =
f

4π2 (M +m) (3.2)

sa pogovorom: “Ova jednačna izražava značajnu jednu vezu izmedju velike poluose a
planatske putanje i vremena T obilaženja planete oko Sunca koju je Njutn pronašao, a koja
nije istovetna sa trećim Keplerpvim zakonom. Po tom Keplerovom zakonu, prednji izraz
morao bi imati istu numeričku vrednost za sve planete, no znog prisustva planetske mase m
menja se ta vrednost od planete do planete. No kada se uzme u obzir da je masa svake planete
veoma mala prema masi Sunca, pa da se m može pored M zanemariti, onda se uvidja zašto
treći Keplerov zakon važi dosta tačno. No mi ćemo ga od sada zameniti prednjim tačnijim
zakonom kojeg je Njutn pronašao.”

Ovaj pogovor traži podrobniju analizu. Poslednja rečenica ...tačnijim zakonom od onog
kako ga je Njutn pronašao, može da znači, da se f odredjuje jednačinom (3.2). Kao što se
vidi, jednačina (3.2) sadrži 4 merljive veličine: M,m,a,T i, za sada, još jedan neodredjeni, tj
nepoznati faktor proporcionalnosti f . Ta jednačina po prirodi stvari ne predstavlja relaciju za
odredjivanje Keplerove konstante,

K =
a3

T 2

koja je, kao takva uvedena trećim Keplerovim zakonom. Pri toj nespornoj činjenici i jednačini
(3.2) , nalazimo da je faktor proporcionalnosti

f =
4π2a3

(M +m)T 2 atr f = M−1L3T−2, (3.3)
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bez obzira na to da li je masa planete mala veličina u odnosu na masu Sunca. Taj oblik
veličine f važi za bilo koja dva tela masa m1 i m2, tj.

f =
4π2a3

(m1 +m2)T 2 =
µ

m1 +m2
, , (3.4)

gde je µ poznato u literaturi pod nazivom Gausova konstanta, čije je svojstvo

atr µ = L3T−2.

To dovoljno jasno pokazuje da f nije jedan te isti broj za celu vasionu, kao ni za Sunčev
planetarni sistem. Logičniji je zaključak da f zavisi od Keplerove konstante K, mase Sunca
i masa planeta. Keplerova konstanta jeste treći Keplerov zakon, koji se vrednuje za srednja
rastojanja planete od Sunca. Ne može se mimoići činjenica da se f menja od planete do
planete. To ubedljivije pokazuju bojni tablični rezultati ([3], str. 73).

Navedeni podaci opovrgavaju jednu te istu tabulisanu brojevnu vrednost gravitacione
konstante,

f = k2 = 6,67×10−11kg−1m3s−2.

Ako faktor f iz jednačine (3.4) zamenim u diferencijalnu jednačinu kretanja (3.1) dobija se
diferencijalna jednačina kretanja planete, mase m, oko Sunca u obliku

m
d2r
dt

=−µ
m
r3 r. (3.5)

a veličina njutnovske sile gravitacije, u obliku

F =−µ
m
r2 . (3.6)

Dakle, umesto jednačine (3.1) može se pisati takodje njutnovska jednačina (3.5) za sve
planete u obliku (3,5), odnosno tačnije po formuli (20).

Čitajući Njutnovo delo više puta, pisac ovih redova nije mogao da zaključi da je Njutn
lično ustanovio naziv zakon univerzalne gravitacije, predstavljen formulom (2.21), gde je k2

“univerzalna konstanta gravitacije” kao jedan te isti broj za celu vasionu. Veći broj školaca
naučili su da je to “univerzalni zakon prirode”, što nije čak ni po Njutnu. Reč zakon Njutn
je upotrebio kao aksiom, koji ne podležu dokazima, nego predstavljaju osnovni logički stav
koji je saglasan sa pojavama u prirodi i ljudskoj praksi. Formula (2.21) je matematički izraz
teoreme V II (III knjiga) znamenitog Njutnovog dela, koja se dokazuje na osnovu aksioma i
prethodnih teorema.

Njutn pretpostavlja da Sunce miruje ili se kreće jednoliko, što već znamo da je to
pretpostavka.

Primetimo još da konstanta k2 u formuli (2.21) sadrži, kao što se vidi na prvi pogled,
Keplerovu konstantu K = a3/T 2, u kojem je a velika poluosa elipse, kao srednje rastojanje
izmedju planete i Sunca. To znači da se kretanje posmatra po kružnoj liniji poluprečnika
ρ = a = const..

Značajna modifikacija (20) njutnovske formule (21) odražava se i na tačnijem
odredjivanju sfera gravitacije planeta.

Na sličan način rešavanja problema paradoksa Mesečevog kretanja dobija se da je
poluprečnik sfere gravitacije Zemlje daleko veći nego što to proizilai iz njutnovske formule
(21). Po njutnovskoj formuli poluprečnik sfere gravitacije Zemlje približno iznosi 216000
km. Tu konstataciju opovrgava kretanje Meseca oko Zemlje na razdaljini od 384400
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km. Po istraživanjima i proračunu Tisseranda ] taj poluprečnik iznosi približno 917000
km. Medjutim po formuli (21) tj (26) nalazimo da je poluprečnik sfere gravitacije Zemlje
približno jednak

ρ ≈ 1400000km.
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Vujičić, Prikladnaya Mechanika, Vol 40, No. 3, (2004) pp.136-144, Engl. transl. Int. Appl. Mech. Vol.40,
No. 3, (2004), pp. 351-359.
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Abstract. Piezoelectric sensors and actuators have wide range of applications in suppression 
of vibrations and shape control. Design of thin-walled composite structures with integrated 
piezoelectric sensors and actuators is complex process, and it requires taking into account 
various design variables. The placement and sizing of the actuators and sensors are based on 
control effectiveness and observability, but these piezoelectric patches affect the host 
structure’s mass and original dynamics properties and in the case of failure of active system, 
this change of dynamics properties becomes significant. This paper deals with optimal 
placement and sizing of piezoelectric sensor and actuator on composite beam for maximum 
active vibration control effectiveness and observability considering residual modes to limit 
spill-over effects with minimal change in original system dynamics. The problem is 
formulated using finite element method (FEM) based on third-order shear deformation 
theory (TSDT). Particle swarm optimization method is used to find optimal configuration. 
Numerical example is presented for cantilever beam.  

 
 
 

1. Introduction 
 
Active vibration control of thin-walled structures is an important subject of research in 
mechanical and aerospace engineering. Vibration control can be passive, with passive 
constrained layer damping and active with active damping and active constrained layer 
damping. In active vibration control, the use of piezoelectric sensors and actuators has 
significant research interests. The original approach of analysis of active vibration control 
with piezoelectric patches is presented in [1], where polyvinylidene fluoride (PVDF) was 
used for vibration control of cantilever beam. 
 Optimization of sizing and placement piezoelectric sensors and actuators has been 
shown as the most important issue in design of active structures. An exhaustive review of 
optimization problems until 2001 is presented in [2], and review of various optimization 
criteria is presented in [3]. The optimization problem can be divided in two approaches. 
The first approach consists of combination of optimal location and size of sensors and 
actuators and controller parameters. A few studies [4,5,6] propose a quadratic cost function 
which is used to taking into account the measurement error and control energy. The second 
approach deals with optimal location and size of sensors and actuators independently of 
controller definition. Optimization using objective function based on grammian matrix is 
presented in [7,8]. Ref. [9] presents an optimal placement method using H2. In [10] modal 
controllability index based on singular value analysis of control vector was developed.  
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 It can be seen that the main focus of these investigations is sizing and location of 
piezoelectric actuators and sensors for maximum controllability and observabillity. But, 
these piezoelectric patch cause modification of dynamics properties of host structures 
changing natural frequencies and in the case of failure of active system, this change of 
dynamics properties becomes significant. In [11], change of natural frequencies has been 
considered through objective function in multi-objective optimization.   
 Many times, an active structure is discretized into finite number of elements for 
vibration analysis and control. For practical implementation, this model needs to be 
truncated, where only first few modes are taken into account. But, state feedback control 
law can based on reduced model may excite the residual modes which results into spillover 
instability for even simple beam problem [12]. Ref. [13] takes into account the residuals 
modes in optimization problem.  
 This paper deals with optimal placement and sizing of collocated piezoelectric 
sensors and actuators on cantilever composite beam for maximum active vibration control 
effectiveness and observability considering residual modes to limit spillover effects with 
minimal change in original system dynamics. The problem is formulated using finite 
element method (FEM) based on third-order shear deformation theory (TSDT). Due to 
complexity of the problem, classical optimization methods which apply gradient-based 
search techniques can not be used. Because of that, stochastic optimization method is used: 
Particle Swarm Optimization. Maximizations of controllability and observability, as 
minimization of spillover effects are involved through objective functions, and changes of 
natural frequencies are involved through constraint functions.      
 

2. Finite element model 
 
A laminated composite beam with integrated piezoelectric sensors and actuators is 
considered (Fig. 1.).  
 
 
 

 
 

Figure 1. Laminated composite beam with piezoelectric sensors and actuators 

The coordinate x  is coincident with the beam axis, the yx   plane coincides with mid-

plane of the beam and z  axis is defined as normal to the mid-plane according to the right-
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hand rule. Both elastic and piezoelectric layers are supposed to be thin, such that a plane 
stress state can be assumed. The sensors and actuators are perfectly bonded on upper and 
lower surfaces at different locations along the length of beam. It is assumed that they span 
the entire width of beam. Elastic layers are obtained by setting their piezoelectric 
coefficients to zero. The equivalent single layer theory is used, so the same displacement 
field is considered for all layers of beam. The formulation results in a coupled finite 
element model with mechanical (displacement) and electrical (potentials of piezoelectric 
patches) degrees of freedom. Also, only specially orthotropic layers are considered.  

 

2.1. Mechanical displacements and strains 
 
The displacement field based on third-order shear deformation theory of Reddy [14] is 
given 
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where  u  and w  are displacement components in the x  and z  directions respectively, 0u , 

0w  are mid-plane ( 0z ) displacement and x  is bending rotation of mid-plane, 

 2
1 3/4 hc  , where h  is total thickness of the beam. The strains associated with above 

displacement field are                                                                                        
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and 
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2.2. Piezoelectric constitutive equations 
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Specific electric enthalpy density of a piezoelectric layer is given in [15]  

              EkEEeQh TTT

2

1

2

1
  ,                                                            (5) 

where  Q  is the elastic stiffness matrix,    is the strain vector,  e  is the piezoelectric 

constant matrix,  E  is the electric field vector and  k  is the permittivity matrix. The 

constitutive equations for each piezoelectric layer can be obtained                                                                                    
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where    is the stress vector and  D  is the electric displacement vector. For a one-

dimensional composite beam, the width ( y -direction) is free of stresses. Therefore 

0 xyyzy   while 0 xyyzy  .  Using the above constraints, assuming that 

021  EE  and taking into account orthotropic lamina, equation (6) can be written in 

following form 
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                                                                   (7) 

where superscript k  denotes number of layer, and material constants are expressed in 
principal directions. Relations between material constants expressed in principal directions 
and material directions for orthotropic lamina are                                                                              

,
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                                                                                     (8) 

where   presents angle between material directions of layer and principal direction of 
lamina. 
 

2.3. Variational formulation 
 
The governing equations of motions are derived using Hamilton’s principle 

  0
2

1


t

t

dtWHT  ,                                                                                              (9) 
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where 1t  and 2t  are two arbitrary time instants, T  is variation of kinetic energy, H  is 

variation  of electric enthalpy and W  is variation of work done by external forces. 
According to the equation (5), variation of electric enthalpy can be written in following 
form 
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HHHHhdVH    ,                                                              (10) 
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The variation of kinetic energy, written in terms of mechanical displacements, is 

   
V

T dVuuT  ,                                                                                                (12) 

where  u  is velocity vector, and   is density of layer. 

 

2.4. Finite element discretization and coupled equations of motions 
 
After finite element discretization [16,17,18], assembling obtained equations into 
Hamilton’s principle (11), it can be obtain global equations of motions written in terms of 
the nodal mechanical and electrical degrees of freedom                                                                                   
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                                                (13) 

where  M  presents mass matrix,  mK  presents elastic stiffness matrix,  AmeK  and 

 SmeK  are piezoelectric stiffness matrices of actuator and sensor, respectively,  AeK  and 

 SeK  are dielectric stiffness matrices of actuator and sensor, respectively,  u  presents 

vector of mechanical nodal variables,  A  and  S  are electric potentials on actuators and 

sensors, respectively and  AA  is vector of external applied  electric potentials on 

actuators. Replacing electric potentials of actuators and sensors expressed form last two 
equation of (13) in first one, it can be obtained following equation of motion  

           AAAmem KFuKuM  * ,                                                                    (14) 

198



 
Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 2011 A-16 

 
where  

               TSmeSeSme
T

AmeAeAmem KKKKKKKK 11*   .                                       (15) 

 

Equations of motion in modal coordinates. The equation (16) can be converted to modal-
space as 

              AAAme
T

m
T KF   2 ,                                                          (16) 

where    presents modal matrix which has been normalized with respect to mass,    

vector of modal coordinates and  2  diagonal matrix of squares natural frequencies 

obtained as following way 

        *2 KT .                                                                                                  (17) 

 

State-space representation. Lower ordered modes are the most easily excitable because 
they have lower energy associated. Due to that, controller has been designed for active 
control only first few modes. Thus, equation (16), expressed in truncated modal-space, 
becomes 
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TrTr KF   2 ,                                                    (18) 

where matrix  Tr
2  is consisted of first few controllable eigen-modes. For residual modes, 

equation (17) becomes 
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Equations (18) and (19) can be presented in state-space form as 
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present state matrix, 

199



 
Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 2011 A-16 

 

 

 
 
 
 

 
 

   
    








































Ame
T

z

Ame
T
Tr

z

tr

K

K

B

B
B

ReRe

0

0

0

0




                                                                               (23) 

present control matrix, and 
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is disturbance vector. From third equation in (13) it can be expressed sensor output in state-
space form 

    XCY  ,                                                                                                              (25) 

where  C  presents output matrix given as 
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3. Optimization criteria for piezoelectric actuators and sensors sizing and location 
 
In [10], a controllability index for actuator is proposed, which is obtained by maximizing 
global control force. The modal control force applied to the system can be written as 

    AAC Bf  .                                                                                                          (27) 

It follows from (27) that 
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Using singular value analysis,  B  can be written as      TNSMB  , where 
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where aN  presents number of actuators. Equation (29) can be written as 
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             AA

TTT
AAC

T
C NSSNff  ,                                                                   (30) 

or 

  222
Sf AAC  .                                                                                                  (31) 

Thus, maximizing this norm independently of the applied voltage  AA  induces 

maximizing 
2

S .  The magnitude of i  is a function of location and size of piezoelectric 

actuator. In [10] is proposed controllability index which is defined by 
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 .                                                                                                               (32) 

The higher controllability index indices the smaller electrical potential will be required for 
control. The observabillity index can be obtained on similar way 
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Controllability index can be obtained in more suitable form for models based on finite 

element, where, instead of maximizing the norm 
2

S , applied force for each mode have 

been maximized independently of  AA . According to the (23), controllability index can be 

written on following way 

   TTriTriCi BB2                                                                                                        (34) 

for controlled mode, and 
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z
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for residual mode.  TriB  and   ziB Re
 present i -th row of matrices  TrB  and   zB Re , 

respectively. Simillary, observabillity index is 

   Tri
T

TriOi CC2                                                                                                       (36) 

for observable mode, and  
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T
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z

Oi CC ReRe

2Re                                                                                                     (37) 

where  TriC  and   ziC Re
 present i -th column of matrices  TrC  and   zC Re , respectively. 

 

4. Optimization implementation using particle swarm optimization  
 
The particle swarm optimization (PSO) has been inspired by the social behavior of animals 
such as fish schooling, insect swarming and birds flocking. It was first introduced in [19]. 
The system is initialized with a population of random solutions (called particle position in 
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PSO). Every particle is affected by three factors: its own velocity, the best position it has 
achieved (best local position) which is determined by the highest value of the objective 
function encountered by this particle in all previous iteration and overall best position 
achieved by all particles (best global position), which is determined by the highest value of 
the objective function encountered in all the previous iteration. A particle changes its 
velocity ( v ) and position ( p ) on following way 

   k
idd

k
idid

k
id

k
id ppgbestrcpplbestrcwvv 

2211
1 ,                                         (38) 

11   k
id

k
id

k
id vpp ,     mdni ,...,1,..,1                                                                (39) 

where w is inertia weight,  1c  is cognition factor, 2c  is social learning factor, 1r  and 2r  are 

random numbers between 0 and 1, the superscript k  denotes iterative generation, n  is 
population size, m  is particle’s dimension, idplbest  and dpgbest  are best local and 

global position. Cognition factor and social learning factor are usually set as 5.121  cc . 

Upper and lower limits of inertia weight for structural design are given in [20].   
 
In this work, beam is discretized in finite elements. Each piezoelectric patch is determined 
with two coordinates: left node, which defines position and number of elements covered by 
this patch which defines size of piezoelectric patch (Fig. 2), so, dimension of particle is 
twice then number of piezoelectric patches.  
 

 
 

Figure 2.  
 

It is obvious that coordinates of particle and corresponding velocity are integer number. 
Because of that, discrete method must be used. According to the [21], velocity is updated 
by following equation on every iteration 

    k
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k
idid

k
id

k
id ppgbestrcpplbestrcwvv 

2211
1 int ,                                  (40) 

in which  fint  is getting integer part of  f . 

 

4.1. Objective functions 
 
As mentioned earlier, the piezoelectric patches sizing and location should be such that those 
should give good controllability and observability with minimization of spillover effects. 
According to the (34-37),  objective functions  can be written as 
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where maxCi , z
Ci
Re

max , denote maximum controllability index of controlled modes and 

residual modes and maxOi , z
Oi
Re

max  denote maximum observability index of observed 

modes and residual modes. These functions are called degree of controllability and 
observability. It can be seen that there are zSTrSzATrA NNNN ReRe   objective 

functions. In this work, only collocated sensors and actuators will be considered. Actuator 
and its corresponding sensor have the equal length and they are set symmetrically: sensor at 
the bottom surface, and actuator on the top surface of the beam.  In [22] states that it is not 
necessary to search for maximum controllability and observability index separately. The 
same result can be obtained by maximizing only one index. According to that, only 
equations (41) and (42) will be considered. zATrA NN Re  objective functions (41) and (42) 

can be transformed in two objective functions using weighted aggregation approaches 





TrAN

i Ci

CiTr
iTr wf

1
2

max

2

100maximize

                                                                       (45) 

and 





zAN

j Cj

Cjz
jz wf

Re

1
2

max

2
Re

Re 100minimize



,                                                                (46) 

where Tr
iw  and z

jwRe  are the weighting coefficients which express the relative importance 

of the objective function. Two obtained objective functions can be transformed in one 
objective function in following way 

zTr fffmaximize Re                                                                                    (47) 

where   denotes weighting constant which expresses relative importance of minimization 

controllability of residual modes related to maximization of controllability of controlled 
modes. So, multi-objective optimization problem which consist of   

zSTrSzATrA NNNN ReRe   objective functions are transformed in single-objective 

problem.  
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4.2. Constraints 
 
The first type of constraint used in optimization problem in this work is related to the 
geometry of the piezoelectric patches. These geometric constraints are 
 

1. no one of the coordinate of the particle must not be nonpositive number 
2. minimum distance between two patches is 1 
3. last piezoelectric patch must not to be outside of beam 

 
The problem of violation of geometric constraint is solved on following way: 
 

1. generate given number of particles in feasible space which every of them is placed 
between the particle in previous iteration, which is placed in feasible space, and 
obtained particle in current iteration, which is placed in nonfeasible space. 

2. calculate Euclidian distances between generated particles and particle in current 
iteration  

3. new particle is one which distance is minimum 
4. modify velocity on following way 

k
id

k
id

k
id ppv   *11 ,                                                                                                       (48) 

   where *1k
idp  is particle obtained in 3. 

Second type of constraints are related to change of natural frequencies. It can be written on 
following 

 si
Old
i

Old
i

New
i Ni mod,..,1/   ,                                                 (49) 

where New
i  denotes natural frequency of  i -th mode of the beam with piezoelectric 

patches, Old
i  denotes natural frequency of  i -th mode of the beam without piezoelectric 

patches and i -th i  is tolerance. These constraints will be treated with penalty function 

technique, so objective function to be maximized is modified to 

ggfkffmaximize j /'                                                                             (50) 

where 

 



sN

i
ij

Old
ij

Old
ij

New
ijjg

mod

1

/  ,                                                                         (51) 

presents constraint violation of j -th particle which  left feasible design space, g  is average 

of all jg  in current iteration and k  presents number of current iteration.  
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5. Numerical example 
 
In the example, cantilever beam is considered. The length of beam is mL 5.0 , and its 
width is mb 025.0 . Laminated layers are made of Graphite-Epoxy. Their thicknesses is 
given as  002.0001.00005.0h , and its orientations are  90090 . 

Piezoelectric sensors and actuators are made of PZT. Their thickness is mm35.0 . Material 
properties of Graphite-Epoxy and PZT are given in Table 1. 
 

Material properties Graphite-Epoxy PZT 

 GPaE1
 174 63 

 GPaE2
 10.3 63 

 GPaG13
 7.17 24.6 

 GPaG23
 6.21 24.6 

12  0.25 0.28 

 3/ mkg  1389.23 7600 

 2
31 / mCe  / 10.62 

 mFk /33
 / 0.1555 

 
Table 1. Material properties of Graphite-Epoxy and PZT. 

 
In the example are involved three sensors and actuators. The objective is good 
controllability the 4 first modes ( 4TrN ) and less controllability the of the 5th to 8th modes 

( 4Re zN ). The constraint is that changes of the four first modes are less then 10%.  The 

beam is divided into 50 finite elements. Cognition factor and social learning factor are set 
as 5.121  cc , and inertia weight are linearly varied form 1 to 0.5, number of population 

is 20 particles, and number of iteration is 50.  Weighting coefficients are given as follows: 

 25.025.025.025.0Trw  and  25.025.025.025.0Re zw . 

 

5.1. First case - 0  (residual modes are neglected)  

 
The optimal solution of this case is given as  3481624146pgbest .  Model 

of the beam with piezoelectric patches which corresponds to the optimal solution is 
presented at Fig. 3. Fig. 4 presents convergence of objective functions. Changes of natural 
frequencies and degree of controllability of each controlled and residual mode are presented 
in Table 2 and Table 3.  
 

Mode  sradOld /   sradNew /  NF change(%) Deg. of Cont. (%) 

1 52.36 55.23 5.48 13.81 
2 328.18 348.56 6.09 20.64 
3 919.11 1008.28 9.7 29.28 
4 1801.67 1978.09 9.79 33.38 
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Table 2. 
 
 

Res. mode  sradOld /   sradNew /  NF Change(%) Deg. of Cont. (%) 

1 2979.53 3367.66 13.03 36.07 
2 4453.2 5303 19.08 43.31 
3 6223.58 7216.81 15.96 34.61 
4 8291.74 9611 15.91 36.71 

 
Table 3. 

 

 
Figure 3. Beam with piezoelectric sensors and actuators which corresponds to the first case 

 

 
Figure 4. Convergence of objective function 

5.2. Second case - 1  

 
The optimal solution of this case is given as  24013542pgbest .  Beam 

with piezoelectric patches which corresponds to the optimal solution is presented at Fig. 5. 
Fig. 6 presents convergence of objective functions. Changes of natural frequencies and 
degree of controllability of each controlled and residual mode are presented in Table 4 and 
Table 5.  
 

Mode  sradOld /   sradNew /  NF change(%) Deg. of Cont. (%) 

1 52.36 55.46 5.92 4.13 
2 328.18 360.81 9.94 4.44 
3 919.11 988.97 7.49 4.24 
4 1801.67 1873.68 4 3.08 

 
Table 4. 
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Res. mode  sradOld /   sradNew /  NF Change(%) Deg. of Cont. (%) 

1 2979.53 3004 0.79 1.73 
2 4453.2 4403.64 1.11 1 
3 6223.58 6138.47 1.37 0.92 
4 8291.74 8247.69 0.54 1.98 

 
Table 5. 

 

 
 

Figure 5. Beam with piezoelectric sensors and actuators which corresponds to the second case 

 
Figure 6. Convergence of objective function 

 

6. Conclusion 

In this paper, the problem of sensors and actuators sizing and placement on laminated beam 
with minimum changes of original dynamics properties is considered. Multi-objective 
problem is transformed into single-objective using weighted aggregation approach.  
Optimization problem is solved using Particle swarm optimization which is shown up as 
suitable algorithm for this case of optimization. Several applications presented in the case 
of cantilever beam using three collocated sensors and actuators. In the first case, residual 
modes are neglected. The degree of controllability of residual modes is higher compared to 
the controlled modes. Minimizing of degrees of controllability of residual modes affects on 
degrees of controllability of controlled modes, causing their reduction, which can be seen 
for second and third case. One of solution for avoiding this problem is placing large number 
of smaller sensors and actuators [8].   
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Faculty of Mechanical Engineering, The University of Belgrade, Kraljice Marije 16, 11120
Belgrade 35
e-mail: milanzi@sbb.rs

Abstract.
To bring a scleronomic, holonomic mechanical system into the decomposition mode,

the switching control force with corresponding switching amplitude must act on it. In
the decomposition mode, the mechanical system "slides" along the sliding surface which
represents a set of discontinuities (switching surface) of the control force. The control force
is defined out of the switching surface, but its values on it should be determined. In this
paper, how the control force must act on the mechanical system in the decomposition mode
is determined and simulation results in relation to the motion of a three-degree-of-freedom
robotic manipulator coming into and moving in the decomposition mode are presented and
discussed.

1. Introduction

The problem of determination of the control force in the decomposition mode is a partial
case of the problem of determination of the right-hand discontinuous function on the set
of its discontinuities in differential equations with discontinuous right-hand side [5], [1],
[11], [7]. This problem is specific because the mechanical system is under the action of
unpredictable disturbance forces, so that the right-hand side of the differential equations of
motion is unknown. Nevertheless, the problem can be solved theoretically using the method
of equivalent control [11].

Firstly, the switching and sliding surfaces of the mechanical system are defined
and determined and corresponding illustrations of them in different spaces are presented.
Then, the method of equivalent control is applied to determine the control force in the
decomposition mode. Finally, the results of simulation of motion of a three-degree-of-
freedom robotic manipulator are presented to show the motion of the mechanical system
and action of the control force before and after the moment of entering the decomposition
mode. Notation used in the paper is given in the last section.

1.1. Mathematical model of scleronomic holonomic mechanical systems

Let M be the n-dimensional, at least C 2-differentiable configuration manifold [2, 10, 3]
of the mechanical system (MS). Restrict, if necessary, the movements of the system to the
open, bounded and connected manifold M ′ such that a bounded chart q(·)M ′ ⊂ M ×ℜn

q
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exists. The mathematical model of a scleronomic holonomic mechanical system expressed in
coordinates q, [12], is

M(q)q̈+ c(q, q̇) = f d(q, q̇, t)+ f c, (1)

where q∈v Q⊂ q(M ′)⊂ℜn
q, q̇∈v Q1 ⊂ℜn

q̇ and q̈∈v ℜn
q̈ are referred to as position, velocity

and acceleration of the MS, respectively. t ∈v T∞ ⊂ ℜt is a time variable; T∞ = (ti,∞s)
where ti < ∞s is the initial instant, M = [Mi j]n×n ∈v ℜn×n

M is the inertia or mass matrix, while
M(·)q(M ′) is a continuously differentiable function, f d ∈v F d ⊂ℜn

fd is the disturbance force,
f c ∈v F c ⊂ℜn

fc is the control force. The elements ci of the vector c = [ci]n×1 ∈v ℜn
c have the

form

ci = C jk,i q̇ jq̇k, C jk,i =
1
2

(
∂Mi j

∂qk +
∂Mik

∂q j −
∂M jk

∂qi

)
, i, j,k = 1, . . . ,n, (2)

where C jk,i are Christoffel’s symbols of the first kind, and Einstein’s summation convention is
used. The given sets Q, Q1, F d and F c are bounded, connected and open in corresponding
spaces ℜn

q, ℜn
q̇, ℜn

fd , and ℜn
fc . Every continuously differentiable function q(·)T∞ that is a

solution of differential equation (1) is a motion of the MS.

1.2. Problem formulation

Suppose MS ought to track the nominal motion qn(·)T∞ [12], for which qn(T∞) ⊂ Q,
q̇n(T∞) ⊂Q1, and q̈n(·)T∞ is bounded and continuous. Introduce the position and velocity
deviation as

x = q−q
n

and ẋ = q̇− q̇n
, (3)

and let the control force

f c =−fc · sgn(ẋ), fc > 0N, ẋ 6= 0 m
s , (4)

acts on the system. If the control force parameter fc is large enough, it can be shown [12] that
the MS, starting motion from certain initial states, tracks ideally the nominal velocity q̇n(t)
after certain moment td. Mathematically, ẋ(t) = 0 m

s , t ≥ td, which means the MS is in the
decomposition mode. The tracking is achieved even though the control force is not defined
for ẋ(t) = 0 m

s . However, the control force function must take values on the sets where it is
not defined if the velocity error ẋ might pass through those sets. Also, control force function
must be determined on the sets where it is defined but not determined.

The problem is to find the switching and sliding surfaces of the MS and to determine
how the control force acts on the MS in the decomposition mode.

2. Switching and sliding surfaces of mechanical system

The switching and sliding surfaces are determined by the set of discontinuities of the
generalized force which acts on the mechanical system.

Definition 1 The switching surface of the MS is the set of all simple discontinuities of the
generalized force which acts on the MS.
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It is assumed that the generalize force function does not have other discontinuities save simple
ones because the other discontinuities assume unboundedness or infinitely fast oscillations.
The generalized force need not be defined on the switching surface, but if the MS can "pass"
through the switching surface, the generalized force must exist and should be determined.
Hence, it can be said that the switching surface is a subset of the domain of the generalized
force function.

Definition 2 The sliding surface of the MS is the set of discontinuities of the generalized
force where conditions for the sliding mode are satisfied.

Therefore, the sliding surface is a subset of the switching surface.
It is assumed here that disturbance force function f d(·)Q×Q1×T∞ are continuous, so that

the set of discontinuities of the generalized force is the set of discontinuities of the control
force. Since the control force directly depends on the velocity deviation ẋ, the switching and
sliding surfaces will be determined in the space ℜn

ẋ = ℜẋ1×·· ·×ℜẋn , where ℜẋi , i = 1, . . . ,n
are one-dimensional subspaces of ℜn

ẋ and represent coordinate lines of the coordinates ẋi.
According to (4), the switching surface Sw is determined as

Sw =
n⋃

i=1

Swi, (5)

where the (n− 1)-dimensional plain Swi = ℜẋ1 × ·· · ×ℜẋi−1 ×{0 m
s }×ℜẋi+1 × ·· · ×ℜẋn

represents the coordinate surface of the coordinate ẋi for ẋi = 0 m
s .

In order to determine the sliding surface, we ought to know what the conditions for
sliding mode are and where on the switching surface they are satisfied. Sufficient conditions
for decomposition mode are given in the paper [12], in which case the point ẋ = 0 m

s certainly
belongs to the sliding surface. Whether this point is the only point of the sliding surface stays
unknown since there is no conditions that guarantees that some other points of the switching
surface belong to the sliding surface, which does not mean that such points do not exist.
Moreover, if such points exist they need not be fixed, they may appear and disappear as points
of the sliding surface. It usually happens when disturbance forces change their magnitudes
and directions. Even more, the point ẋ = 0 m

s may disappear as point of the sliding surface if
conditions for decomposition mode are violated [12, p. 12]. Therefore, the sliding surface is
not a fixed surface, but may move and change its shape along the switching surface.

The sliding surface Sld of the decomposition mode degenerates to the point Sld = {0 m
s }

in the space ℜn
ẋ. It can be expressed as

Sld =
n⋂

i=1

Swi = 0 m
s . (6)

Coming at the point Sld, the velocity error stays zero all the time. To always see sliding,
it is appropriate to present the sliding surface in the space ℜn

ẋ×ℜt. In this space, the sliding
surface of the decomposition mode Sld becomes a sliding line S t

ld = Sld×T∞ = {0 m
s }×T∞

and the point (0 m
s , t) slides along the sliding line as fast as fast time passes.

The sliding line can also be presented in the spaces of absolute quantities q̇ and q̇n. For
that purpose, consider the function ẋ(·)ℜn

q̇×ℜn
q̇n

determined by ẋ = q̇− q̇n and the function

q̇(·)q̇n(T∞) determined by 0 m
s = q̇− q̇n. Then, the sliding line in the space ℜẋ×ℜq̇×ℜq̇n
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Figure 1. The sliding line in the spaces ℜẋ×ℜq̇×ℜq̇n
(left) and ℜn

q̇×ℜq̇n
×ℜt (right); an

illustration for one-dimensional case.

is the function ẋ(·)q̇(·)q̇n(T∞)
, which geometrically coincides with the function q̇(·)q̇(T∞) as

is illustrated in Figure 1 (left) for one-dimensional case. Namely, ẋ(·)q̇(·)q̇n(T∞)
= {0 m

s }×
q̇(·)q̇n(T∞) which can be identified with q̇(·)q̇n(T∞) if 0 m

s is considered as empty set‡.
The sliding line, observed from the space ℜn

q̇ × ℜq̇n
× ℜt, lies on the function

q̇(·)q̇n(T∞)×T∞ extruded from the function q̇(·)q̇n(T∞), q̇ = q̇n on the set T∞, Figure 1 (right).
In this case, the sliding line is the function q̇(·)q̇n(T∞)×T∞ along the nominal velocity function
q̇n(·)T∞ , that is, the function q̇(·)q̇n(·)T∞

. Its projection on the space ℜn
q̇×ℜt is the velocity

function q̇(·)T∞ as if the MS is in the decomposition mode from the initial instant or, in other
words, as if the initial velocity of the MS is nominal and conditions for the decomposition
mode are satisfied.

3. Control force in decomposition mode

In order to determine the control force in decomposition mode, the method of equivalent
control [11] is applied.

Let the decomposition mode arise at the instant td ≥ ti. Then,

ẋ = 0 m
s ⇔ q̇n(t) = q̇(t), ∀t ≥ td, (7)

which implies

x(t) = xd ⇔ q(t) = qn
(t)+xd ∧ q̈(t) = q̈n

(t), ∀t ≥ td. (8)

‡ In addition to arbitrary direction, it is convenient to adopt that the zero vector can have arbitrary dimension and
arbitrary measurement unit. The zero vector or zero of something should be considered as empty set or nothing. In
that case any two vector spaces have the same zero vector /0 and the intersection of any two vector spaces is the point
{ /0}. This makes it possible to construct affine spaces from different vector spaces having the same common point -
the zero vector.

212



The control force must always satisfy the equation 1, so must in the decomposition
mode, in which

f c(t) = M
(

qn(t)+xd

)
q̈n(t)+ c

(
qn(t)+xd, q̇n(t)

)
− f d

(
qn(t)+xd, q̇n(t), t

)
(9)

holds for all t ≥ td ≥ ti. Since M(·)Q and q̇n(·)T∞ are continuously differentiable and
f d(·)Q×Q1×T∞ is continuous, the control force function f c(·)[td,∞s) is a continuous function,
too. However, the function f c(·)(td−ε,∞s) has, in general, a discontinuity of the first kind at td
for any small ε > 0s.

The system that realizes the control force f c need not realize it in the decomposition
mode. In the decomposition mode the control force is forced to be realized by itself exactly
in the way defined by equation (9). It is forced by the force field around the sliding surface and
by nature of the MS described by differential equation (1). Mathematically, determination of
the control force on a sliding surface and determination of the reaction force on a holonomic
constraint [6, p. 19] are similar. In both cases the force is to be determined in such a way
that equations of motion are satisfied. However, "sliding" on the sliding surface is physically
realized differently with respect to "sliding" along the holonomic constraint. In the first case,
the system is kept on the sliding surface by the force field surrounding it, and in the latter
case, the holonomic constraint itself keeps the system on it. Both holonomic constraints
and sliding modes do not exist in practice but may serve as a tool for describing and better
understanding of natural phenomena.

4. Example

Motion of a three-degree-of-freedom robotic manipulator, Fig. 2, was simulated to illustrate
coming to and moving in the decomposition mode with determined control force on the
sliding surface.
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Figure 2. A three-degree-of-freedom manipulator with its inertio-geometrical characteristics

The manipulator is in a constant gravitational field
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g =
[
0 0 −9.81

]T m
s2 , (10)

and the disturbance force

f d =
[
20sin(1.8t)+40 20sin t +60 10sin(3t)−80

]T Nm+ f d
g
, t ∈T∞ (11)

acts on the MS, where f d
g is the disturbance force due to gravity.

The nominal motion q
n
(·)T∞ was indirectly defined by defining a motion of the

manipulator gripper tip H. The motion of the tip was defined by its trajectory given in the
cylindrical coordinates with respect to the X-axis

rH = 0.5m · sin(0.3p) · exp(−0.02p)+1.8m
ϕH = 0.05rad · p , p(ti) = 0
ZH = 0.5m · sin

(
0.3p− π

2

) · exp(−0.02p)+1m
, (12)

and the speed along the trajectory

VH = 0.95 · exp (0.5 · sin(t))
m
s

, t ∈T∞. (13)

The manipulator starts to move at the initial moment ti = 1s from the initial state

qi =
[
0.5 0.6 π/2

]T rad q̇i =
[
5 −1 −8

]T rad
s

. (14)

The simulation was done in two steps. Firstly, coming to the decomposition mode had
been simulated, and then, moving in the decomposition mode using calculated control force
(9). The fourth-order Runge-Kutta continuous solver with fixed step 0.001s was used in both
cases. Both simulations were compiled into one to obtain entire motion of the manipulator.
In coming to the decomposition mode the control force was defined by

f c =−110 · sign(q̇− q̇n))Nm, (15)

while in the decomposition mode the control force was determined by equation (9). The
simulation results are presented in Figures 3 and 4.

The manipulator enters the decomposition mode at the instant td = 1.758s in which the
position deviation is

xd = [0.876749 0.244765 −1.134695]Trad. (16)

As can be seen in the Figures, switching arises before the decomposition mode. To better see
what was going on around the instant of entering the decomposition mode, the results were
zoomed around that instant and presented in Figures 5 and 6.

The first contact with the switching surface after the instant t=1.3s is realized at the point
A on the switching plane ℜẋ2 ×ℜẋ3 , see Figure 6. After that instant chattering of the first
coordinate of the velocity deviation arises as well as switching of the first coordinate of the
control force due to fixed-step integration. This indicates that conditions for sliding mode
are probably fulfilled along the hodograph of the velocity deviation on the switching plane
ℜẋ2 ×ℜẋ3 from the point A. This means that, in this case, the manipulator had entered a
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Figure 3. The time histories of the coordinates of the position q, velocity q̇ and acceleration
q̈ of the MS coming to and moving in the decomposition mode
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Figure 4. The time histories of the coordinates of the position deviation x, velocity deviation
ẋ and control force f c

sliding mode before it entered the decomposition mode, which means that the zero velocity
deviation is not the only point of the sliding surface. At the point B, the velocity deviation
reaches the switching plane ℜẋ1 ×ℜẋ2 and chattering of the third coordinate of the velocity
deviation arises additionally which indicates that the segment BO is the sliding segment,
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Figure 5. The time histories of the coordinates of the velocity q̇, acceleration q̈ and control
force f c around the instant of entering the decomposition mode

1.3 1.44 1.58 1.72 1.86 2
-0.01

0.18

0.38

0.57

0.77
1

x [rad/s]

 t[s]

1.3 1.44 1.58 1.72 1.86 2
-0

0.35

0.7

1.05

1.39
[m/s]2 1mx

 t[s]

1.3 1.44 1.58 1.72 1.86 2
-4.18

-3.13

-2.08

-1.03

0.02
3

x [rad/s]

 t[s] -0.01

0.77

-0

1.39

-4.18

0.02

2x

o

3x

1x

A

B

A

B

O

O

O

O

Figure 6. The change of the coordinates of the velocity deviation ẋ in the spaces ℜẋi ×ℜt,
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Figure 6 right. Finally, the manipulator enters the decomposition mode at the point O and
chattering disappears because the control force has a continuous change after that instant
according to (9).
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5. Conclusion

The switching and sliding surfaces of the mechanical system have been defined and
determined. In the decomposition mode, the sliding surface degenerates to a point in the
space of the velocity deviation. However, the decomposition mode need not be the only
sliding mode of the mechanical system. The mechanical system can "slide" out of the
decomposition mode along the sliding surface which can change its position and shape on
the switching surface.

The control force, which acts on the mechanical system in the decomposition mode,
has been determined by using the method of equivalent control. According to this method
the control force is determined from the equations of motion of the mechanical system and
conditions which relates to the restriction of motion of the mechanical system on the sliding
surface. In that sense, determination of the control force in the decomposition mode is
equivalent to determination of the reaction force on a holonomic constraint. However, motion
on a sliding surface and motion on the holonomic constraint are physically different. In the
first case, the mechanical system is kept on the sliding surface by the force field surrounding
the surface, while, in the latter case, the holonomic constraint keeps the mechanical system
on the constraint.

Although the control force is not determined on the sliding surface, the force field around
the sliding surface forces the control force to take exactly those values such that the motion
of the mechanical system is on the sliding surface and the differential equation of motion is
satisfied. Assuming the discontinuities originate only from the control force, the control force
function is continuous in the decomposition mode even though it is discontinuous out of the
decomposition mode. When the disturbances are present, the force field around the sliding
surface changes and, in some cases, conditions for sliding mode may be violated allowing
the mechanical system to leave the sliding surface. In other cases, they may so strengthen
the force field around the switching surface that conditions for sliding mode are satisfied and
sliding may arise if the system is near the switching surface.

6. Notation

ℜ is the set of all real numbers. Italics denote variables, for instance, a,b,a,b,A,B, . . .. Regu-
lar letters denote constants, symbols or abbreviations, for instance, a,a,A,sign,sin,qn,λmax, . . ..
A ,B,C , . . . are sets. ¯A is the closure of a metric space A , A ◦ is its interior, and ∂A
is its boundary. Underlined small letters denote column matrices, which are called vec-
tors, a = [a1, . . . ,an]T,b = [bi]n×1,a,α, . . .. Underlined capital letters denote square matrices,
A = [Ai j]n×n,A,B, . . ..

The space of a matrix variable a with n elements is the real, n-dimensional, metric
vector space ℜn

a in which the variable a takes values.
Only the matrix variables each having the elements of the same measurement unit shall

be considered; thus metrization of spaces of such variables makes physical sense. The
measurement unit of a matrix variable is the measurement unit of one of its elements.

It is said that two matrix variables a∈ℜn
a and b∈ℜm

b are of the same nature if they have
the same measurement unit; subsequently, such are their spaces ℜn

a and ℜm
b .

Two variables are identical if they measure quantity of the same quality of the same
thing and have the same measurement unit; otherwise, they are different.
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It is said that two spaces are disjoint in variable if they are the spaces of two different
variables.

If two spaces are disjoint in variable then they need not be disjoint if they are of the same
nature. If they are identical in variable, then they are identical. A mathematical operation "∗"
with the subscript "v" shall be used to emphasize the restriction of the mathematical operation
to a certain variable.
Example. Two forces ~F1 and ~F2, whose coordinates with respect to some frame of reference
are F1 and F2, act on a material point. The variables F1 and F2 induce the spaces
ℜ3

F1
and ℜ3

F2
, which are of the same nature, identical and disjoint in variable, that is,

F1,F2 ∈ ℜ3
F1
≡ ℜ3

F2
and F1 ∈v ℜ3

F1
, F2 ∈v ℜ3

F2
, but F1 6∈v ℜ3

F2
, F2 6∈v ℜ3

F1
, ℜ3

F1
6≡v ℜ3

F2

and ℜ3
F1
∩v ℜ3

F2
= /0.

Definition 3 A pair (a,b) is (a,b) def=





{a}∪{b}, if a and b are not sets.
a∪{b}, if a is a nonempty set and b is not a set.
b, if a is the empty set and b is not a set.
{a}∪b, if a is not a set and b is a nonempty set.
a, if a is not a set and b is the empty set.
a∪b, if a and b are sets.

Definition 4 An n-tuple (a1, · · · ,an) is ((a1, · · · ,an−1),an), n > 2.

Definition 5 The set product of two sets A and B is the set

A ×B
def= {(a,b)| a ∈A ∧ b ∈B}. (17)

The set product has the properties

A × /0 = /0, A ×{ /0}= A , (18)
A ×B = B×A , (19)
(A ×B)×C = A × (B×C ), (20)

which follow directly from Definition 3.
Example. Let a 6≡ b, a ∈v Aa =v {a1

a ,a
2
a} ≡v {a1,a2}a, b ∈v Ab =v {a1

b,a
2
b} ≡v {a1,a2}b, and

Aa ≡Ab ≡A = {a1,a2}. Then,

Aa×Ab = A ×A = {{a1},{a1,a2},{a2}},
Aa×v Ab = {{a1

a ,a
1
b},{a1

a ,a
2
b},{a2

a ,a
1
b},{a2

a ,a
2
b}}. (21)

Consequently, there is a bijection between Aa ×v Ab and the Cartesian product A ×C A
[8, pp. 17-23], but the Cartesian product does not have properties (19) and (20), which are
required for notation of functions. The set product shall be used (17) only for sets disjoint in
variable, so that "×v" is assumed when "×" is written.

Let a ∈v A , b ∈v B and a 6≡ b. Then:

b(·) : A →B is a function from A into B. For some a ∈A , b(a) ∈B is the value of the
function b(·) : A →B at a.
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b(·)A ⊂A ×B is the graph of a function b(·) : A →B. From this point on, a function will
be identified with its graph. If A ′ ⊂A then b(·)A ′ is the restriction of the function b(·)A
to a set A ′.

b(·)A×C ≡ b(·)C×A = b(·)A ×C ⊂A ×B×C is the extruded function from a function
b(·)A on a set C .

b(·)a(·)C ⊂A ×B×C is a function b(·)A×C along a function a(·)C ⊂A ×C .

Definition 6 The projection of a function b(·)A1×···×An ⊂ A1 × ·· · ×An ×B onto the set
A ′×B, A ′ ⊆A1×·· ·×Ak, k ∈ {0,1, . . . ,n−1}, where A1×·· ·×Ak = { /0} for k = 0, is
the set

b(Ak+1×·· ·×An)A ′
def=

{
(a1, ...,ak,b) ∈A ′×B| (a1, ...,an,b) ∈ b(·)A1×···×An

}⊂A ′×B.

If A ′ = { /0}, the index A ′ is omitted. Note that in this case, for k = 0, (a1, . . . ,ak) = /0 ∈A ′.

Example. The projection b(A ) of a function b(·)A ⊂ A ×B onto the set B represents
its range. Projection of a function b(·)A×C ⊂ A ×B×C onto the set B×C is b(A )C .
A in b(A )C is needed only to indicate along which set the projection is done. Hence,
the projection of a function b(·)a(·)C onto the set B×C is rather denoted as b(a(·))C than
b(a(C ))C , as this projection is also a function. The projection of this function onto the set
A ×B is b(C )a(C ) and it need not be a function. Note that "the domain of the projection of
a function" must be determined exactly, as is a(C ) in b(C )a(C ) or C in b(a(·))C .
0 = [0,0, . . . ,0]T.
b(·)A = A ×{b} is a constant function. A constant function is different from a function that
is a constant such as the sine function§ sin(·)(0,π)x

⊂ ℜx×ℜsin , which is a fixed function in
the set of all continuous functions on the interval (0,π)x.
id(·)A = {(a, id)| a ∈A , id = a} is the identity function on the set A , but id 6≡ a.
b←(·)b(A ) = {(b,b←)| b = b(a), b← = a, a ∈ A } is the inverse function [4] of an injection
b(·)A . Note that b←(·)b(A ) = b(·)A , but b←(·)b(A ) 6=v b(·)A since ℜn

b← 6≡v ℜn
a .

f (a) = [ f (a1) · · · f (an)]T

f ∈ {sign,sgn} , sign(ai) =

{
1, ai>0
0, ai=0
−1, ai<0

, sgn(ai) =

{
1, ai>0

∈[−1,1], ai=0
−1, ai<0

.

‖a‖=
√

∑n
i=1(ai)2 is the Euclidean vector norm.

‖A‖ = max({‖Aa‖ | ‖a‖ = 1}) is the matrix 2-Norm [9, p. 281] induced by the Euclidean
vector norm.
‖b(·)A ‖= sup({‖b(a)‖ | a ∈A }) is the norm of a function b(·)A .
dist(A ,B) = inf({‖a− b‖ | a ∈ A ∧ b ∈B}) is the distance between sets A and B. For
one-element sets A = {a} or B = {b}, dist(a,B), dist(A ,b) or dist(a,b), shall be written
correspondingly.
BX

ε (a) is the ball open in a metric space X , centered at a ∈X , and with radius ε > 0.
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