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Abstract. One approach to the optimization of the thin-walled cantilever open sections 
beams subjected to complex loads - bending and constrained torsion, are considered. In most 
structures, it is possible to find the elements in which, depending on loading cases and the 
way of their introductions, the effect of constrained torsion is present and its consequences 
are particularly evident in the case of thin-walled profiles. The problem is reduced to the 
determination of minimum mass i.e. minimum cross-sectional area of structural thin-walled 
I-beam and Z-beam elements for given loads, material and geometrical characteristics. The 
area of the cross-section is assumed to be the objective function. The stress constraints are 
introduced. Applying the Lagrange multiplier method, the equations, which solutions 
represent the optimal values of the ratios of the parts of the chosen cross-section, are formed. 
The obtained results are used for numerical calculation. 

 
 
 
1. Introduction  
 
In most structures it is possible to find the elements in which, depending on loading cases 
and the way of their introductions, the effect of constrained torsion is present and its 
consequences are particularly evident in the case of thin-walled profiles. The most 
prominent contributor to the development of this theory was S.P.Timoshenko [1]. 
Kollbruner and Hajdin 2, 3 expanded the field of thin-walled structures by a range of their 
works. V.Z.Vlasov [4, 5] also contributed  largely to the theory of thin-walled structures by 
developing the theory of thin-walled open section beams. Thin-walled open section beams 
are widely applied due to their low weight in many structures.  
 
Among the authors who developed theoretical fundamentals of the optimization method, 
Fox [6], Brousse [7] and Prager [8] should be given the most prominent place. Also, 
Fletcher [9] and Bertsekas [10] should be mentioned as the authors of some recent 
developments in optimization approaches. Many studies have been conducted on the 
optimization problems, treating the cases where geometric configurations of structures are 
specified and only the dimensions of members, such as areas of members cross-sections, 
are determined in order to attain the minimum structural weight or cost. Many authors, 
Farkas [11] being among them too, applied mathematical problems of the conditional 
extreme of the function with more variables onto the cross-sectional area of the structure 
and defined optimum cross-section from the aspect of load and consumption of the 
material. Then, a series of works appear where the problem of optimization of various 
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cross-sections, such as triangular cross-section [12], I-section [13, 14], channel-section 
beams [15], Z-section [16], are solved by using the Lagrange multiplier method. 
 
The main purpose of this paper is to present one approach to the optimization of a thin-
walled I-section and Z-section beams.  

 
1. Definition of the problem  

  
During the process of dimensioning of a structure, it is often very important to find the 
optimal values of the dimensions. The starting points during the formulation of the basic 
mathematical model are the assumptions of the thin-walled-beam theory, on one side, and 
the basic assumptions of the optimum design, on the other. 
 
The I-section and the Z-section beams as very often used thin-walled profiles in steel 
structures are considered in the present paper as the objects of the optimization. The 
formulation is restricted to the stress analysis of thin-walled beams with open sections. The 
I-section of the considered cantilever beam (Fig. 1a) with principal centroidal axes Xi (i = 
1, 2) have the axis of symmetry. The Z-cross-section (Fig. 2b, c)  has the centre and not the 
axis of symmetry. It is assumed that its flanges have equal widths b1 = b3, and thicknesses t1 

= t3, and that its web has the width b2 and thickness t2. The ratios of thicknesses and widths 
of flanges and web are treated as not constant quantities.  

         
    a)    b)         c) 

 
Figure 1. a) I-section; b) Z-section  

 
It is also assumed that the loads are applied in two longitudinal planes, parallel to the 
longitudinal centroidal axes at the distances ξi bi (i = 1,2) (Fig. 1a,c). If applied in such a 
way, the loads will cause the bending moments acting in the above mentioned two planes 
parallel to the longitudinal axis of the beam, and as their consequence the effects of the 
constrained torsion will appear in the form of the bimoment causing the stresses that 
depend on the boundary conditions [2, 17].  
 
The aim of the paper is to determine the minimal mass of the beam or, in other words, to 
find the minimal cross-sectional area 
 

minAA                                                                                                (1) 
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for the given loads and material and geometrical properties of the considered beam, while 
satisfying the constraints. 
 
Formulation of the structural design optimization problem plays an important role in the 
numerical solution process 6.  
 
2.1 Objective function 

 
The process of selecting the best solution from various possible solutions must be based on 
a prescribed criterion known as the objective function. In the considered problem the cross-
sectional area will be treated as an objective function and it is obvious from the Fig. 1 that 
 

1,2,3i    ,   iitbA ,                                                                             (2) 

 
or (because b1 = b3) 
 

221121 2),( tbtbbbAA  . 

 
The ratios of thickness and length of the cross-sectional walls are assumed to be non-
constant variables (Fig.1) 
 

1,2,3i   ,  const
b

t

i

i ,        (3) 

 
where bi and ti are widths and thicknesses of the parts of the considered cross-sections. 

 
2.2 Constraints 

 
Only normal stresses will be taken into account in the consideration that follows and the 
constraints treated in the paper are the stress constraints. 
 
The cross-section of the considered Z-beam (Fig. 1b,c) with principal centroidal axes Xi (i 
= 1, 2) has the center and not the axis of symmetry and because of that, the expressions (4) 

for equivalent bending moments xM  and yM  [16] taking into account the influence of the 

bending moments around centroidal axes x and y, denoted as Mx and My  respectively, will 
be used  
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where Ix , Iy are the moments of inertia of the cross-sectional area about the centroidal axes 
x and y, and Ixy is the product of inertia. 
 
The normal stresses are caused by the bending moments  and  in the case of the 

I-section beam, odnosno 

1XM 2XM

xM  and yM  in the case of the Z-section beam, and by the 

bimoment B that appears in the case of constrained torsion. The normal stresses caused by 

the bending moments will be denoted as 1X  and 2X , for the I-section, odnosno x  and 

y  for the Z-section beam, respectively. The normal stresses caused by the bimoment will 

be denoted as   [2, 17]. 

 
In the case when the bending moments are acting in planes parallel to the longitudinal axis 
(Fig. 1) at the distances ξibi (i=1, 2) the bimoment as their consequence will appear and it 
can be expressed as the function of the bending moments and the eccentrities of their planes 
ξibi (i=1, 2) in the following way [2, 17]   
 

- for the I-section beam: 222 ,                 (5) 111 XX MbMbB  
and 

- for the Z-section beam: yx MbMbB 2211   .                  (6) 

 
For the allowable stress 0 the constraint function can be written as  
 

- for the I-section beam:   0maxmax2max1    XX               (7) 

and 

- for the Z-section beam:   0maxmax max
   yx .               (8) 

 
The maximal normal stresses [2, 17] are defined in the forms  
 
- for the I-section beam  

 1,2i   max 
Xi

Xi
Xi W

M , 


 W

B
max ,                 (9) 

 
where WXi (i = 1,2) are the section moduli for the principal axes for the channel-section, and 
 

- for the Z-section beam  

x

x
x W

M
max , 

y

y
y W

M


max
 , 


 W

B
max ,                (10) 

where Wx and Wy are the section moduli for the longitidunal axes for the Z-section and W 
is the sectorial section modulus for the considered cross-sections.  
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After the introduction of Eq. (9) into Eq. (7), and Eq. (10) into Eq. (8), the constraint 
function becomes: 

- for the I-section beam: 00
2

2

1

1  
W

B

W

M

W

M

X

X

X

X ,              (11) 

and 

- for the Z-section beam: 0



W

B

W

M

W

M

y

y

x

x .              (12) 

 
The constraint functions (11) and (12) are reduced to: 

 
- for the I-section beam: 
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and 
- for the Z-section beam:  
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The expressions (13) and (14) represent the constraint functions corresponding to the 

given stress constraints. 
 

3. Results and discussion 
 

3.1  Analytic solution 
 
One of the most common problems is that of finding maxima or minima (in general, 

"extrema") of a function. The Lagrange multiplier method 6, 7, 10, 18, 19 is a powerful 
tool for solving this class of problems and represents the classical approach to the constraint 
optimization. It is a method for finding the extremum of the function of several variables 
when the solution must satisfy a set of constraints, and for the analogous problem in the 
calculus of variations. Lagrange multiplier, labeled as , measures the change of the 
objective function with respect to the constraint. 

Applying this method to the vector depending on two parameters , (i = 1, 2), the 

system of Equations (13) of the form   
ib
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  1,2)i (   ,0),(),( 2121 



bbbbA
bi

                                            (15) 

 
will be obtained and after the elimination of the multiplier , it will become  
 

1

21

2

21

2

21

1

21 ),(),(),(),(

b

bb

b

bbA

b

bb

b

bbA















 

.                              (16) 

 
The beams of the given cross-sections (Fig.1) are the objects of the optimization. 
 
Let the ratio  
 

12 bbz                   (17) 

 
be the optimal ratio of the parts of the considered cross-section and let 
 

12 tt ,                    (18) 

 
be the ratio of the flange and web thicknesses. 
 
After the introduction of the expression for the bimoment into the Equations (13) and (14), 
the Equations (16) can be reduced to the equation whose solutions give the optimal values 
of the ratio (17). The solutions are in the form  
 

- of the fourth order for the considered I-beam 
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where the coefficients ck in Eq.(19) are defined by Eqs. (20) 
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and 

- of the sixt order for the considered Z-section beam 





6

1

0
k

k
k zc ,                 (21)

          
       
where the coefficients ck in Eq. (21) are defined by Eqs. (22) 
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It is obvious that the coefficients ck (k = 1, 2, … , 6) depend on the ratio of the bending 
moments and on the eccentrities ξ1 and ξ2 of their planes. 
 
The results that follow were obtained by the analytical approach. 
 
3.2 Optimal values z = b2 / b1 

 
From the general case, when bending moments about both principal axes appear 
simultaneously with the bimoment, some particular cases can be considered, depending on 
the ratio MX2 /MX1 for the I-secton and My / Mx for the Z-secion beam. 
 
The optimal ratios z (17) obtained from the equations (19) and (21) are calculated for MX2 

/MX1 (My / Mx) = 0, 0.1, 0.5, 1; ψ = 0.5, 0.75, 1 and ξ1, ξ2 = 0, 0.2, 0.4, 0.6, 0.8, 1.0, or in 
other way for   0 ≤  ξ1 ≤  1; 0 ≤  ξ2 ≤  1.  

 
I-beam  

 
The highest and the lowest optimal values of z for MX2 /MX1=0, 0.1, 0.5, 1 and ψ = 0.5, 0.75 
and 1.0, are shown in a shortened form in Table 1.  
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Table 1. I-beam: Optimal z = b2 /b1 for MX2/MX1= 0.1, 0.5, 1 and ψ = 0.5; 0.75; 1 

MX2 /MX1 ψ z 

0.5 2.19   z   12 
0.75 1.46   z   8 0 

1 1.09   z   6 
0.5      2   z   2.02 

0.75 1.37   z   1.58 0.1 
1 1.04   z   1.32 

0.5 1.02   z  . 1.72 
0.75 0.82   z    1.20 0.5 

1 0.69   z    0.93 
0.5 0.75   z    1.59 

0.75 0.59   z    1.11 1 
1 0.51   z    0.86 

 
From the Table 1 it can be concluded that the values of z are decreasing when the ratio   
t2 / t1 is increasing and that they are decreasing when the load ratio is increasing. 

 
Z-section beam 

 
Like in the case of the channel-section, the optimal values z = b2 /b1 for the Z-section beam 
for ratios My /Mx = 0, 0.1, 0.5, 1 and ψ =0.5, 0.75 and 1.0, are given in a shortened form in 
Table 2. 
 
Table 2: Optimal z = b2 /b1 for My /Mx = 0, 0.1, 0.5, 1 and ψ = 0.5; 0.75; 1 

My /Mx ψ z 

0.5 2.57   z  . 8.99 
0.75 1.67   z    6.04 0 

1 1.25   z    4.53 
0.5 2.61   z   5.54 

0.75 1.75   z   4.38 0.1 
1 1.31   z   3.70 

0.5 2.53   z    2.74 
0.75 1.70   z    2.19 0.5 

1 1.28   z    1.86 
0.5 2        z    2.49 

0.75 1.60   z    1.67 1 
1 1.26   z    1.37 
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From the Table 2, also, it can be concluded that the values of z are decreasing when the 
ratio   t2 / t1 is increasing and that they are decreasing when the load ratio is increasing. 

 
 
 

3.3  The loading cases 
 

From the general case, when bending moments about both principal axes appear 
simultaneously with the bimoment, some particular cases can be considered depending on 
the loading case. 
 
In this section an I-beam and Z-section beam are fixed at one end and subjected to the 
concentrated bending moment MX1 (Mx)= 10 kNcm; MX2 (My) = 0 at the free end of the 
beam in two ways (Figs. 2 and 3) as: a) Loading case 1: 1 = 2 = 0 and b) Loading case 2: 
1 = 0.5, 2 = 0. 

                      
 a)               b) 

 Figure 2. I-section: a) Loading case 1, b) Loading case 2        

                
                  a)                             b) 
Figure 3. Z-section: a) Loading case 1, b) Loading case 2        

    
4.  Numerical example 
 
As the numerical example, considered cantilever beams with the lengths l=150 cm, fixed at 
one end are subjected to the bending moments MX1 (Mx) = 10 kNcm; MX2 (My) = 0. 
 
The initial cross-sectional geometrical characteristics are calculated taking into account the 
initial dimensions of the I and the Z-sections. It is assumed that considered sections have 
the same initial cross-sectional geometrical characteristics: b1 = 5.175 cm, b2 = 9.2 cm, t1 = 
0.8 cm, t2 = 0.65 cm. For the given loads (Figs. 2 and 3) and the defined geometry of the 
profile, the initial stresses are calculated. 
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4.1 Determination of the minimum cross-sectional area  
 
The problem is considered in two ways: 
 
1) The optimal dimensions of the cross-section b1optimal and b2optimal are obtained by 
equalizing the “Initial” and the ”Optimal area” (Аinitial=Аoptimal) and by using the calculated 
optimal relation z. In that case the normal stress lower than the initial one is obtained 
(σoptimal<σinitial). It represents the model used for the control or Optimal model no. 1.  
 
2) From the condition prescribing that the stresses must be lower than the allowable one, 
i.e. the “Initial stress”, the optimal values b1optimal and b2optimal are obtained by using the 
calculated optimal relation z and by comparing the stress defined by the optimal 
geometrical characteristics to the “Initial stress”. It represents the Optimal model no. 2. 
Starting from the optimal cross-sectional dimensions (b1optimal and b2optimal), the optimal-
minimum cross-sectional area Аmin is calculated for each loading case and the results 
including the saved mass of the material are given in Tables 3 and 4. 
 
Table 3. I-beam: Normal stresses and saved mass: z initial = 1.78 
Loading 

case 
zoptimal 

σ initial 
[kN/cm2] 

σoptimal no.1  
[kN/cm2] 

σoptimal no.2

[kN/cm2]
Ainitial=Аoptimal no.1

[cm2] 
Amin= Аoptimal  no.2 

[cm2] 
Saved mass 

[%] 

1 7.38 0.20 0.19 0.20 12.60 11.64 

2 1.46 0.94 0.94 0.94 
14.26 

14.23 0.22 

 
Table 4. Z-beam: Normal stresses and saved mass: z initial = 1.78 
Loading 

case 
zoptimal 

σ initial 
[kN/cm2] 

σoptimal no.1  
[kN/cm2] 

σoptimal no.2

[kN/cm2]
Ainitial=Аoptimal no.1

[cm2] 
Amin= Аoptimal  no.2 

[cm2] 
Saved mass 

[%] 

1 5.58 1.34 0.75 1.34 10.33 27.56 

2 2.99 2.59 2.46 2.59 
14.26 

13.98 1.96 

 
From the Tables 3 and 4 it can be seen that greater saved mass of the material was obtained 
for Z-section than for I-section. Also, for all loading cases the level of stresses is decreased 
in the Optimal model no.1 with the area of the cross-section having the same value as in the 
”Initial model” and the saved mass of material is increased with respect to the initial stress 
limits in the Optimal model no.2 where the area is smaller than the initial one. The 
calculation showed that the maximum saved material is obtained in the Loading case 1 and 
the minimum in the Loading case 2 for both shapes of cross-sections. This allows to 
conclude that if the distance of the loading plane from the shearing plane is increased the 
optimization of the cross-section is less necessary to be done.  
 
5. Conclusions 
 
The paper presents one approach to the optimization of the thin-walled open section beams, 
loaded in a complex way, using the Lagrange multiplier method. 
 
Accepting the cross-sectional area as the objective function and the stress constraints as the 
constrained function, it is possible to find the optimal relation between the dimensions of 
the web and the flanges of the considered thin-walled profiles in a very simple way.  
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In addition to the general case, some particular loading cases are considered. As the result 
of the calculation the modified constrained functions are derived as the polynomials of the 
fourth and eight order.  
Particular attention is directed to the calculation of the saved mass using the proposed 
analytical approach. It is also possible to calculate the saved mass of the used material for 
different loading cases. 
 
The aim of the paper is the optimization of thin-walled elements subjected to the complex 
loads, and it may be concluded that the paper gives the general results permitting the 
derivation of the expressions that can be recommended for technical applications. 

 

Acknowledgements. This work is a contribution to the Ministry of Science of the Republic 
of Serbia funded projects TR 35040 and TR 35011. 
 
 
References 
 
[1] Timoshenko S P and Goodier J N (1951)  Theory of elasticity, McGraw-Hill Book 

Comp Inc., New York.  
[2]      Kollbruner C F  and Hajdin N (1972) Dunnwandige Stabe, Band 1, Springer Verlag.  
[3]      Kollbruner C F  and Hajdin N (1975) Dunnwandige Stabe, Band 1, Springer Verlag. 
[4] Vlasov V Z (1961) Thin walled elastic beams (2nd ed.), National Science 

Foundation, Washington DC.  
[5] Vlasov V Z (1959) Thin-Walled Elastic Beams, second ed., Moscow (English 

translation, Israel Program for Scientific Translation, Jerusalem, 1961). 
[6] Fox R L (1971) Optimization Methods for Engineering Design, Addison-Wesley 

Publishing Company Inc. 
[7]      Brousse P (1975) Structural Optimization, CISM, No.237, Springer-Verlag, Wien.  
[8] Prager W (1974) Introduction to Structural Optimization, CISM, No.212, Springer-

Verlag, Wien. 
[9] Fletcher R (1996) Practical Methods of Optimization (second edition), John Wiley 

 Sons, New York. 
[10] Bertsekas D P (1996) Constrained Optimization and Lagrange Multiplier Methods, 

Athena Scientific, Belmont. 
[11]    Farkas J (1984) Optimum Design of Metal Structures, Akademiai KIADO, Budapest. 
[12] Selmic R, Cvetkovic P, Mijailovic R and KastratovicG (2006) Optimum 

Dimenzions of Triangular Cross-Section in Lattice Structures, Meccanica, 41(4) pp. 
391-406. 

[13] Ružić D, Anđelić N and Milošević V (1996) One More View on The Problem of 
Optimization of an I-Beam, Bulletins for Applied Mathematics, LXXIX, PC-116, 
God, TU Budapest, Hungary, pp. 367-372. 

[14] Andjelić N (2003) Thin walled I-beam under complex loads - Optimization 
according to stress constraint, FME Transactions, 31(2), pp. 55 – 60. 

[15] Andjelić N and Milosevic-Mitic V (2006) Optimization of a thin-walled cantilever 
beam at constrained torsion, Structural integrity and life, 6(3), pp. 121-128. 

350



 
Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 2011 C-01 

 
[16] Andjelić N, Milosevic-Mitic V and Maneski T (2009) An approach to the 

optimization of Thin-walled Z-beam, Strojniški vestnik - Journal of Mechanical 
Engineering, 55(12), pp. 742-748. 

[17] Ružić D (1995) Strength of Structures (in Serbian), University of Belgrade, Faculty 
of Mechanical Engineering. 

[18] Onwubiko C (2000) Introduction to Engineering Design Optimization, Prentice 
Hall, New Jersey Inc.  

[19] Zoller K (1972) Zur anschaulichen Deutung der Lagrangeschen Gleichungen zweiter 
Art, Ingenieur-Archiv, 41(4), Springer-Verlag, pp. 270-277.  

 
 
 

351



 
Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 2011 C-02 

 
 
 
THE INFLUENCE OF LOAD AND BOUNDARY CONDITION 
SIMULATION ON THE STRUCTURAL EVALUATION OF 
RAILWAY WAGONS WITH FINITE ELEMENT TOOLS 
 

I. Atanasovska 

 
Institute Kirilo Savic, Belgrade 
Vojvode Stepe 51, 11010 Belgrade, Serbia 
e-mail: iviatanasov@yahoo.com  

 

Abstract. This paper investigates the influence of the load and boundary condition 
simulation during calculation of mechanical structures. The investigations are performed on 
the real freight wagon structure, as a case of very complex mechanical structure that can be 
analytically calculated approximately. The consequences of errors in research practice 
through the load and boundary condition simulation and their influence on the positions and 
values of the maximum stresses are shown and discussed. In the years of the rapid 
developing of methods for mechanical components and structures calculations, one of the 
essentials problems was definition of mathematical models of complex mechanical 
structures that can’t be analytical calculated.  

 
 
 

1. Introduction 
 
Finite element procedures are at present very widely used in engineering analysis. For any 
Finite element analysis (FEA), a mathematical model must be selected and then solved. The 
Finite element method is employed to solve very complex mathematical models, but it is 
important to know that the finite element solution can never give more information than 
that contained in the mathematical model.  
Finite element analysis bases on the physical discretization of treated continuum with parts 
of finite dimension and simple shape named finite elements. Thus, treated deformable body, 
i.e. continuum with infinite degrees of freedom becomes replaced by discrete model with 
joined finite elements with finite numbers of freedom. From mathematical standpoint, 
instead of system of differential equations which defines equilibrium of the whole model, 
by Finite element method we obtain system of plain algebraic equations. 
In investigation of behavior of deformable body by finite elements, first step is choice of 
discrete model which should be best approximation of stress and strain state and boundary 
conditions. The choice of discrete model is the choice of finite element type that will be 
used (one or more different types); the choice of their particular properties (if there is some) 
and the choice of mesh density. There are no exact criteria for the best discrete model with 
the highest accuracy for the particular case. Therefore, besides understanding theory of 
finite element, the experience and qualitative knowledge of stress and strain state from case 
to case is necessary requirement. Above mentioned is the key thesis of the paper and will be 
demonstrated for one real case study. 

2. The basic equations of Finite Element Method  
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During Finite element method (FEM) using, on the basis of the chosen finite element type, 
material properties and other values significant for problem solving, the relationships 
between basic values are defined with prime finite element equation. Arrangement of prime 
equations for all finite elements gives equation of construction – system of linear equations.  
The Finite element method is based on the mechanics of continuum, 1. The basic task is 
determination of the displacement functions, i.e. determination of displacement values for 
nodes of finite element mesh. For any construction divided on finite elements, displacement 
of any point of a finite element can be determinate as function of element’s nodes 
displacements. It is accepted that displacements, deformations and stresses are continual 
functions of nodes coordinates.  
Very often, equivalent values of deformations and stresses are used for efficient results 
tracking. First, main deformations (1, 2 and 3) and main stresses (1, 2 and 3) must be 
calculated. These values correspond to the solutions for 0 (three values) and 0 (three 
values) from cubic equations with following matrix form: 
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More often, for results tracking FEA used VonMises equivalent deformations VonMises  and 

VonMises equivalent stresses Von Mises : 
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2.1. Finite element equation 
 

By neglecting temperature induced stress, obtained link between node translations and 
forces on nodes, known as equation of finite element, [1], has following form: 

     SKF e  (4) 

In this expression, matrix Ke is stiffness matrix of finite element, which elements are 
influenced by physical properties of material, characteristic of finite element type and by 
chosen interpolation functions. 
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2.2. Equation of construction 

 

With combining of basic equations based on (4) of all finite elements included in mesh of a 
construction or a body, equation of construction is obtained in following form:  

     SKF   (5) 

where is : 
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In these vectors n represents total number of nodes of constructions, which is equal to the 
sum of total number of nodes in mesh and the number defined by boundary conditions 
(supports). The number of elements of each sub-matrix in vectors (6) is equal to the number 
of degree of freedom of the finite element p, so the vectors F and S have pxn elements. 
Certain node translations are known and determined by support of the construction. Known 
node translations represent the boundary conditions. When those boundary conditions are 
inserted in construction equation (5) certain number of equations can be eliminated, having 
as a result reduced number of degrees of freedom. 
External forces that act on the constructions are involved in equations as force components 
in directions of a coordinate system axis at the nodes. If construction has concentrated 
loadings, mesh nodes are set up in manner that in the each point of acting concentrated 
loads there is only one mesh node of finite element. For the case of continuous loading the 
nodes are loaded by equivalent node loading, where is necessary to known the function of 
loading over the line or the surface.   
 

3. Finite element analysis of a wagon  
 
The Finite element method is often used for the calculations of wagon parts or whole 
wagons, [2], [3]. This paper analyzed the structural analysis for the wagon of the Falns 
type. 
 
3.1. Used finite element types  
 
For model discredization one or few finite element types can be used. When few different 
finite element types are used in the model discredization (that is case of the analyzed 
problem) used element types must be join each other. The elements selected for modeling 
the wagon are 4 node shell elements and 2 node beam elements with elastic behavior.  
These element types simulate the behavior of wagon construction parts better of solid 
elements. 
Shell elements are a special class of elements that are designed to efficiently model thin 
structures. They take advantage of the fact that the only shear on the free surfaces is in-
plane. Normals to the shell middle surface stay straight, but not necessarily normal. As a 
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result, the in-plane strain variation through the thickness cannot be more complex than 
linear. The chosen 4-Node Finite Strain Shell is suitable for analyzing thin to moderately-
thick shell structures. It is a 4-node element with six degrees of freedom at each node: 
translations in the x, y, and z directions, and rotations about the x, y, and z-axes. The 
degenerate triangular option should only be used as filler elements in mesh generation. The 
geometry, node locations, and the element coordinate system for this element are shown in 
Figure 1. The element is defined by four nodes: I, J, K, and L. The element formulation is 
based on logarithmic strain and true stress measures. To define the thickness and other 
information, either real constants or section definition can be used.  
 

 
 

  Figure 1. 4-Node Finite Strain Shell geometry. 

 
Beam elements are used to create a mathematical one-dimensional idealization of a 3-D 
structure. They offer computationally efficient solutions when compared to solid and shell 
elements. Cross section defines the geometry of the beam in a plane perpendicular to the 
beam axial direction. 3-D Linear Finite Strain Beam is suitable for analyzing slender to 
moderately stubby/thick beam structures. This element is based on Timoshenko beam 
theory which is a first order shear deformation theory: transverse shear strain is constant 
through the cross-section; that is, cross-sections remain plane and undistorted after 
deformation. Shear deformation effects are included and in 3-D has six degrees of freedom 
at each node. These include translations in the x, y, and z directions and rotations about the 
x, y, and z directions. This element is well-suited for linear, large rotation, and/or large 
strain nonlinear applications. 3-D Linear Finite Strain Beam can be used with any beam 
cross-section. The cross-section associated with the beam may be linearly tapered.  
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  Figure 2. 3-D Linear Finite Strain Beam geometry. 

 
The geometry, node locations, and coordinate system for this element are shown in Figure 
2. 3-D Linear Finite Strain Beam is defined by nodes I and J in the global coordinate 
system. Node K is a preferred way to define the orientation of the element.  
 

3.2. FEM model of wagon 
 
The used model takes advantage of the longitudinal and transversal symmetry of the 
wagon. A quarter of wagon was used taking in consideration the correspondent symmetry 
of the load cases. For the unsymmetrical load cases, a half wagon model and a full model 
were used. The model general characteristics are summarized in table 1. The used material 
properties are in accordance with EN 10025-2, [4] and are presented in table 2. Table 3 
shows allowable stresses for static loads. 
 
Table 1 – Model characteristics 
Characteristic Value 
General element dimension (side length) 40 mm 
Number of shell elements (quarter wagon) 41456 
Number of beam elements quarter wagon) 614 
Total number elements (quarter wagon) 42070 
Model Mass (full structure) 10 887,2 kg 
 
Table 2 – material characteristics 
Properties Value 
Young modulus  201 GPa 
Poisson ratio 0.3 
Density 7 850 kg/m3 

 
Table 3– Allowable stresses for static loads 

Material Tensile 
Strength 

Rm 
[MPa] 

Yield 
Point 
Rp 

e<16 
[MPa] 

Yield 
Point 
Rp 

e<40 
[MPa] 

Condition Allowable 
Stress 
e<16 

[MPa] 

Allowable 
Stress 
e<40 

[MPa] 

Welds 323 314  
S355 

 
490 

 
355 

 
345 Plain Material 355 345 

 
The 3D model developed for research of freight wagon of Falns type is shown at fig.3. 
Figure 4 shows the finite element discretization of ¼ of wagon with chosen and described 
finite element types and figure 5 shows finite element model of whole wagon.   
 
 

356



 
Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 2011 C-02 

 

 
 

  Figure 3. Falns wagon 3D model. 
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  Figure 4. Finite element model for 1/4 of wagon. 

 
 

  Figure 5. Finite element model of whole wagon. 

 

4. Influence of boundary condition simulation on FEA results 
 
In accordance with international standards for freight wagon verifying, [5], [6], the 
characteristics for testing load cases are defined. In this paper, two of these load cases are 
chosen for the research of boundary conditions simulation:  
First researched load case: Compression force of 1000 KN applied in the two buffers in 
buffers centerline. For FEA a quarter of wagon model has been used. 
Second researched load case: Diagonally compression forces of 400 KN applied in buffers. 
For FEA a whole wagon model has been used. 
 

4.1. First load case  
 

Figure 6 shows two simulations of external load for first load case: external load applied as 
concentrated force in one node of finite element mesh (a) and external load applied through 
contact with bar loaded with same concentrated force (b).  
VonMises equivalent stresses of wagon body obtained with finite element analysis of a 
simulation and b simulation of external force are show on figure 7 and figure 8, 
respectively. Both of figures show stress contours states of whole wagon body (a) and 
wagon body with deselected areas on force applied region (b). It is very obviously how 
concentrated force application can influence on increasing of calculated maximum stresses 
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(in the analyzed case it obtained value of 760MPa instead 269 MPa in the case without 
direct applying of concentrated force).  
 

 
a) 

359



 
Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 2011 C-02 

 

 
b) 

  Figure 6. Two cases of boundary conditions simulations for first load case. 

 
a) 
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b) 

  Figure 7. VonMises equivalent stresses for a simulation of first load case. 

 
a) 
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b) 

  Figure 8. VonMises equivalent stresses for b simulation of first load case. 
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a) 

 
b) 

  Figure 9. Two cases of boundary conditions simulations for second load case. 

 

363



 
Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 2011 C-02 

 
a) 

 
b) 

  Figure 10. VonMises equivalent stresses for two simulations of second load case. 

4.2. Second load case  
 

Figure 9 shows two simulations of external load and displacement constraints for second 
load case:  

- (a) diagonally compression forces of 400 KN in buffers are simulated with a 
compression force applied in one buffer at centerline and reacted at the same 
vertical level by the diagonally opposed buffer; displacement constraint in 
direction of applied force are defined only in the reaction node, the displacement 
constraints in the direction of other two axes of global coordinate system are 
defined in the place of both of bogie supports 

- (b) diagonally compression forces of 400 KN in buffers are simulated with two 
compression forces applied in two diagonal buffers; displacement constraint in 
direction of applied force are defined in the place of one of bogie supports and the 
displacement constraints in the direction of other two axes of coordinate system 
are defined in the place of both of bogie supports 

VonMises equivalent stresses of wagon body obtained with Finite element analysis of a 
simulation and b simulation of boundary conditions are show on figure 10. Both of figures 
show stress contours states of whole wagon body for (a) simulation case and (b) simulation 
case. The results show the significant influence of boundary condition simulation on stress 
distribution, i.e. on the nodes with maximum stresses. 
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5. Conclusion 
 
In the era of increased use of computers, very often researches forgot that definition of the 
mathematical model that simulate real load conditions is the most important thing during 
mechanical parts and structures calculations. For young researches it is vary easy to train 
for one of many commercial applicable finite element tools, since the commercial finite 
element software is evermore adjusted for users with medium or low level of knowledge 
about the finite element method theory. These facts lead to problems of wrong load 
definitions in finite element analysis of real mechanical structures, which further lead to 
wrong calculation results and cancel all researcher time and effort. This paper shows that 
chosen mathematical model of real construction and boundary condition simulations are 
very important step in calculation process for all mechanical constructions and structures.  
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Abstract. Traveling acoustic waves conf ned to the straight edge of a semi-inf nite
membrane are reported here–they provide an elastic analogue of the skin. The possibility of
trapped waves for the transverse motion of membranes is explored for two support conditions.
It is shown that waves localize near the edge but propagate along it, when the edge is laden
with distributed line mass. Such membranes exhibit edge-guided trapped acoustic waves with
or without elastic foundation in the interior. The decay behavior of such localized waves away
from the edge depends on the wavenumber–shorter waves decay faster.

1. Introduction

The physics of membranes is of great current interest because of its signif cance to a range
of biologically and technologically relevant matter. Stretched f lms frequently surround
biological tissues and f uid-f lled anatomical ‘structures’ such as the eardrum (tympanic
membrane) or the cochlea. A good understanding of the dynamic behavior of such elastic
media is of interest to a range of potential biomedical applications involving wound care
and acoustic/ultrasonic manipulation of tissues and bio-membranes. Membranes are also
technologically important (e.g., in the form of thin wafers in electronics) and they are
frequently studied in musical acoustics due to their presence in a variety of percussion
instruments. Perhaps the simplest geometry that enables the study of dynamic effects at
the boundaries is one of semi-inf nite extent with a straight edge. With this motivation, here
we consider a generic abstraction of the geometry and explore the possibility of observing
conf ned acoustic waves in semi-inf nite membranes. Finite geometries, although more
realistic, may sometimes obscure the physics because of the overly complex details of the
ref ections contributing to the overall dynamic response.

It is well known that strings, beams and membranes on elastic foundation possess a
critical frequency known as the cut-on (or the cut-off) frequency below which traveling
waves do not exist and the motion is spatially localized in all directions. As opposed to
this behavior, here we explore the possibility of traveling waves that are localized in one
direction but propagate in another and are associated with localized motion abovethe cut-on
frequency. This distinguishes the present study from well known cases of evanescent motion
[1] in that here we explore genuinely trapped waves characterized by a skin-depth which is
reminiscent of the edge-bound localized motion. The acoustic skin-effect does not appear
to have been previously reported for membranes. Although the results obtained here are not
directly applicable to membranes of f nite extent, the present study affords a useful length
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Figure 1. Schematic diagram of a semi-inf nite stretched membrane in transverse motion.
The remote tension T is isotropic.

scale in terms of an acoustic skin-depth. When the length scale of a f nite-sized domain
is much greater than the skin-depth, approximate conclusions can be drawn on the basis
of the physics of the unbounded problem–a generic usefulness of studies involving inf nite
geometries.

In unbounded elastic continua, two types of waves freely propagate: they are associated
with compression (or pressure) and shear, respectively [2]. Waves in unsupported inf nite
plates and those resting on distributed foundation have been studied extensively in the past
mainly motivated by a range of applications in engineering and those in geophysics [3]. In
comparison, membranes have received relatively little attention. Freely propagating waves
in plates are dispersive (shorter waves travel faster) whereas those in membranes are non-
dispersive [1]. In all these cases the spatio-temporal variation of the f eld variables (usually
displacement) during wave motion is harmonic. As opposed to these, trapped modes are
spatially conf ned in at least one direction that extends to inf nity. These waves are also
known as the ‘bound states’.

Trapped modes have been reported in a host of wave phenomena such as water waves
[4, 5, 6, 7, 8], electromagnetism & optics, elastodynamics [9] and acoustics. They are
generally associated with spatial localization of the wave motion. Whispering gallery modes
in acoustics and water waves guided by the shore-line are waves that decay away from
the boundaries and are guided by them: they can also be considered to be trapped waves.
The well-known Anderson localization is a phenomenon that is due to scattering induced by
disorder in a periodic lattice–we are not concerned with localized motions of this type here.
In this paper, we study spatially conf ned wave motion that is due to a boundary surface (or
an edge). Perhaps the oldest known example of this type of motion is that of Rayleigh waves.
They propagate at the surface of an elastic half-space but are localized depth-wise.

Localized waves at the boundary of an elastic continuum possess interesting propagation
behavior [2]. Rayleigh waves [10], Love waves [11] and Stoneley waves [12] possess this
character and are very important in geophysics and seismology. At the free surface of a
half space, these waves are localized depth-wise, but they propagate on the surface. Such
localized propagation behavior in the vicinity of a free surface (characterized by exponential
decay in the depth direction [13]) is often known as the ‘skin effect’ (as in the propagation
of electromagnetic waves at the surface of a conductor). For two-dimensional elastic
continua, the existence of such waves was perhaps f rst discovered by Konenkov [14]. These
waves were later re-discovered several times [15, 16, 17, 18] as Konenkov’s work remained
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unknown in the West [19]. There has been recent interest in this area and such localized
elastic waves at the edge of plates and shells have been reported [20, 21, 22]. Perhaps the
simplest ‘toy problem’ that illustrates the trapped elastic waves is provided by Kaplunov [23].
Trappedmodes in curved and slowly varyingwaveguides have also been reported [24, 25, 26]:
we are looking for such trapped waves along an inf nite straightedge of a membrane here.

2. Localized waves traveling along the edge of a membrane

Consider a semi-inf nite membrane under remote tension T (force per unit length) as shown
in f g. 1. The stiffness of the elastic support, provided by the distributed foundation, in
the interior of the membrane, is modeled by the Winkler parameter κ which represents the
stiffness per unit area. This may be an oversimplif ed model of a membrane on soft tissues,
for example, however it could be used as the simplest linear model to include the stiffness of
a foundation when the entire membrane is supported and not just the edge. The equation of
motion is given by

T∇2w−κw= ρhẅ (1)

where w(x,y, t) is the transverse def ection of the membrane that depends on the in-plane
coordinates x and y and time t. A dot represents differentiation with respect to time.
The dispersion relation for plane waves in this medium is well-known and is given by
ω = cM

√

k2+(k̃)2, where k̃ =
√

κ
T ; the positive square root has been kept for a right-

propagating wave. Below the cut-on frequency, given by ω∗ = cM k̃, the wavenumber is
not real–waves do not propagate spatially and are evanescent. A plane transverse wave in
an unsupported membrane is non-dispersive and it travels at a speed cM = (T/ρh)1/2 (the
subscript stands for ‘membrane’). All this background is well known.

We now look for a wave solution of eq. (1) of the form

w(x,y, t) =W(y)exp[i(kx−ωt)] (2)

traveling along the edge y= 0 of the membrane. The prof le of the waveformW(y) is as yet
an unknown function. Substituting this separable solution into (1), we have

W′′ =

(

k2T +κ −ω2ρh
T

)

W, (3)

where a prime represents differentiation with respect to y. The above differential equation
admits solutions of the formW(y) = e−sy, where

s± =±
√

k2+(κ/T)− (ω2/c2M). (4)

The general solution for the y-dependent part of the wave is then given by

W(y) = c1 exp(−s+y)+ c2 exp(−s−y) (5)

where c1 and c2 are arbitrary constants. At this stage we have four unknowns: ω , k, c1 and
c2; whereas we have two boundary conditions on y: one each at y= 0 and y→ ∞. Applying
these conditions will lead to the determination of one of the two ‘amplitude parameters’ c1
and c2; the second will remain unresolved. The frequency ω will be expressed as a function
of the wavenumber k which is the dispersion relation. If a dispersion relation ω(k), when
inserted into eq. (4), leads to a positive decay rate s, then the corresponding motion will be
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Figure 2. Dispersion relations for the trapped wave in semi-inf nite membrane supported on
springs at the edge (solid lines). The short wave asymptote is a parabola in each case shown
using dashed lines. The four solid curves correspond to α = 1,2,3,4, respectively.

associated with a trapped wave. In the following, we explore this possibility for a range of
support and edge conditions.

The term with negative root in (5) must be discarded due to the boundary condition at
inf nity (because the amplitude cannot grow monotonically with y). This means that c2 = 0.
If the membrane were free on its edge, then the boundary condition at the free edge would be
given by w′(x,0, t) = 0, which leads to W′(0) = 0. Substituting W = c1 exp(−s+y) into this
boundary condition, we obtain−s+e−s+y|y=0 = 0 which implies that s+ = 0. This means that
the decay length scale for the sought edge wave is inf nite. Thus the ‘edge wave’ (2) is y-wise
extended and it cannot be distinguished from the the straight-crested plane waves of the form
w(x,y, t) =W0ei(kx−ωt) traveling within the membrane. We, therefore, conclude that localized
edge waves in a semi-infinite membrane with a free edge are impossible to observe. This is
in contrast with the situation of thin plates and shells where such edge waves are known to
exist. The case of laden edge, however, is qualitatively different and is discussed next.

Consider now the edge y = 0 laden with mass per unit length M (as a line mass) and
the stiffness of the distributed spring at the edge per unit length K. The second boundary
condition now becomes

Tw′(x,0, t)−Kw(x,0, t)−Mẅ(x,0, t) = 0. (6)

If trapped waves exist, then we must have solutions having s+ > 0 that are consistent with
the above boundary condition. Substituting W = c1 exp(−s+y) into (6) and combining with
(4), we obtain an expression for the decay rate of the trapped wave–if it exists–as

s+ =
ω2M−K

T
=

√

(k2T +κ −ω2ρh)/T > 0. (7)

The above equation contains both x-wise and y-wise dynamics. The edge-wise dynamics is
characterized by the real wavenumber k–thus implying propagation. The y-wise dynamics
is described by a real decay rate which is associated with imaginary wavenumber. Indeed,
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Figure 3. Decay rates for the trapped wave for α = 1,2,3,4. Increasing α decreases the decay
rate for a given wavelength. Shorter waves decay faster.

we could have started with an assumed waveform having real wavenumber along the edge
and an imaginary wavenumber in the direction perpendicular to it–instead of the one chosen
here which has real wavenumber along and real decay rate across the edge. The edge-wise
propagation behavior is described by a dispersion relation. Across the edge, a relationship
between the decay rate and the frequency exists, which is the analogue of the dispersion
relation for trapped motion. In this general setting, two conditions at the edge will be
discussed, in turn, now–(a) when the edge is supported on distributed spring only; (b) when
the edge is laden with distributed line mass but it is not supported.

2.1. (a) Spring supported edge

For this case,M = 0 andK 6= 0. Because we are looking for trapped waves, we require s+ > 0.
From equation (7), this is ruled out when M = 0 because s+ = (−K/T) < 0. Therefore,
trapped waves are not possible when the edge is not laden with mass.

2.2. (b) Mass laden edge

Consider the other extreme when the edge spring stiffness K = 0 but M 6= 0. Equation (7)
now simplif es to

s+ =
ω2M

T
=

√

(k2T +κ −ω2ρh)/T. (8)

For a specif ed real wavenumber k, the second equality can be solved for the frequency
compatible with traveling wave propagation which is the dispersion relation D(ω ,k) in an
implicit form. Squaring both sides, we obtain the following non-dimensionalized quadratic
equation for the variable ω∗2

(ω∗)4+αω∗2−α(1+ k∗2) = 0 (9)
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where ω∗ = ω/(
√

κ/ρh), k∗ = k/
√

κ/T, and α = T(ρh)2/(κM2). Solving this quadratic
gives two solutions of which one is spuriously introduced while squaring (8) and must be
rejected because ω∗2 is positive. The result is the following dispersion relation that relates
the wavenumber and the frequency

ω∗(k∗) = α1/2

[

√

1+ 4α−1(1+ k∗2)− 1
2

]1/2

, (10)

which involves the properties of the membrane via the non-dimensional numberα . The group
velocity of the trapped wave as a function of wavenumber can be calculated by differentiating
the above expression. In the long wave limit, the group velocity turns out to be zero. The
dispersion relation possesses a cut-on frequency which is obtained by setting k∗ = 0 in eq.
(10). Below this critical frequency, there are no trapped waves traveling along the edge. This
is fundamentally not a new behaviour for structures supported on elastic foundation. Above
this critical frequency, however, waves localize away from the edge for all frequency and
such waves must be termed ‘trapped’. For membrane acoustics such trapped waves do not
seem to have been reported so far. The dispersion curves for the trapped waves are plotted in
f g. 2 using solid lines. The detail for long waves is shown in the inset of f g. 2. The cut-on
frequency increases with increase in the non-dimensional parameter α and the whole curve
shifts up. The short wave asymptote to the dispersion curve of the trapped wave in the limit
k∗ → ∞ is given by

ω∗ ∼ α1/4√k∗. (11)

These asymptotes are shown in f g. 2 using dashed lines.
While the second equality in (8) describes the propagation behavior in the x-direction,

the f rst part contains the spatial distribution of the wave in the y-direction which is conf ned
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Figure 5. A snapshot of the trapped wave (8) traveling along the edge of a membrane
supported elastically on its edge.

to the edge. The decay rate of the localized wave is given in the non-dimensional form by

s∗ = α−1/2ω∗2, (12)

where s∗ = s
√

(T/κ). The plus subscript has been removed from the notation here onwards.
Such localized dynamics is known in other physical contexts, e.g. the skin effect in
conductors when they interact with electromagnetic waves. The skin-depth is given by δ ; the
current density scales as e−d/δ at a distance d away from the surface. Mass laden membranes,
therefore, afford an acoustic analogue of this physical behaviour. Drawing this analogy, the
skin-depth for acoustic waves in laden membranes is the reciprocal of the decay rate and is
given in the non-dimensional form by

δ ∗ = 1/s∗ =
√

α/ω∗2 (13)

which is in terms of the properties of the membrane and the frequency. Here the coordinate
away from the edge and the skin-depth have been non-dimensionalized according to y∗ =
y
√

κ/T and δ ∗ = δ
√

κ/T, respectively, so that the wave amplitude decays as e−y∗/δ ∗ . It is
evident that the skin-depth thus def ned is the distance away from the edge where the wave
amplitude becomes 1/eof its value at the edge.

The minimum value of the decay rate is in the long wave limit k∗ → 0. As we increase
the wavenumber, the shorter the wave the greater is the decay rate. The decay rate is plotted
as a function of the wavenumber for various values of the parameter α in f g. 3. In the short
wave limit, the decay rate of the trapped wave and the acoustic skin-depth scale as

s∗ ∼ k∗, δ ∼ λ (14)

respectively, where λ is the wavelength. The straightening trend of the curves with increasing
k∗ in f g. 3 is consistent with this.

The eigenfunctions of the trapped mode are shown in f g. 4. The skin-depth could be
def ned arbitrarily as the depth at 50% attenuation (in the spirit of other decay processes,
e.g. as in half-life). Instead we have chosen to def ne it as the depth at 1/e attenuation
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in amplitude which is customary in skin-effect related physical phenomena. The acoustic
skin-depth increases with increasing α as shown in f g. 4. A snapshot of the trapped wave
decaying in the y-direction and propagating in the x-direction, which is described by (8), is
shown in f g. 5. The wavenumber and the decay rate are arbitrarily chosen for illustration.

3. Conclusions

Trapped waves in semi-inf nite membranes having a straight edge were explored for two
support conditions. Membranes with free edge do not possess edge waves. It was shown
that waves propagating along the edge, but localized away from it, are admissible when the
edge is laden with line mass. The resulting edge wave is dispersive and possesses a rich
propagation behavior. The decay behavior is wavenumber dependent–shorter waves decay
faster. The attenuation of these waves away from the edge was characterized in terms of
suitable non-dimensional numbers.
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Abstract. Stress analysis of the fractured structure is needed for estimation of its safety and 
reliability. Various methods have been used to obtain stress-intensity factors for surface and 
corner cracks in plates. The  finite element technique had become an indispensable tool for 
the numerical solution of engineering problems and had appeared to be an ideal method to 
simulate the crack extension in structures. In this paper, stress intensity factors (SIF) are 
considered using finite element method, FEM with singularity elements. Attention is 
focused on a 3-d plate with elliptical surface crack under tension load. Graphic review of 
stress intensity factors (SIF) for a wide range of crack sizes is also determined. Accurate 
stress intensity factors for such cracks are necessary for reliable prediction of fatigue crack 
growth rates or fracture. Forman type fatigue growth law is used in this paper. 
 
 Key words: 3-d plate, elliptical crack, finite element analysis, stress intensity factors, 
cyclic loading, fatigue crack growth  

 
 
 

1. Introduction  
 
The use of the stress intensity factor in examining cracked structural problem requires an 
accurate knowledge of the stress field in the vicinity of the crack tip for the structural 
geometry, loading and boundary condition in question. Unfortunately, analytical solutions 
exist only for relatively simple cases wherein: the domain is considered to be infinite, the 
material is homogeneous, in most cases, is isotropic, and the boundary conditions are not 
complicated. To deal with practical problems of fracture mechanics, structures with  finite 
size, arbitrary shape, general boundary conditions, and arbitrary material properties, 
numerical techniques such as  finite elements and boundary integral methods are 
mandatory. 
 
Semi-elliptic surface cracks frequently initiate and grow in the vicinity of high stresses, 
stress concentrations, thermal stresses and other non-linear stress fields. Such cracks are 
present during a large percentage of the useful life of these components.  Hence, 
understanding the severity of surface cracks is important in the development of life 
prediction methodologies. Accurate stress intensity factors for such cracks are necessary for 
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reliable prediction of fatigue crack growth rates or fracture. Three-dimensional (3-D) stress 
analysis of crack configurations have received considerable attention in the literature in the 
last three decades [1-6 ].  
 
The fatigue failure of plates often develops from surface defects, and therefore several 
authors have examined the stress-intensity factor variation along the front of these flaws. 
The assumption that an actual part-through crack can be replaced by an equivalent 
elliptical-arc edge flaw is experimentally supported, and therefore many analyses have been 
carried out related to this equivalent configuration [1-3]. The problem of fatigue 
propagation is very complex because the crack front can be modeled quite accurately by an 
elliptical arc during the whole phenomenon, but the aspect ratio of the ellipse changes 
under cyclic loading. 
 
An elliptical-arc surface crack in a plate subjected to cyclic tension loading with constant 
amplitude is considered, Fig.1 . Surface fatigue cracks are frequently initiated in such 
components at the stress concentrating locations (such in the vicinity of the hole), then 
propagate into the interior of the parts and can cause final fracture abruptly. The three-
dimensional elliptical arc has been used to model the crack front in plate under axial 
loading. In the first section of the present artical the stress intensity factors along the crack 
front are computed. The other part is reserved for fatigue crack propagation. 
 
 
2. Stress Intensity Factor for elliptic surface crack in the plate 
 
Many numerical analyses, theoretical studies and experimental investigations have been 
conducted to obtain stress intensity factors (SIFs) for three-dimensional (3D) cracked 
bodies. In the beginning, finite element method offers simple procedures for extrapolation 
of the crack tip intensity factors. But the limitation of the number of the  finite elements 
around the crack tip and the precision of the determination of the toughness lead to the 
development of special crack elements which simulate the complete crack zone stress  eld.  
Three-dimensional finite elements were used to model a plate containing a semi-elliptic 
surface crack. The finite element analyses were made using MSC/NASTRAN, with 20-
noded isoparametric three-dimensional solid elements. In order to model the inverse square 
root singularity at the crack tip, three-dimensional prism elements with four mid-side nodes 
at the quarter points (a degenerate cube with one face collapsed) were used and the separate 
crack tip nodal points were constrained to have the same displacements [3]. The quarter-
point displacement FEM was employed in present work to evaluate stress intensity factors 
along semi-elliptic crack front. This method uses the out-of –plane displacement value at 
the quarter-point behind the crack tip, as shown in Fig. 1, to extract the SIF through the 
following relationships 
 

)4/1(
2

)4/1( 2

)1(4 r

uE
K

z
I




   (1)  

   
where E is the Young’s modulus and r(1/4) is the distance of the quarter-point away the 
crack tip. Note that the r-1/2 singularity of the near crack tip stress field vanishes at the 
intersection of three free surfaces [3] such as the surface point of the crack. Hovever, for 
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engineering material with Poisson`s ratio of 0.3, the dominant singularity is r-0.4523, which is 
not a large deviation from r-1/2. 
 

 

Fig. 1. The quarter-point displacement method (Super-element) 

 
The equation (1) is valid for the plane strain assumption, which is employed throughout this 
work, and can be derived from the well-known displacement solution adjacent to the crack 
tip for Mode I crack, i.e. 
    


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E

K
u I

z    (2) 

 
With the square-root singularity simulated this method has been verified to be of good 
accuracy for calculating of the stress intensity factors of a variety of practical cracked 
geometries [3,7]. 
 
 
For this purpose, the finite-element models of plate with semi-elliptic surface crack are 

subjected to tensile loading, 
max 2

10
daN

mm
  . Plate made of 7075 T7351 is being analyzed. 

Young’s modulus, E = 73174[daN/mm2] and Poisson’s ratio, ν=0.33 are assumed. Axial 
tensile stress has been applied to the end of the plate and the last layer of elements at the end 
of the plate has been constrained to move in the axial direction.  
 
Geometry properties of this plate are: width 2W=120 mm, thickness t=10 mm, height 
2H=70mm, the hole radius R=10 mm, length of surface crack a=10 mm, b depth of surface 
crack, a=b Fig. 2. The half height of the plate and width are chosen to be large enough to 
have a negligible effect on the stress intensity factors (W/H=1.714) and W/R is selected to 
be 6. 

376



Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 2011 C-05 

 
 

Figure 2.   Elliptical-arc surface flaw in a round bar, geometrical parameters 
 
Three-dimensional finite element (FE) models with 20-node singular finite elements 
arranged around the crack tip will be used to calculate the SIFs of elliptical surface cracks 
in plate. 
 
The fact that the crack geometry must be explicitly meshed and that significant refinement 
in the vicinity of the crack fronts is needed to achieve reasonable accuracy renders finite 
element based methods particularly difficult to implement. This meshing difficulty is 
particularly acute in three dimensions. Meshing and re-meshing become, in such 
circumstances, a particularly large part of the computation time. High mesh density in the 
crack front region is required. The stress-intensity factor is obtained for all values of 
geometrical parameters b. These direction of tensile loads cause only mode I deformations. 
The resultants are given in the Table 1. 

 
Parameters 

b 
Stress intensity 

factor 

b (mm) 
 

KI
3/ 2

daN

mm
 
 
 

 

1.18 45.5 

1.76 52.1 

2.05 54.7 

2.63 63 

2.83 67.5 

3.21 71.8 
 
Table 1.  Stress-intensity factor against crack depth b at deepest point  
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Using discrete values of the of the stress intensity factors Table 1, determined by FEM, the 
analytic expression of the (SIF) can be defined in the next form:  
 

(3) 
 

The corrective function can be defined in the next form: 
 
    Y=3.3078-1.2314b+0.4158b2-0.0416b3                              (4) 
 
 
where b depth of surface crack, a=b Fig. 2. 
Figures 3., 4., 6. and figure 7. shows the stress field, σ obtained for next values of b :  1.18 , 
1.76 , 2.05, 2.63, 2.83 and 3.21. The values for σ are given in daN/mm2. 
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Figure 3.  Stress field in the plate with hollow surface crack, crack depth b=1.18mm 
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Figure 4.  Stress field in the plate with hollow surface crack, crack depth b=1.76mm 
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Figure 5.  Stress field in the plate around crack tip b=2.05mm 
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Figure 6.  Stress field in the plate with crack , b=3.21mm 
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Figure 7.  Stress field in the plate around crack tip, b=3.21mm 
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4. Fatique Crack Growth  
 
 
Accurate prediction of fatigue crack growth for cracks initiating and developing along the bores 
of fastener holes in plate are required because of the wide existence of this problem in practical 
components and structure. Several authors have analytically [6] and experimentally deduced that 
the front of a surface flaw in a metallic plate can be modeled quite accurately by an elliptical arc 
during the whole fatigue growth [4,5]. 
 
Plate of previously mentioned geometry has been subjected to cyclic axial loading with 
constant amplitude. The stress-intensity factor equations developed for surface cracks are 
used herein to predict fatigue-crack-growth patterns under load spectra. For this purpose 
Foreman`s model is used. 
 
Forman's equation has been developed primarily in order to model the domain of unstable 
crack growth. The area of unstable crack growth is basically interesting in situations where 
the crack growth time due order of 103 cycles. It is certainly good to point out that Paris 
equation is regularly used in the domain of stable crack growth. Under stable crack growth 
inplies the area where the slope log(da)/dN (as a function of logΔK) has approximately 
linear character. 
 
The initial crack size is bo= 0.00118m.  Cyclic characteristics aluminum 7075 T7351 for 

Forman model are -7
fC =3 10 , 2.39fn   and fracture toughness is 

3/ 2
2225IC

N
K

mm
 . 

The fatigue life prediction is examined for four different values of loading ratio, R(0, 0.1, 
0.3, 0.5). 
 
Plate is loaded by cyclic loads with different values of the loading ratio R but with constant 

amplitude. The value of maximum stress is always the same,
max 2

100
N

mm
  , the 

value min  changes depending on the loading ratio. All calculated values for the number 

of cycles till failure for different R are shown in Fig. 8. 
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Figure 8.  Surface crack growth under load spectra (four cases of stress range) 

 

5. Conclusions 
 
In this work the fracture mechanics parameters are considered. Attention is focused on a 
plate with elliptical surface crack under tension load. SIFs of surface cracks in plate are 
studied systematically by using the 3D FE method with 20-node singular elements arranged 
around the crack border.  
Stress intensity factors are determined by singular finite elements for various the crack 
depth. Using these discrete values of the stress intensity factors analytic expressions are 
derived for general stress intensity factors. An empirical expression for the SIFs as a 
function of crack geometry is obtained by fitting the numerical results. These analytic 
expressions are used in crack growth analysis of cracked structural component. Therefore, 
the empirical expression can be used conveniently in life prediction of notched bars with 
various notch geometry and stress concentration coefficients at least within the range of 
parameters studied in this work. 
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Abstract: Buckling and postbuckling of anisotropic laminated thin shells by finite element 
method is compared with analytical and empirical data. The material of each layer of the 
shell is assumed to be linearly elastic, anisotropic and fiber-reinforced. A postbuckling 
analysis is presented for axially loaded anisotropic laminated cylindrical shells with 
different values of shell parameters and stacking sequence. The effects of material 
orthotropy on geometric nonlinear behavior are analyzed. For this purpose high-quality 4-
node shell finite elements are used. Numerical examples demonstrate validity of the 
computation procedure in domain of geometric nonlinear problems. 
 
Key words: Geometric nonlinearity, Finite elements, Plates and shells, Composite panels 

 
 
1. Introduction 
 
Composite laminated structures are being increasingly used in aeronautical and aerospace 
construction. Their components are often subjected to combinations of mechanical and 
thermal loading.  In fact, many structures are subjected to high load levels that many results 
in nonlinear load-deflection relationships due to large deformations of the plate. One of the 
important problems deserving special attention is the study of their nonlinear response to 
large deflections and postbuckling. 
Many studies according to classical plate theory for the large deflection of multilayered 
composite plates subjected to mechanical or thermal loading are available in literature [1,2]. 
Numerous studies involving the application of the shear deformation plate theory to 
nonlinear bending analysis can be found in Refs. [3-5]. The analysis of the buckling and 
postbuckling behaviour of isotropic or composite laminated shells is a topic of considerable 
technical importance in number of branches of engineering. Such behaviour may result 
from mechanical loading or from thermal loading or from a combination of the two, i.e. 
from thermomechanical loading. A book edited by Turvey and Marshall [8] contains much 
information on available methods, particularly as related to flat, rectangular plates, and 
includes details of several hundred pertinent references dating up until the mid-1990s. A 
large part of this literature, however, is naturally concerned with buckling under mechanical 
loading. In this paper the particular concern is with the nonlinear analysis under thermo-
mechanical loading of isotropic/composite shell type structures. 
Present paper gives description of the use of finite element method (FEM) in predicting the 
buckling and postbuckling response of axially loaded laminated cylindrical shells with 
different values of shell parameters and stacking sequence. 
 
2. Nonlinear Analysis 
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The nonlinearity in structural problems can be of two types: (1) the geometric nonlinearity, 
which is associated with the changing geometry of a structure, and (2)  material 
nonlinearity which is associated with the nonlinear behavior (stress-strain relations). Often 
a combination of the two is present when materials are loaded to their ultimate loads. The 
phenomena of plasticity, creep or other complex constitutive relations come under the class 
of material nonlinearity. The geometric nonlinearity enters the equations of equilibrium via 
the strain-displacement relations and the govering equations. Since the finite element 
method has proved to be a very powerful tool for analyzing elastic structural problems, 
involving complex geometries, variety of loading and boundary conditions, it is quite 
natural to extend this technique to the solution of nonlinear problems. 
The governing equation can be used to study the linear/nonlinear static and eigenvalue 
buckling analysis.Governing equation for the deformation of the shell can be written as [4, 
11] 

     1 2

1 1
[[ ] [ ] [ ] [ ( )] [ ( )]]

2 3T G M TK K K N N F F             (2.1) 

where [K] is the linear stiffness matrix, [N1] and [N2] are nonlinear stiffness matrices 
linearly and quadratically dependent on the field variables, respectively, [KT] and [KG] are 
the geometric stiffness matrices due to thermal and initial stress resultants. {FM} and {FT} 
are mechanical and thermal load vectors, δ is the vector of degrees of freedom associated to 
the displacement field in a finite element discretisation. 
The governing equation (2.1) can be used to study the linear/nonlinear static and eigenvalue 
buckling analysis by neglecting the appropriate terms as: 
a) Linear static analysis: 
 

                [ ] M TK F F                                                                            (2.2) 

 
b) Nonlinear static analysis: 
 

     1 2

1 1
[[ ] [ ] [ ( )] [ ( )]]

2 3T M TK K N N F F                        (2.3) 

 
c) Eigenvalue buckling analysis: 
 

  *[ ] [ ]GK T K                                                                                 (2.4) 

 
where [ *

GK ] is the geometric stiffness due initial state of stress developed because of unit 

uniform temperature rise and ΔT is the temperature rise. It may be noted here that for the 

purpose of evaluating [ *
GK ], firstly the static analysis of the shell using Eq. (2.2) for unit 

temperature rise is carried out. The resulting deformation filed is used to calculate the initial 
state of stress resultants using Mindlin formulation [1, 4] for displacements of plate and in 

turn, for evaluating the [ *
GK ] matrix. The nonlinear prebuckling axisymmetric deformation 

followed by postbuckling equilibrium path (a symmetric deformation) is traced by solving 
Eq. (2.3) using Newton–Raphson iteration procedure coupled with displacement control 
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method [12]. The equilibrium is achieved for each load/displacement step until the 
convergence criteria suggested by Bergan and Clough [13] are satisfied within the specific 
tolerance limit of less than 1%. 
 
3. Numerical Examples 
 
To illustrate nonlinear behavior of laminated composite structures numerical examples are 
included.  
 

L

D

z
y

x

 

 
D = 701.2 mm, L = 540 mm 
 
Material properties: 
 
Material 1:  
E11 = E22 = 52,0 GPa, G12 = 2,35 GPa,  
ν = 0.302, 
t = 1,32 mm 
 
Material 2:  
E11 = 113,0 GPa, E22 = 9,0 GPa,  
G12 = 3,82 GPa, 
 ν = 0.73; t = 1,2 mm 
  
Material 3:  
E11 = 113,0 GPa, E22 = 9,0 GPa,  
G12 = 3,82 GPa, 
 ν = 0.73; t = 1,5 mm 
 
Stacking sequences: 
(0/±45/0)T, material 1 
(±45)S, material 1 
(±45)2S, material 2 
(90/0)2S, material 2 
(90/±30/90)T, material 3 

Figure 3.1 Geometry and material properties of cylindrical shell 
 
This validation problem concerns the buckling and postbuckling response of a laminated 
cylindrical shell to axial compression. In design processes where such loading is a concern, 
this type analysis is important to identify the effects of variations in laminate stacking 
sequence, fiber orientation, and number of layers and aspect ratio of the shells on their 
stability. Experimental and analytical results /1/ are given in Table 3.1 along with results of 
finite element method.  Geometry, material properties and stacking sequences are given in 
Figure 3.1. All models have identical basic geometry but differ in stacking sequences and 
material properties. The boundary conditions imposed on the model are along the top and 
bottom edges : 
 
 Along the bottom edge (z = 0): u = v = w = 0  
 Along the top edge (z = L): axial load is applied via rigid element. 
 
Axial loading is achieved by applying translation in negative z direction. Resulting 
deformations for linear buckling FE analysis as well as for nonlinear FE analysis is shown 
in Figures 3.2 to 3.5. Postbuckling load–shortening curves for (0/±45/0)T and (±45)2S 
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laminated cylindrical shells under axial compression aquired by FEM are compared in 
Figures 3.6 and 3.7 with data from [1]. 
 
Table 3.1 

Present FEM 
Material/Stacking FcrEXP/1/ [kN] FcrAN1/1/ [kN] FcrAN2/1/ [kN]

FcrLB [kN] FcrNL [kN] 

(0/±45/0)T, material 1 172.9 240.0 246.0 240.7 262 

(±45)S, material 1 120.2 120.6 149.7 118.4 113 

(±45)2S, material 2 92.3 173.7 147.6 119.7 115 

(90/0)2S, material 2 92.0 170.0 118.5 118.7 209 

(90/±30/90)T, material 3 196.2 289.0 248.8 174.2 244 

 

 
Figure 3.2 The first buckling mode using linear Eigen-value method for model with (0/±45/0)T stacking sequence 

and material 1 

 

 
Figure 3.3 Displacement distribution obtained with nonlinear analysis for model with (0/±45/0)T stacking 

sequence and material 1 
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Figure 3.4 The first buckling mode using linear Eigen-value method for model with (±45)2S stacking sequence and 

material 2 

 

 
Figure 3.5 Displacement distribution obtained with nonlinear analysis for model with (±45)2S stacking sequence 

and material 2 
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Figure 3.6 Comparison of postbuckling load-shortening curves with values obtained by FEM for model with 

(0/±45/0)T stacking sequence and material 1 
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Figure 3.7 Comparison of postbuckling load-shortening curves with values obtained by FEM for model with 

(±45)2S stacking sequence and material 2 

 
 
4. Conclusions 
 
Finite element method capability has been considered for predicting the geometric 
nonlinear behavior including buckling and postbuckling response of axially loaded 
composite laminated cylindrical shells. 
Results presented in Table 3.1 show that nonlinear analysis as well as linear buckling 
analysis are in reasonable agreement with other analytical methods and in fact, in some 
cases (such as (±45)S, material 1), give results comparable with experimental data. One of 
the main reasons for result discrepancies is inability to accurately apply axial loading to 
finite element model. The problem with loading is best described by post buckling curves in 
Figures 3.6 and 3.7. The postbuckling path in Figure 3.6 has the correct general form but is 
offset by a large margin. Figure 3.7 paints even worse picture. Also FEM considers ideal 
geometry and every ply is identical in dimensions and characteristics (initial imperfection 
must be introduced) while in practice it is not so. Further exploration of this problem could 
provide better results for postbuckling behavior. 
Nonlinear analysis can be used to determine buckling and postbuckling behavior of 
composite cylindrical shells, but great attention must be given to application of boundary 
conditions as well as to size and position of initial imperfection.  
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Abstract. The objective of the present paper is to develop a mathematical model for 
simulation of the fatigue life of structural components with semi-elliptical crack. For this 
purpose authors used adequate criteria. Applied criteria are based on the fact that during 
cyclic loading near the crack tip, plastic deformations occur and they leave behind the crack 
tip at a growing crack. Moreover, knowledge of the crack tip stress intensity factor as a 
function of applied load and geometry of the structure is necessary for fatigue life evaluation 
of cracked structures. In this paper, the stress intensity factors are examined using analytical 
and numerical approaches. As a numerical approach finite element method is applied. 
A proposed mathematical model is validated using results of available experiments. A 
comparison of the numerically determined fatigue crack growth life with the experimental 
data shows a good agreement. 

 
 
 

1. Introduction 
 
Fatigue is perhaps the most common cause of crack initiation and growth which ultimately 
results in the fracture of a structure or components. The primary concerns of a fatigue 
designer are to achieve life of structural component and minimize the consequence of 
failure. The ability to predict fatigue crack propagation is essential to damage tolerance 
design in engineering application. 
So far engineering practice has shown that often besides the through thickness cracks, 
surface cracks must be analyzed, too. As a special type of surface cracks in crack growth 
analysis, semi-elliptical cracks could be analyzed. These cracks must be carefully analyzed 
in the case of aircraft and aerospace vehicle components but also with many primary 
coolant piping systems in nuclear power plants. In this paper is considered fatigue life 
estimation of a semi-elliptical circumferential surface crack in a pipe subjected to a bending 
moment as well as aircraft component subjected to tensile loading. Several scientists, [1-9] 
have examined and analyzed the behavior of a semi-elliptical surface cracks. In fracture 
mechanics, different mathematical/numerical methods with the availability of powerful 
computers can be used for stress analysis of surface crack problems. The most widely 
applied technique is the finite element method [1-3] for solving fracture related problems. 
The weight function method [4,5], the alternating method [6] and the line-spring model [7] 
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are also used for dealing with semi-elliptical crack problems. Additionally, the boundary 
integral equation method [8] is applicable to solve semi-elliptical crack problems. 
In this study, the computational model for fatigue crack growth analysis of components 
with external semi-elliptical crack is proposed.  The stress intensity factors are computed by 
applying analytical and numerical approaches. In fatigue crack growth estimation, authors 
have examined how adequately, by application of equations of a stress intensity factor for a 
plate with semi-elliptical crack, residual service life of a pipe with external semi-elliptical 
crack could be calculated. The estimations of proposed fatigue crack growth model under a 
constant amplitude loading are compared with experimental fatigue results available in the 
literature 

2. Stress intensity factor  
 
Highly stressed engineering structures may contain crack-like flaws, and they may develop 
in complex surface crack problems during their service life. The existence of such cracks 
and their subsequent growth can cause a loss of strength and a reduction in the service life 
of a structure. It is therefore very important that the stress field around a cracked structure 
subjected to various kind of loading conditions is accurately determined  The effects of the 
stress field, the crack size and shape, and the local structural geometry are analyzed by the 
parameter known as stress intensity factor.   
Generally, experimental tests, analytical and numerical approaches can be used to analyze 
stress intensity factors for surface cracked components. However, it is known that fatigue 
tests are very time-consuming and crack initiation and propagation are extremely difficult 
to be monitored accurately. Due to that fact, present authors considered both, analytical and 
numerical approaches for the calculation of stress intensity factor in order to formulate 
numerical procedure for fatigue life estimation of surface cracked component, i.e. the pipe 
with external semi-elliptical crack (Fig.1). Actually, it is analyzed if fatigue life up to 
failure of the pipe can be adequately calculated by applying analytical relations for stress 
intensity factor which are commonly used in the case of a finite plate [9,10]. Thereby, the 
pipe is approximated by the plate with width 2R0 and thickness t. In addition, it is assumed 
that the plate is subjected to tensile stress which is equal to the bending stress. 
 
 

 

 

 
 

 
Figure 1. Geometry of a pipe.  Figure 2. Loading condition. All dimensions are in mm. 
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The relation for stress intensity factor range in the case of a finite plate, at a point on the 
semi-elliptical crack front defined by the angle  can be expressed as: 

     wI fgf
t

a
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t

a
MM

Q
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SK  

























4

3

2

21  (1) 

where S is external stress range, Q presents the shape factor. Expression in apprentices 
together with (), g, w presents the boundary correction factor and M1, M2, M3 are factors 
depending of depth crack length a and surface crack length b, i.e.: 
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f()  is factor depending of depth crack length a, surface crack length b and angle : 
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g is factor depending of depth crack length a, thickness t, as well as angle : 
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and factor fw can be expressed like: 
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In this paper, relations for the stress intensity factor (Eqs. (1)-(8)) are used for stress 
analysis and fatigue life estimation. Moreover, in the section 4, the stress intensity factors 
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for the pipe are calculated by applying numerical approach (Finite element method) but 
without an assumption for the pipe that it is the finite plate.  

3. Fatigue crack growth estimation 
 
Fracture mechanics is being successfully used for the fatigue crack growth analysis of 
components. In general, the most important is to formulate the relation between fatigue 
crack growth rate and stress intensity factor. Due to the fact that a surface crack is analyzed,                                              
it is necessary to define the fatigue crack growth rate in the depth direction A and surface 
length direction B. Two coupled Paris fatigue laws for surface crack can be expressed as: 

   Am
AA KC

dN

da
 ,   Bm

BB KC
dN

db
  (9) 

where CA, CB, mA and mB are the material constants, KA, KB denote the stress intensity 
factor ranges at crack depth A and surface directions, respectively. 
Final number of loading cycles up to failure can be estimated by integration of both 
relations for fatigue crack growth rate. Fatigue life up to failure is calculated on a cycle-by-
cycle basis for adequate crack length (i.e. the incremental crack growth is computed and 
added to the previous crack length, until the crack reaches a critical length) using following 
relations: 

for the deepest point    
  
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and the surface point   
  


c

i
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m
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N

db
KC

dNN
1

0

 (11)    

where a0, b0 are the initial crack lengths for depth and surface directions. ac, bc present the 
critical lengths at failure for depth and surface directions and can be calculated using 
fracture toughness and applied load. 

4. Numerical results 
 
In this section, the formulated model for fatigue life estimation is examined on two 
structural components with semi-elliptical crack. The stress intensity factors were 
calculated using analytical and numerical approaches. Furthermore, authors have analyzed 
how adequately fatigue life up to failure of the pipe could be calculated when using 
relations for stress intensity factor used in the case of plate instead of equations for the pipe. 
The accuracy of the proposed model is validated with available experimental results. 
 
4.1. Crack growth analysis for the pipe with a semi-elliptical crack    
 
This example considers fatigue life estimation. The pipe made of carbon steel is with 
external semi-elliptical crack.. The material characteristics of carbon steel are: E=2.05*105 

MPa, Sy = 227 MPa, St = 406 MPa, mA = mB = 3.72, CA= 3.2*10-13, CB= 2.15*10-13. 
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Geometry parameters of the pipe (Fig.1) are listed in Table 1. For all cases diameter is 
R0=51 mm and the pipe is subjected to bending (Fig.2) with constant amplitude. 
Crack growth analysis must start by determining the stress intensity factor for different 
values of crack length. Since semi-elliptical crack growth is considered, it is necessary to 
analyze depth direction and surface direction of crack growth. Based on known 
characteristics of geometry and loading, calculated values of the stress intensity factor for 
both directions are presented in Fig.3. For determination of the stress intensity factor range 
were used equations (1)-(8).  

Figure 3. Stress intensity factor versus crack length  
(a - Depth direction, b - Surface direction). 

 
After the calculation of  stress intensity factor for both directions and by applying fatigue 
parameters it is possible to estimate the fatigue life up to failure. Actually, by using 
equations for crack growth rate which were first integrated, the relations between depth 
crack length a as well as surface crack length b and the number of loading cycles up to 
failure (Eqs. (10),(11)) were formulated. Calculated results are shown in Fig.4 for both 
directions and two different levels of loading. 

Figure 4. Crack length versus number of loading cycles for semi-elliptical crack 
(a - Depth direction, b - Surface direction). 
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Moreover, estimated final number of loading cycles up to failure are compared with 
avaiable experimental data [11] in Table 1. The comparison shows that model formulated in 
this paper gives conservative solution than experimental results, so it is possible to use the 
presented model for fatigue life analysis of the pipe with external semi-elliptical crack  
 

Table 1 Comparison of calculated number of loading cycles up to failure with experimental data  
for the pipe (R = 0.1). 

     Nfinal [cycles] 
No. Smax [MPa]  a0*10-3 [m] b0*10-3 [m] t *10-3 [m] Experiment [11] Calculated 

1 325.9 2 4 8.5 52900 49046 
2 325.9 3 6 8.5 21187 20000 
3 239.6 4.5 9 12.7 88900 50000 
 
4.2. Stress analysis for an aircraft nose landing gear with a semi-elliptical crack    
 
In this example, stress intensity factor calculation of the aircraft nose landing gear with 
external semi-elliptical crack was carried out. For stress analysis analytical and numerical 
approaches are used. The main purpose/aspect, in this example, is to compare two different 
approaches for the calculation of stress intensity factor.  
The aircraft nose landing gear made of steel is subjected to tensile loading with constant 
amplitude (Smax = 100 MPa and Smax = 273 MPa). Material characteristics are as follows: 
E= 2.10*105 MPa,  = 0.33, KIC = 60 MPam1/2 and geometry characteristics: R0 = 32.75 
mm, t = 3.5 mm, a0 = 1 mm with two different surface crack lengths: b0 = 1 mm and b0 = 2.5 
mm (i.e. a/c = 1 and a/c = 0.4). 
The present authors have computed the stress intensity factor by performing a finite 
element analysis as well as by using analytical approach (Eqs. (1) –(8)). The numerical 
calculation of the stress intensity factor is tackled by employing Q-P finite elements. For 
this purpose singular six-node finite elements [12] are applied. Based on the known 
geometry characteristics (Fig.1) and external loading, it is possible to model finite element 
meshes, step-by-step, for different crack increments by using super-elements around crack 
tip [13]. As a result of the finite element analysis, the stress intensity factors for both 
directions are defined for adequate crack growth increments up to the failure. A 
representation of the finite element analysis for the aircraft nose landing gear with semi-
elliptical crack, made of steel is shown in Fig.5 and Fig.6. 
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Figure 5. The part of finite element mesh of the aircraft nose landing gear with semi-elliptical crack. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Stress distribution of the aircraft nose landing gear with semi-elliptical crack subjected to tensile load 

 
Calculated results for stress intensity factor for both directions (surface and depth) are listed 
in Table 2 for different values of crack length as well as different levels of external loading 
by using proposed analytical method (Eqs. (1)-(8)) and a finite element method.  
 

Table 2 Comparison of the computed stress intensity factors using analytical and numerical method  
(Positions: A -  =900, B -  =00) 

Smax 

[MPa] 
a*10-3 

[m] 
b*10-3 

[m] 
a/b FEM

IAK  

[MPam0.5] 

.Anal
IAK  

[MPam0.5] 

FEM
IBK  

[MPam0.5] 

.Anal
IBK  

[MPam0.5] 

100 2.75 7 0.4 12.73 12.16 10.91 15.99 

100 2.75 2.75 1 6.73 6.58 9.03 8.67 

273 2.75 2.75 1 18.85 17.74 20.43 23.65 
 
From Table 3, it can be deduced that both approaches give almost the same evaluations for 
the stress intensity factors, so both numerical and analytical methods can be apply for stress 
analysis of  the pipe with external semi-elliptical crack. 

4. Conclusion 
 
The computational model for fatigue life estimation up to failure is developed. The 
formulated model considers a pipe with external semi-elliptical crack. Analytical and 
numerical methods are applied for stress analysis i.e. the stress intensity factor calculations. 
Actually, due to the fact that as analytical relations for the stress intensity factors, 
expressions commonly used for finite plate are used, a comparison was performed of 
obtained calculations with results determined by applying finite element analysis for the 
pipe. Very good agreement was observed between the results for stress intensity factors by 
using two different approaches. Furthermore, fatigue life up to failure is estimated by 
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applying two-point plus semi-ellipse method. Comparison between the number of loading 
cycles up to failure point out the fact that estimations are in a good agreement with 
experimental results. Thus, formulated fatigue growth model is applicable in engineering 
practice for fatigue life estimation of the pipe with external semi-elliptical crack. 
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Abstract. Welded joint represents inhomogeneity by microstructure and mechanical 
properties, often by geometrical form, and by the stress field as well, which are affected by 
various factors as well as residual stresses after welding. Cracks of all kinds, problems of 
non-welded areas, presence of inclusions and similar, are problems of great significance for 
welded structures and at the same time problems considered in fracture mechanics. Full 
characterization of welded joints from exploitation properties angle, implies overview of 
their behaviour in presence of defects as well, or in other words, evaluation of their 
resistance towards crack initiation and propagation as the most dangers type of defect. 
Fracture mechanics deals with research of fracture phenomenon, crack propagation 
conditions and strength of material in final phase of deformation process. It represents 
scientific discipline in which connection of theoretical consideration with experimental 
results and occurrence of fracture and breakdowns in structure exploitation is inevitable. 
Problem of determination of fracture toughness KIc at a crack tip localized in a welded joint 
is placed in principle, because fracture mechanics assumes homogenous material, not only 
around crack tip but on a distance from it, in order to maintain valid theoretical assumptions 
and importance of a fracture toughness as a property measured by some of fracture 
mechanics methods.  

Keywords: welded joints safety, defects, crack, fracture mechanics parameters, fracture 
toughness 

 
 
 

1. Introduction 
 
Fracture mechanics created new possibilities for structure safety insurance by theoretical 
and experimental analysis of the behaviour of a solid with a crack. Development of the 
standard for fracture toughness determination at plane strain, KIc, enabled application of 
linear-elastic fracture mechanics for real structures, made from high strength material. 
Validity condition for this testing is that only small plastic deformation zone is developed 
around a crack tip prior to crack development and fracture. According to Griffith energy 
criteria, crack in a certain solid propagates unstably if the crack propagation force (energy 
release rate) is higher than the material resistance to the crack propagation. 
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In linear-elastic fracture mechanics, the crack propagation force is identified by the stress 
intensity factor as: 

 aYK π , (1) 

where Y is dimensionless geometry factor,  is remote stress and a is crack length. 
 
Strength of materials to unstable crack propagation, within linear-elastic fracture 
mechanics, is presented by the critical value of stress intensity at plane strain state, KIc, or 
material property called fracture toughness. Fracture toughness determination procedure 
with homogenous materials at the plane strain state is precisely and in details established in 
the ASTM E399 [2] standard. 
 
When values of fracture toughness and stress intensity factor are known, condition for the 
unstable crack propagation can be defined as: 

 K  KIc (2) 

Based on it, critical crack length ac is determined, if fracture toughness, remote stress  and 
geometry factor Y are known; or required fracture toughness (material selection) is 
determined if crack length a, remote stress  and geometry factor Y are known. The 
unstable crack propagation condition, Eq. 2, can be used as a criterion for allowed loading 
determination (represented by stress ), if crack length a, fracture toughness and geometry 
factor Y are known. 
 
Direct determination of the fracture toughness, KIc, and its application is limited to the high 
strength materials only; because, with the most of structural materials, large zone of plastic 
deformation is developed around crack tip. Due to that, two additional parameters were 
introduced in the plastic behaviour analysis of material with crack, which is subject of 
elastic-plastic fracture mechanics: 

 crack tip opening displacement CTOD (), and 

 contour J integral, independent on the integration path. 
 
In the linear-elastic area, when the plane strain conditions are satisfied, these two 
parameters represent critical values (Ic and JIc) and they are directly connected with the KIc 
value. Convenience of CTOD and J parameters application is in possibility of their analysis 
even after development of significant plastic deformation, on one side, as well as their 
suitability for experimental determination according to the standards on the other side. 
 

2. Testing of Welded Joint Fracture Mechanics 
 
Generally accepted opinion that presence of cracks and other defects is possible, and even 
inevitable, is of particular importance for welded joints. Thence originates great interest to 
apply fracture mechanics parameters on welded joints and structures. However, two 
significant problems exist in the fracture mechanics parameters application for the welded 
joints behaviour analysis [3]: 
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 limited possibility for defects detection in terms of their size and position, 

 heterogeneity of microstructure, shown in Fig. 1 [4] and mechanical 
properties of welded joints. 

 
Figure 1. Macroscopic appearance of welded joint: 1-WM, 2-HAZ, 3-BM 

 
Thus, welded joint safety estimation is not reliable enough, since where is not enough 
information on defects, and it is not certain how crack will develop through different parts 
of welded joint. Therefore, one of significant problems during testing of samples, with a 
crack, from welded joint is location of the crack tip [4, 5]. 
 
Considering different mechanical properties, it is clear that crack propagation conditions 
will differ, with a crack tip in different areas of welded joint. These difficulties are not 
obstacle to experimental determination of fracture toughness in critical zones of welded 
joint or the welded joint as whole, but difficulties appears during interpretation of measured 
values [5]. 
 
To get a complete image of the fracture mechanics testing application on welded joints it is 
necessary to describe specimens and indicate possible defects and deviations. Primarily, it 
is predicted to test fracture mechanics specimens by tension or bending. Among numerous 
shapes used in different researches, specimens for three point bending, shown Fig. 2, and 
compact specimens for tension, shown Fig. 3 [2, 6], are widely accepted. Specimens for 
three point bending (bending by force) proved to be appropriate in practice, and they are 
used in testing of all three listed fracture mechanics parameters (KIc, , J). Compact tension 
specimen enables significant material savings compared to different shapes of specimens, 
as well as relatively lower testing force. 
 
Testing of specimens with a crack shows local behaviour of material around a crack tip of 
homogenous enough specimen material, so results of local behaviour can be treated 
globally, and they can be directly transferred to appropriate structure. Bearing in mind 
heterogeneous composition, shown in Fig. 1, such testing procedure is not reliable enough, 
since crack tip during fracture development can pass through the areas with different 
composition and mechanical properties of welded joint. That is why analysis of a welded 
joint is necessary from fracture mechanics application aspect. 
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Fig. 4, which shows low-alloyed, thermo-mechanically processed, high strength steel in 
multi-pass weld, illustrates complexity in terms of microstructure and geometry during 
determination of fracture toughness and other mechanical properties in the heat affected 
zone (HAZ). As a rule, places with lower fracture toughness (marked A and E in Fig. 4) 
appears in the narrow HAZ belt along the merge line due to repeated thermal cycles and 
plastic deformation [7]. 

 
Figure 2. Specimen for three point bending 

 
When it comes to the recommendation to use the lowest measured value during direct 
fracture toughness determination in the critical zone of joint, Fig. 4 illustrates numerous 
difficulties connected with such determination. When, like in case of steel, HAZ is critical 
area in which cracks typically occur, its size of 2-3 mm in the base metal, along the 
merging line, indicates experimental difficulties of setting starting fatigue crack tip on the 
critical place. Practical research experiences show that, even with the most caring handling, 
tens of samples must be tested in order to successfully locate crack tip in the narrow critical 
area and to reliably determine real minimal values of fracture toughness in HAZ, which in 
other words limits utilization degree to 10-20 % of tested samples [8]. 
 
Next difficulty in fracture toughness determination is the fatigue crack propagation trace, 
which has a tip located in HAZ (area A in Fig. 4), because it will penetrate HAZ areas with 
different microstructures and mechanical properties. Different properties in terms of crack 
propagation plane result in asymmetric forming of plastic zone in front of crack tip. Bearing 
in mind that real values of certain mechanical properties, i.e. yield strength, can not be 
directly determined for narrow brittle area A and E in HAZ, it is obvious that conditions for 
determination of fracture mechanics parameters values according to the procedures valid 
for homogenous materials are violated. 
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Because of the described constraints, different methods of fracture mechanics are not 
equally applicable for determination of the lowest value of fracture toughness in welded 
joint. If it is considered that the problem of fatigue crack tip placing on the critical position 
in HAZ is mutual for all methods, then criterion for applicability evaluation of certain 
methods could be its ability to measure fracture toughness directly in front of a crack tip, 
independent on material influence on larger distances from so called process zone at the 
crack tip. In this regard KIc, as the linear-elastic indicator of fracture toughness, is in 
advantage, since the limited plastic zone conditions for its determination are more severe 
than with the elastic-plastic indicators. In real situations, during welds testing, these severe 
conditions can rarely be satisfied, because it is usually steel with relatively high fracture 
toughness. Plastic zone size control by increment of a sample size is hardly attainable, first 
because the sample thickness would be multiple higher than the thickness of structure 
elements for softer steels, and due to additional complication of a crack tip positioning in 
the critical zone for samples cut out of welds with increased dimensions. 

 
Figure 3. Compact tension specimen 

 
As it was outlined above, heterogeneity of composition and mechanical properties of 
welded joints complicate the problem, primarily in terms of a fatigue crack tip position and 
properties of the areas through which fracture develops. But, if welded joint is treated as 
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structural set, then it is of interest to determine data for the weakest place when it comes to 
local testing, such as fracture mechanics parameters determination. Also it is clear that 
during tensile properties determination, especially tensile strength, information for welded 
joint as whole must be accepted as more authoritative for a welded structure than a single 
result for weld metal or for base metal. 

 
Figure 4. HAZ cross-section of high strength low alloyed steel weld 

 
Large number of different weldability tests indicates that special attention was always given 
to crack problems in welded joints. Various defects can be discovered by nondestructive 
testing, but in many cases the decision is made to leave them. It means that welded joint can 
have defects and cracks that are not discovered and those that were discovered but were not 
removed. It can be easily concluded that in such case the evaluation of local behaviour of 
welded joint area near to the defect is at least as important as the evaluation of global joint 
behaviour. Although testing of V-notched specimens on the Scharpy pendulum provides 
precious data on local behaviour of a crack tip area. That data can not completely explain 
conditions of crack initiation and propagation. 
 
Great interest for application of welded joints fracture mechanics testing has encountered 
the limitations in very beginning in terms of test cost and specimens number to be tested. 
Primarily, according to the already stated analysis at least 10 specimens must be tested in 
order to determine some of the welded joint fracture mechanics parameters. Such expensive 
testing will in many cases be economically justify if they contributes to structure safety or 
life increment, bearing in mind that more than half of the total steel production is embedded 
in welded structures [9]. It should be considered that fracture mechanics testing implies 
knowledge of mechanical properties. Reliable data on yield strength value, which is 
according to the standards for fracture mechanics parameters testing one of the basic 
comparative parameter of mechanical properties, is often missing for welded joints. 
 
Despite all difficulties and uncertainty, application of fracture mechanics for welded joint 
testing is increasing. Reason is, primarily, in better and more complete understanding of 
behaviour of welded joint with a crack based on analysis of data obtained from those 
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testing. Standard BS 7448 [6, 10] predicts application of all three parameters (KIc, CTOD, J 
integral) for characterization of welded joint resistance to crack initiation and propagation, 
and prescribe cases in which every of them is competent. 
 
In terms of position of notch and fatigue crack, standard goes further and defines different 
variants for X and K butt weld, as well as single pass weld. Requirements for crack position 
are: 

 notch should be placed in such way that the fatigue crack plane is parallel 
to the longitudinal axis of the welded joint, 

 crack tip should be in the tested area with greater length, to avoid local 
damages in small volume of material, 

 notch is placed in the weld metal, on the merging line or in the heat 
affected zone. 

 
For determination of convenience for additional material selection, weld metal (WM) is 
tested. Scheme for extraction of specimens with a notch and a fatigue crack in weld metal, 
is shown in Fig. 5. 

 
Figure 5. Specimen extraction method and crack position during weld metal testing 

 
Specimens for fracture mechanics parameters determination are fabricated from associated 
tubes, the same way as real product. For plates with smaller thickness of 50 mm specimens 
in full thickness are used. Resistance to crack development in weld metal and heat affected 
zone is tested on specimens with a notch and a fatigue crack, which is schematically 
illustrated in Table 1 and Table 2 [9]. 
 
For the evaluation of collective influence of all areas in welded joint (WM, merging line 
and HAZ) and welding technological conditions, notch is placed to include narrow belt of 
all three areas, where tip slope is realized on the depth of 1,5-2,5 mm. 
 
The heterogeneity of mechanical properties, expressed by KIc value, can be overviewed 
more clearly on the example of butt welded joint (2/3 X-weld) of high strength low alloyed 
steel Nionikral-70, welded with Tenacito-75 basic low-hydrogen electrode in diameters of 
3,25 and 4 mm, supplied by Acroni Jesenice [10]. As requirements for plane strain state 
condition fulfilment: 
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are not satisfied, instead of linear-elastic fracture mechanics defined by the ASTM E399 
standard, elastic-plastic fracture mechanics according to the ASTM E 813 [11] were used. It 
allows determining the critical value of the stress intensity factor, KIc, by the critical J 
integral, JIc. 
 
Table 1. Notch placement in fracture mechanics specimens for welded joint testing 

Notch position scheme Direction Specimen geometry Notch place 

NP 
B x B 

or B x 2B 
WM-along central line 

NQ B x B WM-from root along central line 

NP 
B x B 

or B x 2B 
HAZ-notch in the merging line 

on half of the thickness 

NP 
B x B 

or B x 2B 
HAZ- notch in the merging line 

on quarter of the thickness 

PQ B x B Transversally in WM 

PN B x B 
Transversally in WM along 

central line 

 
The testing procedure consists of defining of R curve, or J-a curve, J integral dependency 
and crack increment a. Experiments were performed by single specimen testing method 
with successive partial unloading, or by compliance method, according to the ASTM E1152 
standard [12]. The obtained F-() and J- a diagrams for base metal (BM), weld metal and 
heat affected zone are shown in Fig.  [10]. 
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Diagram flow for these specimens match to large extent, except in the area of significant 
plastic deformation (part of the diagram from maximal force to the specimen fracture). 
However, clear differences are obtained when JIc value is determined by the regression line 
procedure. 
 
From the critical JIc integral value, the critical stress intensity factor value or the fracture 
toughness at plane strain, KIc, can be calculated as: 

 2
Ic

1 v

EJ
K Ic




 . (4) 

JIc values determined from the diagrams and calculated values of the fracture toughness at 
plane strain, KIc, are given in Table 3 [10]. 
 
Table 2.  Examples of notch position in specific parts of welded joint 

Notch position scheme Direction Specimen geometry Notch place 

NQ B x B 
Perpendicular to WM along the 

central line 

NQ B x B In the first weld of WM root 

NQ B x B 
Coarse grain composition of 

HAZ along WM 

NP 
B x B 

or B x 2B 
Through the largest volume of 

WM along the joint 

NP 
B x B 

or B x 2B 
Perpendicular to the largest 

volume of WM 

NP 
B x B or B x 2B for 
specimens thicker 

than 50 mm 

At least 15% of crack face in 
coarse grain HAZ composition 
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NP 
B x B 

or B x 2B 
HAZ-5 mm from merging line 

 

 

F- base metal J-a base metal 

 

F- weld metal J-a weld metal 
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F- heat affected zone J-a heat affected zone 

Figure 6. Diagrams of J integral determination by successive unload of a single specimen 

 
The mechanical properties heterogeneity of welded joint or its components can clearly be 
seen from the obtained values of the fracture toughness at plane strain, KIc, determined 
indirectly by the critical JIc integral. Specimens with a notch in HAZ have the highest KIc 
value; however, in this particular case the differences are relatively small. These differences 
do not have to have more significant influence on structures submitted to static load in 
exploitation [10]. However, in case of structural elements submitted to constant variable 
load, changes of KIc are very significant because critical length of crack ac directly depends 
on KIc value. 
 
Table 3. Values of fracture mechanics parameters 

Specimen 
mark 

Critical J-integral 
JIc, kJ/m2 

Critical stress intensity factor 
KIc, MPa m1/2 

BM-1 90,4 142,7 
WM-1 64,3 119,2 
HAZ-1 80,4 131,9 

 

3. Conclusion 
 
It is noticeable that structural and mechanical heterogeneity of the welded joint have 
significant influence on its resistance to crack development, both in the elastic and the 
plastic area. Therefore, during prescribing conditions for fracture mechanics testing, it is 
necessary to define not only the testing procedure and a fatigue crack placement, but the 
way of interpreting and the meaning of results as well. 
 
It should be noted here that from structural aspect material properties can be estimated 
much better by individual values of KIc and Rp0,2 and their ratio (which is competent value 
in the standards ASTM E399 and BS 5447), than just by one of them. Using fracture 
mechanics basic expression: 

 cIcK a , (5) 
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and setting values of conventional yield stress Rp0,2 = , with presumption that the shape 
factor is equal to one, approximate values of the critical crack length ac can be calculated. 
 
It is obvious that permissible stress, that is lower than conventional yield stress, will give 
higher values of the critical crack length. That means that tested welded joint, or its 
components, in exploitation can have crack with length lower than specified without the 
danger of brittle fracture appearance. Due to that, and in order to ensure crack discovering 
before it reaches critical length, appropriate testing procedures without destruction should 
be applied. It is important to note that the calculated value of critical crack length ac refers 
to the conditions of plane strain and structure with finite thickness, and that it must be 
corrected for every particular case in terms of the real thickness of structure material [10]. 
 
Fracture mechanics approached the problem of welded joints safety from the position of 
crack initiation control. In this case methodical and practical difficulties already appeared at 
initiation properties determination, due to the strict localization of dangerous place with 
critically low toughness. Once these difficulties are solved, in near or distant future, and 
reliable methods for rapid detection of that weakest place are strongly developed, 
conditions will be acquired to answer the key question, how much the existence of locally 
weak place is important for the safety of whole structure. Precise answer on the question 
formulated in such way, that earlier global approaches to brittle fraction was not up to, is 
rightfully expected from fracture mechanics. However, open problem will remain if the 
crack initiation approach will be sufficient for this purpose, or it will be necessary to go 
back again partly or completely to the position of crack restrain based on fracture 
mechanics. 
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Abstract. The low mass density and the high tensile strength, usually expressed through the 
specific modulus of elasticity and the specific strength, have made composite materials 
lighter and stronger compared with most traditional materials (such as steel, concrete, wood, 
etc.) and have increased their application not only for secondary, but during the last two 
decades also for primarily structural members in aerospace and automotive industry, ship 
building industry and bridge design. Although weight saving has eliminated constrain of 
slenderness and thickness and has made possible use of very thin plate elements, they have 
become susceptible to large deflections. In such cases, the geometry of structures is 
continually changing during the deformation and geometrically nonlinear analysis should be 
adopted. In this paper the geometrically nonlinear laminated plate finite element model is 
obtained using the principle of virtual displacement. With the layerwise displacement field 
of Reddy [1], nonlinear Green-Lagrange small strain large displacements relations (in the 
von Karman sense) and linear elastic orthotropic material properties for each lamina, the 3D 
elasticity equations are reduced to 2D problem and the nonlinear equilibrium integral form 
is obtained. The obtained displacement dependent secant stiffness matrix is utilized in 
Direct interation procedure for the numerical solution of nonlinear finite element 
equilibrium equations. The originally coded MATLAB computer program for the finite 
element solution is used to verify the accuracy of the numerical model, by calculating 
nonlinear response of plates with different mechanical properties, which are isotropic, 
orthotropic and anisotropic (cross ply and angle ply), different plate thickness, different 
boundary conditions and different load direction (unloading/loading). The obtained results 
are compared with available results from the literature and the linear solutions from the 
previous paper [2]. 

. 

 
 
 

1. Introduction  
 
 The low mass density ( ) and the high tensile strength ( u ), usually expressed 

through the specific modulus of elasticity ( /E ) and the specific strength (  /u ) have 

made composite materials lighter and stronger compared with most traditional materials 
(such as steel, concrete, wood, etc.) and have increased their application not only for 
secondary, but during the last two decades also for primarily structural members in 
aerospace and automotive industry, ship building industry and bridge design. The advanced 
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mechanical properties of composite materials, which are resulted in large weight savings, 
have given designers more flexibility in finding efficient solution for specific problem, but 
have also required formulation of mathematical model able to present their complex 
anisotropic nature. Although weight saving has eliminated constrain of slenderness and 
thickness and has made possible use of very thin plate elements, they have become 
susceptible to large deflections [4,5]. In such cases, the geometry of structures is 
continually changing during the deformation and geometrically nonlinear analysis should 
be adopted. The geometrically nonlinear analysis seems also to be necessary for obtaining 
the structural response of unsymmetrical laminated composite materials [6]. Namely, the 
nonlinear response of these laminates is present even for small displacements, due to 
complex coupling between in-plane and out-of plane deformation.  
 A considerable amount of research work has been carried out so far on the 
nonlinear analysis of laminated plates. Among the published works, the von Karman plate 
theory of plates undergoing large deflections has attracted outstanding attention and a 
number of papers have been published. The first authors investigating the nonlinear 
response using the von Karman nonlinear theory [7, 8] were: Leissa, Bennett, Bert, Chandra 
and Raju, Zaghloul and Kennedy, Chia and Prabhakara, Noor and Hartley, and in the last 
decades Han, Tabiei and Park, Singh, Lal and Kumar, Reddy and Chao, Zhang Kim and 
others. 
 Mechanical response of laminated composite material is generally 3D problem of 
nonlinear mechanics. However, due to its mathematical complexity, analytical solutions 
using 3D theory of elasticity are usually difficult and some times even impossible to 
achieve, while numerical solutions are computationally inefficient and constrained to very 
specific domains. Thus, whenever possible, refined simplified mathematical models, with 
acceptable accuracy in a field of applications, should be used. It is shown that the 
Equivalent Single Layer theories (ESL) may give acceptable results when analyzing global 
response, such as gross deflections and gross stresses, critical buckling loads and 
fundamental frequencies of thin to moderate thick laminated composite plates [9]. 
However, a continuous displacement function in ESL is not able to accurately present the 
discontinuous zigzag variation of displacements in highly anisotropic plates and give 
adequate stress distribution at local or ply level [2]. A compromise between 3D theory of 
elasticity and ESL theories is then achieved with the use of Layer Wise theories (LW). In 
LW theories the in-plane displacement field, assumed for each layer, is interpolated through 
the thickness by appropriate layerwise Lagrange interpolation function or Heaviside step 
function [3], thus replacing 3D laminated element with N+1 2D plate elements (N is 
number of layers), which fulfills the continuity of displacement functions at the interfaces 
between adjacent layers.  
 From the continuum mechanics it is known that two different level of geometrical 
nonlinearity may be modeled, which are: geometrically nonlinear models with small strain 
and large displacements (von Karman theory) and geometrically nonlinear models with 
large strains. In the first case, the geometry of the structure before deformation remains 
unchanged after the deformation. However, the structure is subjected to large displacements 
and the equilibrium is achieved on the configuration displaced from the undeformed one. In 
the second case the geometry of the structure is changing during the deformation and the 
equilibrium is achieved on the deformed configuration. In both cases equilibrium equations 
are nonlinear. 
 In order to formulate nonlinear finite element model of laminated structures, 
which will be able to represent two above mentioned levels of geometrical nonlinearity, 
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two distinct approaches have been reported in the literature [3]. The first approach is based 
on laminate theory, in which 3D elasticity equations are reduced to 2D equations through 
certain kinematical assumptions and homogenization through the thickness. In this 
approach only first type of nonlinearity or small strain, large displacement assumption may 
be included. The finite elements based on such an assumptions are named the laminated 
elements. The second approach is based on 3D continuum formulation (total and updated 
Lagrange formulation) and both types on nonlinearity may be included. Finite elements 
based on this approach are called the continuum elements. 

The aim of the author’s research on composite materials so far was to implement 
Layerwise theory of Reddy or Generalized Layerwise Plate Theory-GLPT [1] on different 
levels of analysis of laminated composite plates. The previous work has been concerned 
with the linear analysis [2], and the linear laminated plate element of GLPT has been 
formulated, while in the present paper the GLPT nonlinear laminated plate element with 
von Karman geometrical nonlinearity is presented.  

In this paper the mathematical and numerical model for geometrically nonlinear, 
small strain, large displacements problem of laminated composite plates is presented. The 
3D elasticity equations are reduced to 2D problem using kinematical assumptions based on 
layerwise displacement field of Reddy (GLPT). With the assumed displacement field, 
nonlinear Green-Lagrange small strain large displacements relations and linear orthotropic 
material properties for each lamina, the principle of virtual displacement (PVD) is used to 
derive the weak form of the problem. The weak form or nonlinear integral equilibrium 
equations are discretized using isoparametric finite element approximation. The obtained 
nonlinear incremental algebric equilibrium equations are solved using direct iteration 
procedure. The originally coded MATLAB computer program for the finite element 
solution is used to investigate the effects of geometrical nonlinearity on displacement and 
stress field of thin and thick, isotropic, orthotropic and anisotropic laminated composite 
plates with various boundary conditions and loading direction (loading/unloading). The 
accuracy of the numerical model is verified by being compared with available results from 
the literature and the linear solutions from the previous paper [2]. The appropriate 
conclusions are derived. 

 

2. Theoretical formulation 

2.1 Displacement field 
 
In the LW theory of Reddy [1] or Generalized Layerwise Plate Theory (GLPT), in-plane 
displacements components  v,u  are interpolated through the thickness using 1D linear 

Lagrangian interpolation function  zI , while transverse displacement component w  is 

assumed to be constant through the plate thickness. 

   

   
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2.2 Strain-displacement relations 
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 The Green Lagrange strain tensor associated with the displacement field Eq.(1) 
can be computed using von Karman strain-displacement relation to include geometric 
nonlinearities as follows: 
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2.3 Constitutive equations 
 
For Hook’s elastic material, the stress-strain relations for k-th orthotropic lamina have the 
following form: 
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Where: 

    Tk
yzxzxyyyxx

k σ and     Tk
yzxzxyyyxx

k ε  are 

stress and strain components respectively, and  k
ijQ  are transformed elastic coefficients, of 

k-th lamina in global coordinates.  
 
2.4 Equilibrium equations 
 
Equilibrium equations may be obtained from the Principle of Virtual Displacements (PVD), 
in which sum of external virtual work done on the body and internal virtual work stored in 
the body should be equal zero: 
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Where A, B, BI, DJI matrices are given in [12], while internal force vectors are: 
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3.  Finite Element Model 
 
 
 
 
 
 
 
 
 

Figure 1. Plate finite element with n layers and m nodes 
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 The GLPT finite element consists of middle surface plane and I=1, N+1 planes 
through the plate thickness Figure 1. The element requires only the 0C  continuity of major 
unknowns, thus in each node only displacement components are adopted, that are 
 w,v,u  in the middle surface element nodes and  II V,U  in the I-th plane element 

nodes. The generalized displacements over element e  can be expressed as: 
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where        TI
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j VU,wvu  dd are displacement vectors, in the 

middle plane and I-th plane, respectively, e
j  are interpolation functions, while 

  e
jΨ ,  ejΨ are interpolation function matrix for the   j-th node of the element e , given 

in [2]. 
Substituting element displacement field Eq.(6) in to weak form Eq.(4), the nonlinear 
laminated finite element  is obtained: 
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while:  
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With the known displacement field, the stress field over the element may be obtained as a 
part of a postprocessor, using strain displacement and constitutive relations, Eqs. (2), (3) as: 
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where    ек
Ubσ  and    ек

Obσ are in-plane normal stresses  xyyyxx ,,   at bottom and 

upper plane in k-th layer of plate element ‘e’, while    ek
constsσ  are average transverse shear 

stresses  yzxz ,   in k-the layer of plate element. 

 

4. Numerical results and discussion 
 
Based on the previously derived laminated finite element model for the geometrically 
nonlinear analysis of laminated composite plates, the original computer program is coded 
using MATLAB programming language. The nonlinear finite element secant stiffness 
matrix is evaluated using Gauss–Legendre quadrature rule, which are 3x3 Gauss integration 
schemes or 2D quadratic Lagrange rectangular element for in-plane interpolation and 1D 
linear Lagrange element for through the thickness interpolation.  The Direct iteration 
numerical method is used to solve nonlinear incremental equilibrium equations. The effects 
of plate thickness, lamination scheme, boundary conditions and load direction on nonlinear 
response of isotropic, orthotropic and anisotropic plates are analyzed. The accuracy of the 
present formulation is demonstrated through a number of examples and by comparison with 
results available from the literature.  
The following boundary conditions at the plate edges are analyzed [10]. 
Simply supported (SS): 

SS: 1N1,I0NNUwub:0,y
0NNVwva:0,x

I
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I
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I
xxxx

I
00 





   (12) 

Simply supported-hinged (HH): 

HH: 1N1,I0NUwvub:0,y
0NVwvua:0,x
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I
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Clamped (CC): 

CC: 1N1,I0VUwvub:0,y
0VUwvua:0,x
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
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      (14) 

When analyzing a quarter of a plate, boundary conditions in the plane of symmetry become: 
For cross ply laminates: 

SS1: 1N1,I0NNVv:2/by
0NNUu:2/ax

I
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I
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I
yyyy

I
0 





          (15) 

For angle ply laminates:  
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SS2: 1N1,I0NNVu:2/by
0NNUv:2/ax
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Example 4.1. A nonlinear bending of square, simply supported (SS1), isotropic plate, with 

in10ba   and in1h   made of material: 

3.0,psi108.7E 6   (17) 

subjected to uniform transverse pressure is analyzed. Using the load 

parameter  4
2

4
0 hE/aqP  , the incremental load vector is chosen to be: 

    P0.25,0.25,0.25,0.25,0.25,0.25,0.25,5.12,25.6,25.6P   (18) 

with convergence tolerance 01.0  and acceleration parameter 8,0 . The 

displacements and stresses are given in following nondimensional form: 

    E/1h/a,aq/hEww 2
xxxx

4
0

3
20   (19) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Nonlinear bending of square simply supported (SS1) isotropic plate with 
10h/a  ; central displacement versus load parameter 

 
A 3x3 quarter plate laminated GLPT model is compared with 4x4 quadratic FSDT model 
[3]. The results for linear and nonlinear deflections are presented on Figure 2. It is shown 
that proposed GLPT model closely agree with FSDT model. The Figure 2 also 
demonstrates the physical nature of geometrically nonlinear response. The study has proved 
that depending of applied load level, the plate goes from the state of pure bending, at small 
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displacement ( h30.0w  ) to the phase of bending-stretching coupling, at large 
displacements. Namely, when the lateral displacement reaches approximately one half of 
plate thickness ( h.5.0w   ), they take part in stretching, together with bending of the 
plate middle surface (nonlinear terms in Eq.(2)). This activates the tensile forces, thus 
enlarging the stiffness of the plates, and reducing displacements and stresses from the 
values predicted by linear theory. This may be the reason why this phenomena is also 
known as “plate stiffening” or “stress relaxation”. Moreover, the activation of tensile forces 
in laminated composite plates is of utmost importance, due to their high available specific 
tensile strength. 
 
Example 4.2. A nonlinear bending of square simply supported (SS1), orthotropic plate 
made of high modulus glass-epoxy fiber reinforced material: 

 
,2.0E/G,5.0E/G,5.0E/G,25E/E 22321321221  25.0231312 

 
                                                                                                                               (20) 
subjected to uniform transverse pressure is analyzed. Using the load 

parameter  4
2

4
0 hE/aqP  , the incremental load vector is chosen to be: 

    P140,130,120,110,100,90,80,70,60,50,40,30,20,10P 
            (21) 

with convergence tolerance 01.0  and acceleration parameter 3,0 . The 

displacements and stresses are given in following nondimensional form: 
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Figure 3. Nonlinear bending of square simply supported (SS1) orthotropic plate; central 
displacement versus load parameter 

A 2x2 quarter plate laminated GLPT model is compared with 8x8 CPT nonconforming and 
4x4 quadratic FSDT models [4]. The results for thick and thin plates (а/h=10 and a/h=100) 
of linear and nonlinear deflections are presented on Figure 3. It is shown that proposed 
GLPT model closely agree with CLPT and FSDT models. The more significant difference 
between linear and nonlinear solutions is observed for thick plates, while in thick plates 
larger lateral deflections have greater influence on nonlinear response, as it can be seen 
from the underlined nonlinear terms in Eq. (2). 
 
Example 4.3. A nonlinear bending of square cross ply 0/90 and angle ply 45/-45 plates, 
with 1ba   and 1.0h  , with three different boundary conditions (SS, HH and CC, 
Eqs. 12, 13, 14) , made of material: 

25.0,5.0E/G,6.0E/G,6.0E/G,40E/E 23131222321321221           (23) 

subjected to uniform transverse pressure  
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E
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
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

 are analyzed. The 

incremental load vector is:  

   20,20,20,20,40,20,20,20,20,100q   (24) 

with convergence tolerance 01.0  and acceleration parameter 5,0 . The 

displacements and stresses are given in following nondimensional form: 
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Figure 4. Nonlinear bending of square cross ply 0/90 plate with different boundary 
conditions and 10h/a  ; central displacement versus load parameter 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Nonlinear bending of square angle ply 45/-45 plate with different boundary 
conditions and 10h/a  ; central displacement versus load parameter 

 
A 2x2 quarter plate and 4x4 full plate laminated GLPT models are analyzed and compared 
with full 8x8 plate FSDT models (Thankam and Singh and Rao and Rath, A.K. 2003 [10]). 
The results for linear and nonlinear deflections are presented in Figures 4,5. It is shown that 
proposed GLPT model closely agree with FSDT model form literature, with the faster 
convergence. Also, the discrepancy between linear and nonlinear solutions are larger for 
flexible plates, which are the plates with simply supported boundary conditions, compared 
to hinged (HH) and  clamped (CC) boundary conditions. The study has verified that the 
change in load direction gives symmetrical displacement field.  
 
Example 4.4. A nonlinear bending of square simply supported (SS1) general quasi-
isotropic (0/45/-45/90)s, laminated plate with 1ba   and 1.0h  , made of material: 

25.0,5.0E/G,6.0E/G,6.0E/G,40E/E 23131222321321221 
     (26) 

subjected to uniform transverse pressure is analyzed. Using the load parameter 

 4
2

4
0 hE/aqP  , the incremental load vector is chosen to be: 

    P50,50,50,50,50q   (27) 

with convergence tolerance 01.0  and acceleration parameter 8,0 .  
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Figure 6. Nonlinear bending of square simply supported (SS1) general quasi-isotropic     
(0/45/-45/90)s   laminated plate with 10h/a  ;  

central displacement versus load parameter 
 
A 2x2 quarter plate continuum GLPT model is compared with 8x8 full plate HSDT model 
[11]. The results for linear and nonlinear deflections are presented in Figure 6. It is shown 
that proposed GLPT model closely agree with HSDT model form literature, with the faster 
convergence. 
 

5. Conclusion 
 
In this paper a laminated layerwise finite element model for geometrically nonlinear small 
strain, large deflection analysis of laminated composite plates is derived using the PVD. 
The accuracy of the model is verified calculating nonlinear response of plates with different 
mechanical properties, which are isotropic, orthotropic and anisotropic (cross ply and angle 
ply), different plate thickness, different boundary conditions and different load direction 
(unloading/loading). In despite of its mathematical complexity, proposed model has shown 
better convergence characteristics than ESL models of CLPT, FDST and HSDT, still with 
less computational cost than 3D elasticity model. Moreover, present model has no shear 
locking problems, compared to ESL models, or aspect ratio problems, as the 3D finite 
element may have when analyzing thin plate behavior. The analysis has also shown that the 
discrepancy of nonlinear from linear response is greater for flexible plates, such as thick 
compared to thin plates, or plates with SS compared to hinged (HH) and clamped (CC) 
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boundary conditions. It is verified that the change of load direction (unloading/loading) 
gives symmetrical displacement field. 
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Abstract. In this paper torque shaft measurement using strain gages and non-contact transfer of the measurement 
signal is presented. The preparation, installation and calibration of measuring chain are also shown. This method is 
important because of possibility measuring torque during engine working in real condition. Based on measured 
torque, the power transferred from the rotating shaft is calculated, i.e. the consumer absorbed power. At the end, 
the proper choice of engine for given consumer or proper choice of consumer for given engine is proposed (in this 
paper the example of propeller choice for given engine is proposed).  
Keywords:strain gages, torque, shaft power, absorbed power 

1. Introduction 

Development of measurement techniques of the first D'Arsonval instrument to 

modern electronic measuring instruments with complex treatment based on digital 

techniques and using special sensors and circuits of high integration has lasted for more 

than a hundred years [1]. However, the remarkable development of electronics in the last 

twenty years has brought significant changes in the approach to measurement at all in the 

technique. 

The development of measuring methods, measuring methods and instruments as well 

as a science of measurement – metrology - were constantly perfected and used the new 

opportunities offered by the development of electrical engineering. The first electric 

instruments were electromechanical devices that measure the force between electric and 

magnetic load, or force between the conductors through which current flows and magnetic 

fields. Soon after the discovery of electronic tubes and measuring instruments are becoming 

more diverse, more sensitive and easier to apply, although structurally complex. Discovery 

of semiconductor elements that make the new size measurement technique, especially in 

electronics. Finally, the technique of integrated and highly integrated electronic circuits 

have become high automotive and complex processing of measurement results has become 

easy in practice due to the application of microprocessor in the measuring instrumentation. 
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2. Mechanical stress  

Solids are deformed under the influence of external forces, molecular forces that hold 

the molecules of material on specific distances tend to prevent and limit the deformation 

and material stress.  

Stress of the solid material can be varied depending on how the force acting on the 
body: normal  , when the force acting normal to the surface of the body (tension, 

compression, bending), and tangentially  , when the force in the respect the body section 

has a tangential direction (shear and torsional stress or twisting and buckling). By its nature, 

torsional stresses are shear stresses and the difference is only in the manner of their 

occurrence [2].  

The resistance of the material, or force per unit area is called the stress. As a measure 

of deformation due to forces or stresses introduced the notion of relative deformation, 

which is the ratio of the shrinkage and the original dimensions. Stress in the material is 

determined from the measured strains by using Hooke’s Law. In elastic body stress is 

proportional to the relative deformation.  

The shaft is twisted under the acting of forces which planes are perpendicular to the 

longitudinal axis of the shaft. At torsion, stresses are called the shear stresses. The shaft is 

twisted around the longitudinal axis, and the strain appears as a shift-slide, rotating about 

the longitudinal axis of individual cross sections to one another. Shaft as a carrier of 

rotating element  transmits the torque and therefore is exposed to twisting. Torsional stress 

is in proportion to moment. Torsional stress is determined indirectly by measuring strain 

along the direction of main stresses.  

3. Strain gages measurement 

 
The most common method of non-electrical values measuring is by using eletrical 

conductor. 
The measurement is indirect and consists of from converting the measured value 

(in mechanical engenering non-electrical values are the most common) in the electrical 
value  which is then compared with known electrical value. Measurement system includes 
the sensor - transmission system - measuring bridge, and contemporary measuring systems 
have A/D converter and a computer as part of the measuring system [3]. 

Sensors are an important part of the electrical measuring system and   in practice 
there are two groups of sensors - active and passive.  

The most important characteristics of passive sensors are:  
 powered by electrical energy,  
 change of measuring values causes change of electrical values  
 do not affect to the energy state of the object,  
 complex installations (amplifying bridges) and  
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 more applicable.  
 

 The most important characteristics of active sensors are:  
 produce electromotive force under measuring value influence  
 take power from the measuring object,  
 require precise measuring instruments and 
 less applicable.  

Type of passive transducer that has been used are strain gauges (metal wire), which is 

applied for linear elongation measurement (stress states, force, torque).  

Characteristics of strain gauges [4] are: very widely used for measuring the stress 

state as an independent, and as elements of force, torque, pressure sensors.  

For measuring the strain, strain gauges which are mounted in the direction of 

maximum strain are used. For twisted shaft strain gages are placed at an 45 angle to the 

shaft main axes and measure elongation  [5].  

Strain gage is a passive resistive sensor of mechanical deformation, whose operation 

is based on the fact that the electrical resistance of the conductor changes when it is 

exposed to the elastic deformation. The most common strain gauges are in the form of foil, 

where is the resistive material applied to the plastic carrier which is bonded on the 

measurement place.  

Torque is the ratio of power measured at the shaft and shaft revolution number:  

 
2

P
M

n


  
, 

where are:  

M  torque  N / m ;  

P  shaft power  W ;  

n   shaft revolution number [s-1] 

Shaft power is power that the engine deliver to the consumer or absorbed power of 

consumer.  

3.1. Strain gages    

Strain gages are the most common electrical resistance sensors which are applied or 

independently for elongation measurement, or like active elements of various sensors [6]. 

The principle of measuring is based on the effect that mechanical stress causes change in an 

electrical resistance of conductor. The most common types of strain gages are shown at 

Figure 1.  
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Strain gauges resistance is changed in  function of elongation according to:  

R l
K K

R l

 
   , 

where are:  

R

R


 relative change of resistance,  

l

l


   relative elongation of strain gages  

K K  factor of strain gauge. 

 

   
a) b) c) 

 
Figure 1. Strain gauges a) for  linear elongations measurement, b) for torque measurement c) for elongation 

measurement on surface were main stresses directions are unknown 

K factor is the sensitivity of strain gauges, which is the most important characteristic 

of its, and producer declares it for each strain gages. Usually its value for the strain gages 

with a metal-resistant element ranges from 1.8 to 2.5. 
Strain gages are made of metal resistance element (wire and cellophane) and 

semiconductor elements. Own resistance of strain gauges are 120 Ω, 350 Ω, 700 Ω or 1000 
Ω. It is desirable that the measuring bridge used strain gages as much as possible of their 
own resistance to obtain higher output signal [6,7]. 

 
Strain gauges in the Wheatstone bridge can have multiple roles as follows: 
 active strain gages – strain gages bonded to the measuring object whose 

deformation is measured, 
 passive strain gages – strain gages as added resistance and serve to complete a 

branch of the bridge and  
 compensation strain gages – strain gages that are designed for temperature 

compensation of the active strain gauges. 

Since the strain gages are considered like external resistances there are the following 

ways of connecting the strain gages in the Wheatstone bridge [6]: 
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 full bridge connection: all resistances are external and consist of active, passive or 

compensation strain gages, 

 half bridge connection:  two resistances are external (strain gauges), and two 

internal (inside the measuring-bridge amplifier) and 

 quarter bridge connection: one external resistance (active strain gauge) and 

three internal resistances. 

4. Testing  

4.1. Measuring instruments   

 
Measurement of consumers absorbed power is done with the acquisition measurement 

systems. In this paper acquisition measurement system of the German manufacturer HBM 
(Figure 2) is shown and it consists of:  

 measuring amplifier SPIDER8 (item 1); 
 PC notebook for data collection and visualization (item 2);  
 carrier of signal transmitter and battery unit (item 3); 
 a system for non-contact signal transmission BLM, which consist of a transmitter 

signal (item 5) and signal receiver (item 4); 
 battery unit (item 6);  
 photo-sensitive sensor of shaft revolution number (item 7);  
 strain gauges HBM producer Type: 6/350XY21, connected in a Wheanstone 

bridge circuit (item 8). 
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Figure 2. Acquisition measurement system for torque measuring  

Battery unit is used for power supply of strain gages, and non-contact measuring 

system type BLM, produced by TRC from Petrovaradin [8] is used for signal transmission. 

Non-contact measuring system type BLM  consists of transmitter and receiver signal. 

Voltage signal from the receiver transmit to the amplifier SPIDER-8 produced by German 

company HBM, which is connected to the PC notebook. Software module for measurement 

and data processing is CATMAN 3.1, produced by HBM, which operates in Windows XP 

environment.  

For shaft revolution number measurement photo-sensitive sensor is used, whose 

signal is transmitted to the measuring amplifier SPIDER-8. 

4.2. Measuring conditions  

The measurement is performed during operating conditions. Loading condition of 

consumers depends of the needs of measurement.  

4.3. Measurement process   

4.3.1. Preparatory works   

Preparatory works for measurement carrying out (Fig. 3) are follows: 
 strain gauges mounting,  
 transmitter signal and battery unit mounting,  
 checking of strain gauges correct mounting,  
 strain gauges electrical connecting in Wheastone bridge circuit and connecting 

with signal transmitter,   
 transmitter signal and battery unit electrical connecting,  
 receiver signal mounting, 
 shaft revolution number photo-sensitive sensor mounting,  
 calculate preparation for measurement and 
 calibration of the system.  
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Figure 3. Schematic of measurement configuration mounted on the shaft 

  

4.3.2. Strain gauges  mounting 

Strain gauges are mounted on the free part of the propeller shaft symmetrically 

arranged around the edges (Figure 4).  

Mounting includes the following:  
 preparation of two strain gauges type 6/350HY (X rossets),  
 measuring place surface preparation,  
 strain gauges fixing by special glue,  
 preparation of soldering terminal and strain gauges wires  
 cables connecting.  

All actions are performed according to the strain gages producer introduction : “An 

Introduction to Measurements using Strain Gages” . 

 
Figure 4. Gaging and connecting the transmitter signal: 

1 – propeller shaft, 2 – measuring tape, 3 – transmitter signal 
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After strain gages mounting their protection are done. Protection, if it is possible, is 

done immediately after strain gages fixing. 

The protection is done by applying a protective kit AK 22 and AVM75. Surface 

around the strain gages must be clean.  

4.3.3 Signal transmitter and battery unit  mounting  

Signal transmitter and battery unit carrier (Figure 5, item 3) is mounted on the shaft 

close to the strain gages.  

 
Figure 5. Strain gauges and carrier mounted on the shaft: 

1 – signal receiver, 2 – battery unit, 3 –signal transmitters and battery units carrier, 4 – signal transmitter; 5 – strain 
gage covered with a protective coating; 6 – photo sensitive sensor of shaft revolution number, 7- markers at the 

shaft 

 

4.3.4. Checking of mounted strain gauges   

It is necessary to perform two types of checks:  

a) Visual test  

The application is checked using magnifying glass to detect the following defects 

generated by strain gages fixing and soldering:  
 air bubbles (can be identified by a light-colored surfaces or channels) or particles 

under the strain gauges net,  
 lack of  built-in glue, at the strain gauges ends,  
 poorly soldered joints at the ends of cables and  
 remains of solder.  

b) Electrical test  

After installation is done check the strain gauges resistance with a digital multimeter:  
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 insulation resistance strain gauges should be greater than 10 GΩ at test voltage 
20V and  

 on the diagonal of the bridge resistance value should be 350 Ω ±0.35%, and the 
resistance of any branch of the bridge should be 262.5 Ω ± 0.35%.  

  
4.3.5. Electrical connection of strain gauges in Wheatstone bridge and 

          connecting to transmitter signal   

Connecting is carried out in accordance with the scheme in Figure 4.  

4.3.6. Electrical connection of the transmitter signal and battery unit  

Signal transmitter antenna is solid piece of copper wire which is mounted on the 

transmitter antenna connector (marked as ANT) and is coiled up 2 to 3 laps around the 

transmitter and battery unit carrier. After mounting signal transmitter is connected with 

battery unit. 

4.3.7. Signal receiver mounting    

Signal receiver is mounted at the hull structure. Receiving antenna is located 3 to 5 

cm from the signal transmitting antenna (Figure 5, item 1).  

4.3.8. Mounting the photo-sensitive sensor of shaft revolution number      

Photo-sensitive sensor is mounted at the hull structure (Fig. 5, Pos. 6) and connected 

to channels 1 or 2 of amplifier SPIDER-8. Sensor is mounted between  3 to 5 cm from the 

shaft and the shaft is wrapped with black sticky tape with required number of bright labels, 

„marker” attached on it (Fig. 5, Pos. 7).  

4.3.9. Computational preparation for measurement       

Computational preparation for measurement involves collecting data about engine and 

shaft. The information that is necessary to collect are:  

P  Nominal motor power  kW ,  

n  nominal shaft revolution number 1min   ,  

d  diameter shaft  mm ,   

E Young 's modulus of shaft elasticity 2N / mm    and 

G  shear modulus of material 2N / mm   .  
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The values for these parameters are entered into the form for calculating torque 

transducer in the XLS file.  

4.3.10. Calibration system  

Calibration of the system is done by shunt resistance. Shunt resistance is connected to 

the transmitter terminals VM - IN- or VM + IN + (Fig. 4, Pos. 3). The measured values are 

entered in the form of  the calibration system with a parallel resistor.  

4.4. Measurements performing  

Software module CATMAN 3.1 is used for measurement and data processing, 

according to the instructions „User's Manual for Windows 95/98/N”. Torque and shaft 

revolution number are directly measured.  

Measurement is performed at defined rpm  in the range from idling to 100% engine 

power. Time recording signals should be in the range of 5 to 10 seconds.  

Data is automatically stored on a PC notebook for data collection and visualization 

[10]. Shaft power, ie. absorbed power of consumers, is calculated based on measured values 

according to the formula:  

 

2

60

n
P M i

  
   [W],  

where are:  

M  torque  N / m ,  

n   shaft rotating speed  1min     

i  gear transmission ratio.  

For the purposes of torque and torsional vibration measurement and practice in the 

laboratory of the Technical Testing Center, according to the design by Mr. Jovo Dautović, 

BSc. Eng., is made the model. Model is shown in Figure 6. 
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Figure 6. Model for training and practice: 

1 – Electromotor; 2 - flexible coupling; 3 - shaft, 4 – brake 

Electromotor is loaded with brake. Brake consists of disk and brake mechanism with 

which it is possible to change load. Purpose of this model is training of strain gage fixing, 

other equipment mounting and measuring process.  

In Figure 7 is shown model with installed measurement equipment.  

The measurement was made by loading gradually increasing. During measurement 

shaft revolution number and torque was measured. Time recording signals should be in the 

range of 5 to 10 seconds.  
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Figure 7. Model with installed equipment for measurement:  
1 - model; 2 – shaft rotating speed sensor, 3 - strain gauge; 4 - signal transmitter and battery unit carrier; 5 – 

measuring amplifier SPIDER 8; 6 – signal receiver; 7 - notebook. 

Data is automatically stored on a PC notebook for data collection and visualization. 

[10].   

4.5. Analysis of measurement results  

The analysis includes a drawing diagram of shaft power (consumer absorbed power) 

as a function of shaft revolution number and  estimation about consumer or engine choice 

regularity. Shaft power diagram is compared with the diagram of engine power on the test 

bench.  

In this paper power measurement results on model and ship propeller shafts are 

shown. 

Comparing the diagram of shaft power and a diagram of engine power on the test 
bench it can be concluded:  

 engine condition according which it can be decided about engine overhaul 

beginning   

 compatibility engine and propeller (preferably after replacing engine or propeller) 

and  

 Overhaul performance (very important in a situation where there isn’t enough 

great test bench for large marine engines in our country).   
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Torque and power measurement is crucial because without delay in ship operation 

valuable information is received. This information and some other measurement can be 

used for reach conclusion about general condition of engine. 

The measurement results on the model are shown in Figure 8. It is shown a torque-

shaft revolution number diagram.   

 

 
Figure 8. Torque-shaft revolution number diagram  

Figure shows that shaft revolution number decreasing and shaft torque increasing with 

increasing of electro-motor load because of electro-motor has not possibility of revolution 

number regulation.  

Figure 9 shows the diagram obtained by measuring the power of the left main engine 

on warship RTOP-404 performed by the Naval Test Center.  
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Figure 9. Comparative diagram of the engine power measured on the test bench and power measured during sea 

trail at RTOP-404 

By comparing the curves it can be concluded that the diesel engine after 23 years of 

work and around 3,800 operating hours can not achieve more than 1650 min-1 and it’s 

power on that rpm is lower approximately 15% than designed power.  

Figure 10 shows the diagram obtained by measuring the power of the left and right 

shaft on ship ISTRAJNI performed by the Technical Test Center.  

 
Figure 10. Comparative diagram of the engine power measured on the test bench and power measured during sea 

trail at Iatrajni 

In an ideal condition propeller absorbs 100% of engine power at maximum RPM. In 
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practice it is acceptable that propeller absorbs 100% of engine power at shaft rotating speed 

lower than maximal, up to 95% of it. (Propeller Handbook – The Complete Reference for 

Choosing, Installing and Understanding Boat Propellers).  

If the propeller absorbs 100% of engine power at shaft rotating speed lower than 95% 

of the maximal, propellers are not appropriate for a ship, i.e. there are too heavy. The 

diagram shows the engine power measured on the test bench and power measured at the 

ship propeller shaft.  

Comparing measured absorbed power of the propeller and engine power measured on 

the test bench, it is evident that at the engine revolution number 1650 min-1 propeller 

absorbs 107.8% of the engine power, measured on the test bench.  

It can be concluded that on 1650 min-1 engine run overloaded. The propeller absorbed 

power is too high, ie. propellers are „too heavy” for the engine.  

5. Conclusion  

This paper shows that the non-contact method of measuring torque, ie. shaft power; 

allow successful measuring power absorbed by the consumer during the exploitation of the 

engine. Based on this fact it can be concluded about correct consumer choice for given 

engine.  
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Abstract. Thin films, coatings or multi-layer samples, made of different materials, are used 
for various purposes. When brittle coatings function in the presence of thermal gradients and 
high heat flux, they are susceptible to delamination. The most widely investigated examples 
are thermal barrier coatings used in turbines for power generation. In the layers made of 
different materials, during the temperature loading, as a result of the difference in the 
thermal expansion coefficients, appear thermal stresses. In this paper is presented the 
theoretical basis for determining the driving forces of interface fracture in a two-layer 
bimaterial specimen under conditions when the temperature of the outer surface layers are 
different. The analysis in this paper is limited to the fact that two-layer bimaterial sample 
exposed to a stationary temperature field. The driving force of the interfacial fracture in this 
case is the energy release rate G. The energy release rate is determined depending on the 
loads of temperature. It was noted that the energy release rate tends to increase with 
increasing temperature difference. This relationship can be used to predict the maximum 
temperature differences the two-layer sample can sustain without delamination. For future 
analysis remains the case when the two-sample bimaterial subjected to unsteady temperature 
field. 

Keywords: Interfacial crack, Thermal stresses, Two-layered sample, Delamination 

 
 
 

1. Introduction  
 
Thin films, coatings or multi-layer samples, made of different materials, are used for 
various purposes. The most common examples of application are the ceramic coatings on 
the metal substrate, metal layers on the polymer substrate, where the temperature at which 
these layers are applied is significantly higher than the working temperature; the thermo-
insulating coatings like Al2O3 on Ni-Cr-Al and Fe-Cr-Al allows, hard transparent coatings 
on optic polymers, metal fibers on the polymer substrate in electronic modules or the photo-
electric actuators. 
When brittle coatings function in the presence of thermal gradients and high heat flux, they 
are susceptible to delamination and spalling. The most widely investigated examples are 
thermal barrier coatings used in turbines for power generation. Articles that analyze the 
mechanisms capable of providing sufficient energy release rate to drive delamination have 
been presented in [1,2]. Thermal barrier coating  systems are susceptible to delamination 
failures in the presence of a large thermal gradient. Three possible causes of internal 
delamination are analyzed in [3]. Delamination of coatings initiated by small cracks 
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paralleling the free surface are investigated in [4] under conditions of high thermal flux 
associated with a through-thickness temperature gradient. 
In the layers made of different materials, during the environmental temperature change, as a 
result of the difference in the thermal expansion coefficients, appear thermal stresses. Those 
stresses are causing the appearance of an interfacial crack. When such a crack is formed, 
the energy release rate needed for the crack propagation depends on stresses’ intensities in 
both layers. If one assumes that the layers are made of the elastic isotropic materials, the 
stresses will depend upon the elastic and thermal characteristics of the layers’ materials, as 
well as on the temperature variations. The driving force of the interfacial fracture in this 
case is the energy release rate G. 
 

2. Problem formulation 
 
Let 2a be the lenght of the crack under plane strain conditions, which is located at a 
distance H1 from the upper surface and at a distance H2 from the bottom surface of infinity 
two-layer plate of thickness H=H1+H2, as shown in Figure 1.  
 

 
 

Figure 1. Two-layer sample with crack under thermal loading. 

 
The upper surface of the sample is exposed to a uniform temperature T1 and  lower surface 
to temperature T2. This means that the crack is opened. Heat flow across the surface crack 
at any point satisfies the equation: 

 )TT(hq ABcz  , (1) 

where )0,x(TTA
 , )0,x(TTB

  and hc is the conductivity across the interface. The 

conductivity depends on the heat conduction mechanisms across the crack and will depend 
on the crack opening. Here will be made the assumption that hc  is constant along the crack. 
Thuse, hc should be average quantity. With kz as thermal conductivity of the body in the z 
direction, the temperature gradient of each surface cracks must satisfy the equation 

zz qz/Tk  . Two-layer sample has homogeneous characteristics and be orthotropic in 

relation to the axis (x, y, z). The stress-strain equations for the given problem are: 
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, (2) 

where without loss of generality the temperature on the lower surface is taken as a reference 
such that 2TTT  . 

The problem shown in Figure 1 is discussed under constraint of plane strain, i.e. 0yy  . 

The stress σyy does not induce any change in the crack tip fields, so for the problem shown 
in Figure 1, Equations (2) are reduce to: 

 T
E

1
T)()

EE

1
( xxyxyxxx

y

2
xy

x
xx 


 . (3) 

The idea of analysis is to determine the boundaries for which the crack is long enough such 
that the temperature and stress distribution ahead of the crack tip depends only on z. By 
determining the dependence of energy release rate and stress intensity factor can be 
calculated to the application of the concept of linear elastic fracture mechanics to the 
interface. In areas of two-layer sample ahead of the crack tip the temperature distribution is 
linear in z within each layer. In the sample without a crack near to the right of the tip: 
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In the area with central crack away from the crack tip: 
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where TA and TB are the temperatures at the upper and lower surface of crack. There are: 
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where 21 H/H  and zcc k/HhB  .  The temperature jump across the crack is given by: 
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such that the heat flow impeded by the crack is qz/(1+Bc). The dimensionless Biot number, 
Bc, controls the heat flow through surface crack. When Bc=0 the crack is perfectly insulated 
so that TA=T1 and TB=T2. When Bc tends to infinity the crack does not interrupt the heat 
flow so it is )1/()TT(TT 21BA  , and  (5) is reducet to (4). 

Based on [5] and [8] the energy release rate and stress intensity factors for  the problem 
shown in Figure 1 can be written as: 
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where:
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The mode mixity measured the relative size of the Mode II to Mode I and is given by:  
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In order to eliminate the Biot's number, Bc as an unknown from the equation (8) uses the 
relationship that exists between the energy release rate, G, and the size of crack opening, δ. 
The relationship between the energy release rate and size of crack opening for a crack of 
length 2a lying along one of the main axis in an infinite orthotropic body is: 
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where 2/)1(n  . The factor cosψ reflects the fact that the only component of KI, the 

stress intensity factor for Mode I, at the crack tip, influence on the opening. If the sample is 
isotropic i.e. λ=ρ=1, and is based on equation (9): 
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where kg the conductivity of the gas. Eliminating Bc in (8) gives the relation between the 
energy release rate, G and the temperature loading, (T1-T2), such as: 
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3. Results and discussion 
 
The energy release rate curves as a function of crack distance from the upper surface of the 
sample, on the basis of equation (8), and for different values of Bc are shown in Figure 2. 
Diagrams were obtained with the help of programming package Mathematica®, and in case 
of an isotropic sample. 
 

 
 

Figure 2. Dependence of the energy release rate of crack distance from the upper surface 
 of the sample for different values of Bc. 

 
Figure 3 shows the results of the mode mixity that does not depend on the Biot's number for 
T1>T2.  

 

Figure 3. The dependence of the mode mixity to the distance of crack from the upper surface of the sample. 
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As shown in Figure 3 the crack tip is opened with a positive stress intensity factor for Mode 
I as long as the crack is above or in the middle of the sample. Crack tip is closed in terms of 
pure Mode II when the crack is below the mid-thickness of the sample, i.e. when H1/H>0.5.  
In Figure 2 shows that the highest value of the energy release rate for a crack located at 
approximately quarter thickness of the sample, ie. for H1/H=0.211, which means that it is 
likely that at this distance is crack, which causes delamination of the sample.  
Figure 4 shows the dependence of the energy release rate, G, of  the temperature loading 
T1-T2 for H1/H=0.211, and different values of Bc.  
 

 

Figure 4. Dependence of  the energy release rate of the temperature loading for different values of Bc. 

 
As shown in Figure 4, an important role in heat flow through the crack has Biot's number, 
Bc. At themperatures below 1500K the dominant mechanism of heat transfer through the 
crack is due to gaseous transport. Approximate formula for Bc when the size of the crack 
opening, δ, is larger than 0.1μm, is  gzc k/HkB , where kg gas conductivity. From 

Figure 4, it follows that for large values of the Biot's the energy release rate, G has a 
relatively lower value, which means that the crack opening is a small. On the other hand 
when Bc is small the energy release rate will be large and crack opening will be large, i.e. 
crack is completely and totally isolated, and as such is suitable for delamination of the 
sample if the temperature gradient is sufficiently large. 
The relationship between the energy release rate and temperature loading is shown in 
Figure 5, for three different values of kg for the isotropic sample. The crack length 2a is 
equal to the thickness of the sample H. A surprising feature of these curves is that when one 
reaches the threshold of T1-T2, below which the energy release rate becomes zero, and for a 
very small increase in the difference T1-T2, the energy release rate becomes large very 
quickly. 
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Figure 5. Dependence of  the energy release rate of the temperature loading  
for different values of  the thickness of the sample. 

 
In Figure 5 shows that with increasing temperature at the crack grows the threshold 
temperature difference, while kg increases with temperature. If the threshold exceeds the 
temperature difference which is exposed to the sample should not be expected delamination 
of the sample. Heat flow through the cracks, can be significant and the assumption of a 
perfectly isolated the crack can be wrong. Another loading that caused a significant crack 
opening and further reduce the heat transfer through the cracks. 
 
4. Conclusion 
 
In this paper is presented the theoretical basis for determining the driving forces of interface 
fracture in a two-layer bimaterial specimen under conditions when the temperature of the 
outer surface layers are different. The analysis in this paper is limited to the fact that two-
layer bimaterial sample exposed to a stationary temperature field. The driving force of the 
interfacial fracture in this case is the energy release rate G. The energy release rate is 
determined depending on the loads of temperature. It was noted that the energy release rate 
tends to increase with increasing temperature difference. This relationship can be used to 
predict the maximum temperature differences the two-layer sample can sustain without 
delamination. For future analysis remains the case when the two-sample bimaterial 
subjected to unsteady temperature field. 
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