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ABSTRACT. The basic aim of this paper is to contribute to the 
assessment of structural integrity of a cracked combustion chamber, i.e. 
cylindrical pressure vessel. Toward this end elastic-plastic fracture 
mechanics parameters were evaluated, which could serve as crack 
driving forces for any cracked structure. As the relevant paramaters, the 
J-integral and crack tip opening displacement (CTOD) were chosen and 
evaluated by the elastic-plastic finite element method. The combustion 
chamber with an axial surface crack was represented as two-dimensional 
plane strain elastic-plastic finite element model, in a form of edge 
cracked plate loaded by remote tensile stress. 
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Application of the finite element method to the elasto-plastic fracture mechanics 
problem was in accordance with ESIS recommendations.Thus the quadrangle eight-nodded 
isoparametric finite elements were used, while the crack tip singularity was modeled by 
triangular elements with three independent nodes at crack tip and mid-side nodes and mid-
side nodes.  

The elasto-plastic stress analysis of solids which conform to plane stress or plane 
strain conditions is considered. The aim is to develop a working computer code for fracture 
prediction in ductile materials. Only the essential expressions will be reproduced here for 
theoretical and numerical treatment.  

The mesh consisted of 1421 nodes and 435 elements, what is enough for the type 
of problem analyzed and required engineering accuracy.  

The stress-strain relation was represented also in two different ways - as the bi-
linear and as the multi-linear. In the first case two straight line were used with slopes 
defined by modulus of elasticity (198000 MPa) in the linear elastic range, and by hardening 
modulus (833 MPa) in the plastic range. The distinction point between these two ranges 
was yield strength (718 MPa). In the second case 12 points were used, taken from the real 
uniaxial stress-strain curve. The results for bi-linear curve are given in Table 1 and 2 for 
multi-linear curve. 
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Figure 1.  Non-linear stress-strain relation Figure 2. Finite element mesh around 

crack tip 

 
If problems are investigated, a convergence study with variation of mesh refinement is 
advisable. “Starting” point in such a study can be mesh similar to the one which is shown in 
Fig. 2. 
 

Isoperimetric elements with quadratic shape function (8-noded for 2D, 20-noded 
for 3D) are recommended. Constant strain triangles are also reliable (in global sense), but 
not capable of crack blunting modeling. The elements should be rectangular with a side 
ratio close to 1 in the regions of high strain gradients. Skewed elements should be avoided 
or, if unavoided, integrated by 3x3 points. 
In transition region from small to larger elements the side of later one should not be larger 
more than twice the smaller side of neigh-boring elements. 

In the case of non-linear problems stiffness reformation and equilibrium iteration 
at any time step is recommended, as well as a convergence study concering load/time step 
increments. Usually one increment should be done with not more than 10 iterations. 
There is a good experience with reduced integration (2x2) for the standard 8-node 
isoperimetric elements. For special cases (large element deformations, curved, skewed or 
very fine elements) 3x3 integration is necessary. 
Nodal point loads often leads to inaccurate deformations. 

For elastic analysis use collapsed isoparametric, triangle crack tip elements with 
one crack-tip node and quarter-point midsize nodes. For elastic-plastic analysis use triangle 
elements with independent crack-tip nodes and midsize nodes lying in the middle. For 
simulation of crack growth rectangular elements without singularity can be used. It should 
be noted that the same element size as with collapsed elements leads to stiffer results. 
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Table 1 The finite element results displacement loading, bi-linear material 

L.F.* CTOD CMOD J-INTEGRAL m=J/Reh/CTOD 

0.10 0.0178 0.0872 20.40 1.60 
0.11 0.0202 0.0969 25.15 1.73 
0.12 0.0230 0.1072 30.55 1.85 
0.13 0.0260 0.1182 36.40 1.95 
0.14 0.0296 0.1300 42.70 2.01 
0.15 0.0333 0.1422 49.95 2.09 
0.16 0.0377 0.1555 57.45 2.12 
0.17 0.0426 0.1682 65.48 2.14 
0.18 0.0486 0.1830 75.07 2.15 
0.19 0.0553 0.1992 85.95 2.16 
0.20 0.0637 0.2175 98.79 2.16 
     

 
For. L.F. (0.10) CTOD graphic evaluations: 

 
Using finite element method it is an easy task to check the J-integral path independency. As 
owe can see, the different between J-integral values are not significant and certainly less 
than numerical error for this type of problem. 
 
If problems are investigated, a convergence study with variation of mesh refinement is 
advisable. “Starting” point in such a study can be mesh similar to the one which is shown in 
Fig. 2. 

Isoperimetric elements with quadratic shape function (8-noded for 2D, 20-noded 
for 3D) are recommended. Constant strain triangles are also reliable (in global sense), but 
not capable of crack blunting modeling. The elements should be rectangular with a side 
ratio close to 1 in the regions of high strain gradients. Skewed elements should be avoided 
or, if unavoided, integrated by 3x3 points. 
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In transition region from small to larger elements the side of later one should not 

be larger more than twice the smaller side of neigh-boring elements. 
In the case of non-linear problems stiffness reformation and equilibrium iteration at any 
time step is recommended, as well as a convergence study concering load/time step 
increments. Usually one increment should be done with not more than 10 iterations. 

There is a good experience with reduced integration (2x2) for the standard 8-node 
isoperimetric elements. For special cases (large element deformations, curved, skewed or 
very fine elements) 3x3 integration is necessary. 
Nodal point loads often leads to inaccurate deformations. 

For elastic analysis use collapsed isoparametric, triangle crack tip elements with 
one crack-tip node and quarter-point midsize nodes. For elastic-plastic analysis use triangle 
elements with independent crack-tip nodes and midsize nodes lying in the middle. For 
simulation of crack growth rectangular elements without singularity can be used. It should 
be noted that the same element size as with collapsed elements leads to stiffer results. 
Using finite element method it is an easy task to check the J-integral path independency. 
Toward this end six paths around the crack tip were used and the results given in Tab 5. 
Difference between J-integral values are not significant and certainly less than the 
numerical error for this type of problem. 
 
 
Table 2. Results for J-integral path independency analysis 

 

L.F.* Path 1 Path 2 Path 3 Path 4 Path 5 Path 6 

0.1 19.6 21.0 20.4 20.8 20.4 20.4 
0.11 24.0 25.8 25.1 25.6 25.1 25.2 
0.12 29.1 31.2 230.5 31.1 30.5 30.7 
0.13 34.5 37.0 36.4 37.1 36.4 36.4 
0.14 40.2 43.2 42.8 43.8 43.1 43.4 
0.15 47.3 50.3 50.0 51.1 50.3 50.8 
0.16 54.4 57.7 57.1 59.2 58.4 59.0 

 
Use of the J-integral in elasto-plastic fracture 
 
The J-integral has already been defined by the following expression 

J Udy t
u

x
dsi

i 









    (1) 

For linear elastic problems, the J-integral has been numerically evaluated. For elasto-plastic 
applications the only change necessary is to employ the appropriate definition of the strain 
energy density, U. Separating U into its elastic and plastic components U = Ue + Up caused 
by then Ue is given by  

 Up ij e


1

2
  ij

      (2) 
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where  ij e

  denotes the elastic components of strain. The value of Up is obtained by 

accumulating the incremental work contributions  d  p  over the strain path. Since the 

effective stress   and plastic strain increment d  p  are evaluated during each load 

increment, then the calculation of Up is a trivial operation. Subject to the definition of U 
given by (2), the numerical process by which J is evaluated is given in the following form 
for an individual element 
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The elastics components of strain can be simply evaluated from the current stresses 
according to 
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As mentioned previously, the value of Up at the integrating points within each element is 
readily available from the standard finite element calculations. Once again the integration is 
performed numerically using Gaussian quadrature.  
This technique, however, placed restrictions on the finite element mesh employed. In the 
particular, the crack geometry must be idealized by a radial fan of elements centered at the 
crack tip and the nodal nodal number of the elements through which the contour is to be 
taken must be such that the local   coordinate axes follow the tangential direction. While 

such an approach allows the numerical process for the evaluation of J to be elegantly 
formulated, it nevertheless places a considerable restriction on the finite element mesh 
topology; particularly when automatic mesh generation schemes are to be employed. 
Therefore in this section we develop a further subroutine for J integral evaluation, which 
can be applied to arbitrarily structured finite element meshes. 

 

Therefore a deformable measuring zone was designed and placed underneath the 
tool gearing (fig. 1a). Strain gauges (fig. 1b), installed at the measuring zone (fig. 2), 
provide information about the deformation of the tool during the whole rolling process. 

 
Fig. 1. Contour path along direction of constant   value 
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Fig. 2: Contributions from “corner” elements (a)Contributions from elements in which integration is 
made along paths p   (constant).(b) Contributions from elements in which integration is made 

along paths p   (constant). 

 
Then the corresponding unit vector is 
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The elemental arc length along the line p   is 
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and also 
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Then the contribution to the J-integral from an individual element is finally given as 
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In designing the pressure vessels, a relatively high safety degree is applied. However, 

the designed safety degree can be significantly decreased due to insufficient knowledge of all the 
operating conditions, inadequate quality control during manufacturing, or changes in operating 
conditions. The sudden and unexpected brittle fracture, which can occur, represents a very serious 
and important problem in safety analysis and risks estimates. Such a fracture usually occurs either 
due to reasons like the existing flaw, which can suddenly expand, or due to interaction of an 
existing flaw and operating conditions influence. 
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To analyze the life span of this pressure vessel the thin walled cylinder subjected to 

internal pressure was considered, Figure 3. The cylinder is subjected to internal pressure p, it has 
the wall thickness t and diameter D. Due to action of the internal pressure appear the lateral and 

longitudinal stresses,  and zz, whose values are defined by expressions: 

     
t

pD
       (9) 

and  

    
t

pD
zz 2
           (10) 

respectively. 

 

 
Figure 3. The cracked thin-walled cylinder subjected to internal pressure 

The critical value of the cylinder wall thickness for the transverse crack, calculated based 
on the stress expression (9) is: 

     
2.0

, 
Dp

t tcr


 ,                   (11) 

while the critical value of the cylinder wall thickness for the longitudinal crack, calculated based 
on the stress expression (2) is: 

  
2.0

, 2 



Dp

t lcr
            (12) 

with 0.2  being so-called technical yield stress value. 
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Results 
 

Finally, it is necessary to consider the case of “corner” elements in which the path 
of integration changes from the    to the   direction (or vice versa) . The two cases which 

may be encountered are illustrated, where since we are dealing with elasto-plastic problems 
only a 2 point Gauss rule is considered. For the situation shown in Fig.2(a), the element 
contribution to J is evaluated in the normal manner by integrating across the complete 
element dimension according to (6). These values are then scaled to account for the actual 
shorter path length. The scaling factor SG for both the   and   directions can be readily 

seen from Fig. 2(a) to be 

 S PG G  1 2 0788675/ .       (13) 

 
A similar approach is adopted for the situation shown in Fig. (2b) where for this case the 
scaling factor is seen to be 

 S PG G  1 2 0 211325/ .      (14) 

 
Obviously some degree numerical inaccuracy is introduced by this scaling process, but 
since the contribution of such corner elements to the complete J integral will be small, then 
the error involved should be acceptable. 
 
 
CONCLUSION 

 
The elastic-plastic fracture mechanics parameters evaluated in this these, i.e. J-

integral and CTOD, are not sensitive to calculation technique used. In other words, 
differences in their values, obtained by changing finite element techniques such as 
modeling the material behaviour (bi-linear or multi-linear) and prescribing the loading (by 
remote edge forces and by displacements), are not significant 

The J-integral is path independent, as shown by its evaluation along six different 
paths, which is another proof of its correct evaluation. All paths were chosen to be in plastic 
strain region, which is most suspicious regarding J-integral path independency problem. 
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Abstract. Contemporary research in the field of explosive applications implies utilization of 
„hydrocode“ simulations. Validity of these simulations strongly depends on used parameters 
in the equation of state for considered explosive compounds. A new analytical model for 
determination of Jones-Wilkins-Lee (JWL) equation of state parameters based on cylinder 
test has been proposed. The model relies on analysis of cylinder motion and detonation 
products expansion. Available cylinder test data for five explosive compositions are used for 
calculation of JWL parameters. Good compatibility between results of the model and the 
literature data is observed, justifying suggested analytical approach. 

 
Keywords: explosive, detonation, cylinder test, JWL equation of state 

 
 

1. Introduction 
 
Modern approach to research in the field of explosive applications includes the use of so-
called “hydrocodes” [1] – robust programs for numerical simulation of complex, high-
energy physical-chemical processes involving the detonation, shock waves, large strains, 
high strain rates, etc. Validity of these simulations highly depends on the used equation of 
state of detonation products of explosive composition considered. There are a number of 
proposed equations that define the isentrope of gaseous detonation products [2], [3]: 
polytropic expansion law, Williamsburg, LJD (Lennard-Jones-Devonshire), BKW (Becker-
Kistiakowsky-Wilson) and JWL (Jones-Wilkins-Lee). For simplicity, greater accuracy and 
availability of data for a significant number of explosive compositions, the most frequently 
used is the empirical JWL equation of state of detonation products, which has the form [4]: 

(1 )1 2e eR V R Vp A B CV           (1) 

where p is the pressure of detonation products, V=ρ0/ρ is expansion ratio of detonation 
products, while A, B, C, R1, R2 and ω are parameters determined by comparison with 
experimental results. The first term of the equation defines the behavior of detonation 
products at very high pressures and low expansion ratio, the second addend is related to the 
mean pressure, and the third term describes the isentrope in the domain of low pressure, i.e. 

457



 
Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 2011 C-14 

 
large expansion ratio. In this context, only the parameter ω has a physical meaning and 
approximately satisfies the relation: 

1   ,    (2) 

where γ is polytropic constant for detonation products at pressures close to atmospheric.  
There are two ways to determine the JWL parameters of equation of state: (i) by use a 
thermo-chemical code, (ii) using some of the tests. The former method implies a semi-
empirical program that can predict a chemical reaction using thermodynamics, and will not 
be considered here. The latter approach is based on detonation products expansion physics, 
it is more reliable and will be further investigated. 
The most common source of experimental data to obtain parameters of JWL equation of 
state is the cylinder test [5], [6], [7] and [8]. Standard copper tube is filled with explosive of 
interest and the planar detonation wave (normal to the cylinder axis) is generated. As the 
detonation wave passed through observed section, the radial displacement of copper tube 
obscure the backlighting (provided e.g. by an argon light bomb) and the history of 
displacement is recorded by streak camera (Fig. 1). 
 

                      
Figure 1. Cylinder test: a) streak camera record, b) motion of copper tube under the action of detonation products 
(geometry and notation) 

 
The original way of determining the parameters of JWL equation of state [4] implied the 
variation of their values in a hydrocode, until a satisfactory correspondence between 
numerical and experimental results is obtained. It was also proposed several different ways 
of determining the unknown parameters of equations of state without applying the 
hydrocodes, e.g. [9], [10] and [11]. 
The aim of this paper is to propose a new analytical model for simple and reliable 
determination of unknown parameters of JWL equation of state based on the results of the 
cylinder test. 
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2. Model 
 
Presented analytical model is based on integration of energetic approach [12] and the 
concept of the cylinder motion due to the detonation products pressure [13]. These models 
are analyzed in detail in [14]. 

Approximation of measured cylinder displacement. The result of experiment is the curve 
obtained by high-speed photography that represents history of the cylinder outer surface 
displacement: 

2 2 20 ( )r r r f t    .    (3) 

This function is usually represented in discrete form  

 2,  ( ) ,  1,  i it r i n  ,           (4) 

where n is total number of measured points from the camera record. 
In order to calculate tube wall velocity and acceleration, it is necessary to approximate 
experimental results (4) with a proper function. Analysis of a large number of possible 
functions showed that the two functions very well describe the results of experiments. The 
first function [15] has the form: 

1

0

( )
( )

2
(0) ( )

v tg t
F t

v
g g t

a






 
,  (5) 

where a0 is initial cylinder acceleration, v∞ is asymptotic radial cylinder velocity, and 
function g(t) is defined as: 

 ( ) 1 1g t t
   .    (6) 

Using numerical optimization methods, parameters a0, v∞ and σ are determined providing 
minimum deviation of function (5) from experimental results (4) in the sense of the least 
square method.  
Different function, based on the assumption of exponential drop of detonation products 
pressure, is proposed in [l3]: 

 
2

2
1

( ) 1 b ti
i i

i

F t a b t e



     ,    (7) 

where ai, bi (i=1,2) are parameters to be optimized. 
For each experimental result, parameters in functions (5) and (7) are determined, and the 
function with better approximation of experiment is used for further calculation, so we 
have: 

2 ( )r F t  .    (8) 

We will assume that the cylinder motion is defined by displacement of the central cylinder 
surface, defined by relation: 
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 2 2 2 2 2 2
2 c c 1 20 10

1

2
r r r r r r     .    (9) 

Central surface displacement Δrc=Fc(t) and displacement of internal surface Δr1 are easily 
obtained from (8) and (9). 
 
Cylinder velocity and acceleration. Kinematics of the system was determined as described 
in [13] and [16]. Differentiation of the optimized function of central surface displacement 
gives the values of "apparent" velocity and acceleration of the cylinder: 

2
c c

a a 2

d ( ) d ( )
,      

d d

F t F t
v a

t t
  .    (10) 

Analysis of the motion of cylindrical liner shows that inclination centerline angle θ can be 
determined from relation: 

a tanv D  .    (11) 

The real values of cylinder velocity and acceleration are: 

3
p2 sin ,     cos

2
v D a a

   .    (12) 

 
Pressure of detonation products. Since the cylinder acceleration is determined, the pressure 
of detonation products can be determined from the equation of motion of an elementary 
cylinder part, taking into account the strength of the cylinder [17], considering that the 
circular stress is dominant: 

2
f

1 1

2
1

2

C
M a

r
p

r r




        
 

.    (13) 

In equation (13), M and C are the cylinder and explosive charge mass per unit length, 
respectively: 

 2 2 2
20 10 0 10,    C=mM r r r   ,    (14) 

where ρm and ρ0 are densities of metal and explosive. 
Flow stress of the cylinder σf is determined by empirical Johnson-Cook model [18]: 

 f ( , , ) 1 ln * 1 ( *)n mT A B C T               .   (15) 

where ε is the equivalent plastic strain,  is the plastic strain-rate and A, B, C, n, m are 
material constants. The normalized strain-rate and temperature in equation (15) are defined 
as: 
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where 0 is the effective plastic strain-rate of the quasi-static test used to determine the 

yield and hardening parameters A, B and n; T0 is a reference temperature, and Tm is a 
reference melt temperature. In the present analysis, the influence of thermal softening is 
neglected due to extremely short time nature of the process. 
 
Detonation products expansion ratio. If it is assumed that the flow of detonation products is 
quasi-one-dimensional, the continuity equation applies in the form: 

0 0 ( )A D A D u   ,    (17) 

where u, ρ and A are current values of velocity and density of detonation products, and the 
channel cross-section area. Using the equation of continuity and Bernoulli equation, we get 
[19]: 

2

0 0

1

2 2

M v p A
Du

C A
    
 

.   (18) 

Combining relations (17) and (18), expansion ratio can be determined from 
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where A/A0 is the geometric expansion ratio: 
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Energy balance. Energy conservation law for the system consisting of explosive charge and 
metallic cylinder can be written in form: 

2

0 kin def2

u
DA t U Q T A puA t

 
        
 

.   (21) 

In eq. (21) U is internal energy of detonation products per unit mass, Q – detonation heat 
per unit mass, u – velocity of detonation products in axial direction, Tkin – kinetic energy of 
radial motion of cylinder and gases (Gurney energy) per unit mass of explosive, and Adef – 
cylinder deformation work per unit mass of explosive charge. Eq. (21) can be simplified to 
the form: 

 
2

0
0 kin def2

u u
E E E W p

D


     ,    (22) 

where E=ρ0U, and E0= ρ0U are internal energy and detonation heat per unit volume of 
explosive charge, Ekin= ρ0Tkin and Wdef= ρ0Adef are Gurney energy and deformation work per 
unit volume of explosive charge.  
Detonation heat E0 is readily obtained by thermo-chemical analysis or from the experiment. 
Detonation products mass velocity is determined by: 
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Specific Gurney energy can be calculated from [17]: 
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where v1 is the internal cylinder surface velocity and w is defined as: 

2 2 2
20 10w r r  .    (25) 

Deformation work can be calculated from relation: 
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where σf is the cylinder material yield stress. 
Introducing the energy term: 
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one can get energy equation (22) in the form: 

0 1 kin defE E E E W    ,    (28) 

that enables determination of the internal energy E of detonation products. 
 
Internal energy of detonation products. Assuming adiabatic expansion of detonation 
products and having in mind Eq. (1), internal energy of gases is determined by: 
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Since internal energy E(V) is calculated from eq. (28), unknown JWL equation of state 
parameters A, B, C, R1, R2, and ω can be optimized in order to fit Eq. (29). 
At the same time, the JWL parameters should satisfy three additional conditions: 
(i) pressure at the Chapman-Jouget (CJ) state is equal to the experimentally determined 

value pCJ: 

        (1 )1 2e eR V R VCJ CJ
CJ CJA B CV p      ,             (30) 

(ii) internal energy of detonation products at the CJ state is: 
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(iii) slope of the Rayleigh line is determined by: 

(2 ) 21 2
1 2 0(1 )R V R VCJ CJ

CJAR e BR e C V D        .   (32) 

 
Algorithm for determination of JWL parameters. The procedure for determination of JWL 
equation of state parameters from the cylinder test is presented in flowchart (Fig. 2). Eq. 
(13) provides the initial detonation products pressure pinitial. This value is based on the 
second derivative of the fitting function Fc(t) and therefore cannot be used as the definitive 
pressure of detonation products. Instead, pinitial is used for calculation of internal energy E, 
and then JWL parameters are optimized by fitting procedure, providing the new value for 
detonation product pressure p. Procedure is repeated with the new value of pressure until 
the difference between two pressures becomes small enough. 
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Figure 2. Algorithm for determination of JWL equation of state parameters from the cylinder test 

3. Model results and comparison with experimental data 
 
Presented model is applied to determination of the parameters of JWL equation of state for 
five explosives. Properties of the copper cylinder are listed in Table 1 [18] and [20]. 
Characteristics of tested explosives are given in Table 2 (all data are taken from [20], 
except for FH-5 [14]). Experimental cylinder test data (ti, (Δr2)i) are also used from [20] 
and [14]. 
 
Table 1. Characteristics of copper cylinder 

Density Dimension Flow stress parameters by Johnson-Cock model 
ρm (kg/m3) r10 (mm) r20 (mm) A (MPa) B (MPa) C n 

8940 12.70 15.30 89.63 291.6 0.025 0.31 

  
Table 2. Detonation properties of examined explosive compositions 

Density 
Detonation 
velocity 

Pressure  
at CJ state 

Detonation 
heat Explosive composition 

ρ0 (kg/m3) D (m/s) pCJ (GPa) E0 (GPa) 
TNT 1630 6930 21.0 7.0 
Composition B (RDX/TNT-64/36) 1717 7980 29.5 8.5 
PBX (HMX/NC/CEF-94/3/3) 1840 8800 37.0 10.2 
HMX 1891 9110 42.0 10.5 
FH-5 (RDX/W-95/5)* 1600 7930 24.96 8.7 
* cylinder dimensions for FH-5 test: r10=10.20 mm, r20=12.70 mm 

 
Model results for the cylinder test with TNT will be presented as a representative example.  
Experimentally determined cylinder displacement is fitted with analytical functions defined 
by Eq. (5) and (7). Exponential function (7) provided better agreement with experimental 
data in this case (Fig. 3). 
 

 
Figure 3. Experimental tube expansion data for TNT [20] fitted with analytical function (7) 
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Calculated evolution of internal and external cylinder radii is shown in Fig. 4. 

 
Figure 4. Computed radial position of inner and outer cylinder surface for TNT cylinder test 

 
Velocity histories for both inner and outer tube surface are presented in Fig. 5. The Gurney 
limit velocity is also indicated (for TNT, literature data [20] vG=2440 m/s is used), showing 
good accordance with calculated external cylinder surface velocity. 

 
Figure 5. Computed velocities of inner and outer cylinder surface and the Gurney limit velocity 
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Determined expansion ratio V is compared to the geometric expansion ratio (Fig. 6): 
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.    (33) 

Significant deviation is noted, especially for very low and very high expansions. This 
means that simple calculation of expansion ratio by Eq. (33) is not sufficiently accurate. 

 
Figure 6. Detonation products expansion ratio from the model compared with simple geometric expansion ratio  

 
Specific energy balance as a function of expansion ratio is given in Fig. 7. The known 
specific detonation energy E0, and computed values of kinetic energy Ekin, deformation 
work Wdef and specific energy E1 enable determination of specific internal energy E(V).  

466



 
Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 2011 C-14 

 

 
Figure 7. Balance of specific energies involved in the process of detonation product expansion in cylinder test 

 
Specific internal energy of detonation products E(V) obtained by the proposed model is 
compared with the literature curve (Fig. 8). Good agreement between model and literature 
curve can be noted. 

 
Figure 8. Comparison of calculated specific internal energy of detonation products with literature data 

 
Fig. 9 shows the contribution of the three terms of JWL equation of state to the specific 
internal energy, after the fitting procedure. It is confirmed that the third term in Eq. (29) is 
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equal to the whole internal energy for large expansions (V>6), and the first term can be 
neglected for small expansion (V<2.5) 

 
Figure 9. Specific internal energy of TNT detonation products as the sum of three term of JWL model 

 
After the fitting procedure, obtained parameters are used to determine detonation products 
pressure curve that is compared with the literature data [20] (Fig. 10). Very good 
compatibility of these results is evident.  

 
Figure 10. Comparison of p-V curves for TNT detonation products obtained by presented model and [20] 
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Calculated JWL parameters for all considered explosive compositions are presented in 
Table 3, along with literature data. Good agreement of model and literature p-V curves has 
been obtained. 
 
Table 3. JWL parameters for five explosives – comparison of model results and literature data 
Explosive Method R1 R2 ω A (GPa) B (GPa) C (GPa) 

model 4.1245 0.9436 0.3135 366.42 2.6983 1.1480 
TNT 

lit. [20] 4.15 0.95 0.3 371.21 3.2306 1.0453 
model 4.0489 0.7833 0.3460 497.08 3.4246 1.1260 

Comp B 
lit. [20] 4.2 1.1 0.34 524.23 7.6783 1.0082 
model 4.2018 1.1078 0.3072 768.74 1.2131 7.8843 

HMX 
lit. [20] 4.2 1.0 0.30 778.28 7.0714 0.6430 
model 4.5403 1.3255 0.3007 832.26 1.7768 9.9479 

PBX-9404 
lit. [20] 4.60 1.30 0.38 852.40 18.020 1.2070 

FH-5 model 4.2750 0.3175 0.2178 573.43 0.96006 0.82373 

 

4. Conclusion 
 
The paper considers problem of determination of detonation products JWL equation of state 
parameters from the cylinder test data. To solve this problem, a new analytical model has 
been proposed. The model is based on: (i) fitting the experimental data with analytical 
function, (ii) cylinder kinematics, (iii) cylinder motion dynamics, (iv) detonation products 
expansion analysis, (iv) energy balance, and (v) final fitting of detonation products internal 
energy. Computer program based on the model has been developed. Cylinder test data for 
five explosive compositions are used for calculation of JWL parameters. Extensive analysis 
indicates good compatibility between results of the model and the literature data.  
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Abstract. The paper presents examples of modal testing of the beam like structure. Modal 
testing is a form of vibration testing of mechanical structures which is performed in order to 
determine the modal model of the mechanical structure from the frequency response 
functions (FRF) data. The accuracy of measurement is the ability to accurately quantify the 
behavior of the test structure. Reducing the accuracy of measurement can arise from two 
sources: inability to measure the movement of the structure without affecting the 
measurement hardware to dynamic structure; inability to quantify the signal provided by 
sensors. During preliminary measurements, but also during the execution of the overall 
modal testing, one must run some checks to assess the quality of measured data. There are 
several techniques which application checks the quality of data, e.g. reciprocity test 
(Maxwell's rule of reciprocity), the repeatability test and coherence function. The 
repeatability and reciprocity test are performed almost always by visual inspection of 
recorded FRFs in order to identify whether there are some important differences between 
them. A good indicator of repeatability and reciprocity test is the difference FRF of 
constituent FRFs which are compared. The coherence function shows a correlation between 
the measured excitation and response signals, calculated for each frequency. These 
techniques applied to verify the accuracy of the modal test are illustrated by an example of 
modal testing of freely supported beam and cantilever beam. 

 

 

 

1. Introduction  
 
Modal testing is a form of vibration testing which is performed in order to provide a set of 
Frequency Response functions (FRFs) that are sufficiently extensive and accurate to enable 
analysis and extraction of the properties for all the required modes of structure. There is no 
single right way to perform any vibration test. In almost every case the support, the 
excitation equipment or the transducers will influence the dynamic behavior of the article 
under test. Every structure poses its own special problems for modal testing and there are 
many different ways to treat the same problem. There is no definitive right way to test any 
given structure. All modal tests involve degree of compromise and the test engineer is 
encouraged to consider all aspects of the test set-up, test equipment, data collection and 
assessment at an early stage. Preparatory work is esential prerequisite for successful modal 
testing. Unfortunately, this key stage is often rushed in the bustle to collect data.  
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Many of the potential problems with modal testing only become apparent during the actual 
test. Frequently, it is not possible to predict such problems beforehand either because there 
is no analytical model or because the model of the structure is unrepresentative. For this 
reason it is advocated strongly that a preliminary survey should be performed prior to the 
full measurement survey. 
As a part of preliminary survey and during the full survey critical assessments of the quality 
of the measured data should be made. Reciprocity and repeatability are two established 
methods for assessing the quality of measured data. However, it has been found that much 
of information that could be derived from these checks is lost because the respective FRFs 
are only compared by eye. Consequently, small differences between two large quantities 
are invariably overlooked despite the fact that the differences may be systematic and 
indicative of slight shifts in the structural resonance frequencies. To aid the assessment of 
data quality by these methods, the use of ‘difference functions’ alongside the actual FRFs 
has been found to be particularly beneficial [1]. 
 

2. Basic principles in modal testing 
 

Theoretical modal analysis shows that any mechanical system can be described by the 
matrix of transfer functions of the system H() or in short system matrix. Elements of the 
system matrix in the frequency domain are the frequency response functions FRFs (ij), 
which describe the relationship between outputs and inputs, i.e. response and excitation 
between two points on the structure and, therefore, modal testing can be described by the 
principle of "black box", Figure 1.  

 

MECHANICAL  

SYSTEM   [H()] 

 

Output/response/displacement Input/excitation/ force 
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ij

j

X

F


 


    

 
Figure 1. Block diagram of FRF 

 

In the experimental modal analysis defined force is the input, i.e. excitation of the structure 
at the j-th point. Response of the structure to the given excitation at the j-th position can be 
expressed by displacement, velocity or acceleration at the i-th position of the structure. 
Each FRF contains global modal parameters: natural frequencies and damping. Each row or 
column of FRFs matrix contains all modal shapes. Therefore, to define the modal model of 
the mechanical system at least one row or one column of FRFs matrix should be measured. 
As real structure is the object of modal testing, it should be discretised, i.e. final number of 
degrees of freedom should be defined, Figure 2. The number of measuring degrees of 
freedom is the number of physical locations on a structure in which we performed 
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measurement multiplied by the number of measurements performed on each of these 
locations (directions of measurement). 
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Figure 2. Measurement of FRF on the discretised structure 
 

Before starting any modal test it is important to have a clear definition of the objectives of 
the test. The type of test, the extent of test and the required quality of the results all follow 
from the defined objectives of the test. In general, the requirement is usually of the form “to 
obtain a dynamic model of a structure that is suitable for a given purpose”. The purpose of 
the test may be: 

 to obtain mode frequencies of the structure; 
 to obtain mode shapes and damping information for the structure; 
 to correlate a FE model of the structure with measured results from the real 

structure; 
 to obtain a dynamic model of the structure that can then be used to assess the 

effects of a range of modification to that structure; 
 to obtain a dynamic model that is suitable for updating a FE model of that 

structure such that the theoretical model is a better representation of the dynamic 
characteristic of the real structure than it was previously. 

 
The quality and extant of the modal test required to achieve these aims increases as one 
progresses down the list.  
 
In modal testing, four basic assumptions are introduced concerning any observed structure:  

1. The investigated structure is linear, i.e. the response of the structure to any 
combination of forces that act simultaneously represents the sum of individual 
responses equivalent to each force acting alone. For most structures this 
assumption is good for a limited range. However, it frequently happens that the 
real structures have some degree of nonlinearity due to nonlinear dynamic 
characteristics of the joints, boundary conditions and material properties. In 
practical effect, these structures are considered as linear, as long as the degree of 
nonlinearity is small and irrelevant to the scope of response of structure that is of 
interest.  

2. The structure is time invariant, i.e. parameters be determined are not changing in 
time.  

3. The structure is subjected to Maxwell’s rule of reciprocity, i.e. excitation force 
applied to the j-th position causes response to the i-th position, which is the same 
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as the response to the j-th position caused by the excitation force for the same i-th 
position. Regarding the FRFs, the rule of reciprocity is such that the FRF 
determined by excitation in the j-th and response in  the i-th is the same as FRF 
determined by excitation in the i-th and response in the j-th (ij=ji). 

4. The structure should be observed, i.e. measured excitation and response of the 
structure contain sufficient information necessary for generating adequate model 
of structure behavior. The structures and machines that have such degrees of 
freedom which are not mensurable, are not fully observed. In practice, the most 
common situation is that the measurement is limited to some frequency band, so 
the data can be used for the formation of an incomplete model of the structure. 

The basic assumptions are almost never fully satisfied in measuring the real structure, i.e. 
the assumptions will be approximately correct. Each of the assumptions could be confirmed 
experimentally, either during testing or after testing and data analysis. 
 

3. Quality of measured data in modal testing 
 
Measurement accuracy is the ability to quantify the behavior of the structure precisely. A 
lack of accuracy in test measurements may arise from two sources:  

 The inability to measure the motion of the structure without affecting its behavior 
 The inability to quantify the transducers signals. 

Once the transducer and conditioning equipment have converted the force or response 
quantities into electrical signals, the signals have to be quantified. Nowadays, the 
measurement instrumentation is primarily digital in nature and a large proportion of the 
errors in quantification of these signals are associated with details of digital signal 
processing. 
During the preliminary survey, and throughout the full modal test, some checks should be 
made to assess the quality of measured data. There are several techniques already in general 
use that can provide an indication of the quality of the measured data: reciprocity, 
repeatability and coherence.  
 

4. One example of modal testing 
 
Modal testing of beam like structure was carried out with the aim to collect FRFs for a 
number of measuring positions of the structure. Data from the measured FRFs were used in 
the process of detection of structural damage, so purpose of the test was to obtain a 
dynamic model of the structure that can be used to assess the effects of modification 
(damage) to that structure [2]. Modal testing was performed using the following measuring 
equipment, Figure 3: 

 Excitation of the structures: modal hammer, Endevco 
 Response of the structure: accelerometer, type 4507, Bruel&Kjaer 
 Acquisition unit: Portable PULSE Type 3560, Bruel & Kjaer 
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Figure 3. Measuring equipment for modal testing [2] 

 

 

The steel beam of dimensions 400x15x15 mm was tested for two boundary conditions: 
free-free beam and cantilever beam. Testing was performed in the frequency range of 3200 
Hz, with 5 averaging for each measured FRF. For the first test, the beam was suspended 
with the plastic string simulating free-free boundary conditions. That freely supported beam 
was discretized in 17 measurement degrees of freedom, Figure 4. For the second test, the 
beam was clamped at one end forming the cantilever beam. The cantilever beam was 
dicretized into 14 measurement DOFs, Figure 5.  Modal testing was done using ‘roving 
hammer” method: the accelerometer was placed in the fixed point (5th DOF for the freely 
supported beam and 11th DOF for the cantilever beam),  the excitation was applied in all 
other measurement positions (17 DOFs for the freely supported beam and 14 for the 
cantilever beam) on the structure. In this way 17 FRFs and 14 FRFs were recorded, and 
verifying the quality of recorded data was performed using reciprocity and repeatability 
checks, coherence functions and differences function curves FRF.  

 

 

 
Figure 4. The free-free beam discretized into 17 measurment DOFs 

 

 

Figure 5. The cantilever beam discretized into 14 measurment DOFs 
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4.1 Reciprocity check 
 

For a linear conservative system Maxwell’s rule of reciprocity applies: the measured FRF 
for a force at location j and a response at location i should correspond directly with the 
measured FRF for a force at location i and response at location j. The FRF matrix is 
symmetric and this property can be used as a check on the quality of the measured data.  

Figure 6 shows two overlie FRFs of the freely supported beam: one FRF was measured for 
a response at location 5 and excitation at location 12, second FRF was measured for a 
response at location 12 and excitation at location 5.  From overlie plots of FRFs can be 
concluded that the functions meet the requirement of reciprocity. 

Figure 7 shows two overlie FRFs of the cantilever beam: one FRF was measured for a 
response at location 5 and excitation at location 11, second FRF was measured for a 
response at location 11 and excitation at location 5.  Overlie plot of FRFs indicates the 
functions meet the requirement of reciprocity. 
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Figure 6. Reciprocity check of the freely supported beam [2] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Reciprocity check of the cantilever beam [2] 
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4.2 Repeatability check 
 
Repeatability checks are a means of assessing the stability of the structural characteristics 
over a period of time. It is usually assumed that the structure does not change with time or 
as a result of the excitation itself but there are a number of practical effects that can alter the 
characteristics of a structure, e.g. bolts slackening, release of pre-loads, fretting, 
environmental factors such as temperature and humidity, etc. 
The repeatability test was done for freely supported beam by performing several 
measurements with the response at location 5 and the excitation at location 12, where the 
accelerometer was removed from the structure and re-placed on the same position, which 
undoubtedly caused a certain deviation of transducer location for each measurement. 
Overlaying of the measured FRFs confirmed the repeatability of the test, Figure 8. 
Overlaying FRFs measured at all 17 measurement locations, Figure 9, shows that there is 
no deviation of resonant peaks position, i.e. natural frequencies, showing the consistency of 
the measured results. 
 
 

 

 

 

 

 

 

 

 

 

Figure 8.  Repeatability check: Overlie FRFs for two measurements  
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Figure 9. Consistency of results: overlie FRFs for measurements at 17 degrees of freedom [2] 
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4.3 Use of the FRF in repeatability and reciprocity checks 
 
Almost always reciprocity and repeatability checks are done by “eyeballing” sets of FRF 
curves to see if there are any major differences. The comparisons are made significantly 
easier if differences function curves FRF are plotted for the sets of data. 
The FRF is the vector difference of the two FRFs at each frequency : 

FRF() = FRF() for comparison – Reference FRF() 

Reciprocity and repeatability checks are usually carried out over a frequency range 
incorporating several modes, with the emphasis placed on the magnitude of the functions. 
The magnitude of the FRFs is plotted alongside the two FRFs of the reciprocity and 
repeatability checks for comparison. If a large peak on the FRF corresponds with a 
resonance region of the constituent FRFs, then it is likely that the difference is due to a 
slight shift in the natural frequency. When a peak occurs away from resonance, it is usually 
caused by differences in the magnitude of the FRFs. 

The FRF in repeatability checks: The two point FRF measurements, Figure 8, were made 
at different times as a check of measurement repeatability. The vector difference between 
these two functions has been calculated and forms the FRF that shows clearly the large 
differences between the FRF measurements around the resonance region for the first and 
second resonancies, Figure 10a. 

The FRF in reciprocity checks: The use of the FRF in assessing the reciprocity of 
measured FRFs is shown in Figure 10b. Two measured reciprocal FRFs, shown at Figure 6, 
are plotted together with FRF. These FRFs were measured in the separate single input 
surveys, the excitation being moved from one input to the other for second survey, as well 
as the transducers position was changed. The graph in Figure 10b shows large peaks of 
FRF in the regions of resonances. It indicates that there is a small shift in the resonance 
frequencies of the two constituent FRF, which is probably a consequence of local mass 
changes due to changes in the position of accelerometer during two measurements. 
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Figure 10. Use of the FRF: a) repeatability check, b) reciprocity check [2] 
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4.4. Coherence function 
 
An important parameter of the measurement accuracy is the coherence function. The 
coherence shows a correlation between the measured excitation and response signals, 
calculated for each frequency. In practice, the value of coherence is always greater than 
zero and less than unity. Good measurement is the measurement for which the value of 
coherence is closer to the unit. If the coherence is less than unity, it may be due to the 
following: 

 noise is present in the excitation and response signals during FRF measurements; 
 error "leakage" is present in the spectral analysis; 
 the tested system is not linear; 
 measured response x (t) is not only a consequence of entered excitation f (t), but 

also some other external reasons. 
Figure 11 shows good coherence function very close to the unit value, but coherence 
function shown at Figure 12 indicates some the trouble due to impact excitation of 
structure. 
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Figure 11. Coherence function of the freely supported beam [2] 

 
Figure 12. Coherence function of the cantilever beam [2] 
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5. Conclusion 

There are many potential problems with modal testing which could be overcome by 
performing preliminary measurements. The preliminary measurement offers the 
opportunity to assess the influences of the test equipment on the structure, the selection of 
structure support, the way of excitation, etc. The accuracy of experimental data is very 
dependent on particular problems related to the experimental set-up and control of the 
different analysis steps. As a part of preliminary measurements, verifying the quality of the 
measured data can be made using reciprocity and repeatability checks and coherence 
functions. The goal of this paper was to demonstrate these methods for assessment the 
measurement data quality by performing modal analysis of beam like structure. 
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Abstract. Adhesive inlay bridges are used in dentistry as a possible treatment modality, 
when a single anterior or posterior tooth is missing. In despite of their advantages, such are 
minimal invasiveness, simplicity and fast treatment, their main problem is retention loss, 
caused by reduction in bonding surface. The aim of this article is to analyzing stress 
distribution at restoration-tooth interface of selected preparatory design, by means of finite 
element analysis. The results show potential agreement with theoretical models. Finally, this 
model is suitable for use in everyday practice. 

 
 
 

1. Introduction 
 
Adhesive fixed partial dentures (AFPDs) are a part of a group of minimally invasive fixed 
constructions, with inlay retainers instead of classic-shell retainers. Reduced contact area, 
however, weakens the retention and makes these dentures prone to decementing during 
functioning. Decementing being a consequence of extensive stress on the cement layer, 
stress states of the cement layer can be observed, analysed and interpreted using FME, 
simulating loads affecting the denture during mastication cycles. 
Adhesive fixed partial dentures (AFPDs) are a useful conservative prosthodontic treatment 
option and have proven their clinical reliability in combination with the metal-ceramic 
technique [2, 3]. When an esthetic single-tooth replacement with a minimally invasive tooth 
reduction is desired and an implant is refused by the patient, metal-free restorative options 
may be attractive. Since the bonding procedures strengthen the cusps and provide additional 
support for the dentition, minimally invasive preparation is feasible [4, 5, 6]. Some 
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developments in the application mode of dentin adhesives [7, 8, 9] have enabled the use of 
indirect (lab-made) bonded restorations. 
Reinforced ceramics have been proposed for the fabrication of metal-free AFPDs. The 
brittleness of ceramics makes this project difficult [10]. In addition, high-elastic-modulus 
frameworks are expected to increase stress concentration at the adhesive interface, 
especially in the presence of long-span AFPDs [11]. One theoretical claim is that lower-
elastic modulus frameworks would ensure a better stress transfer to the tooth and reduce 
tensile stresses at the adhesive interface [12]. 
Knowledge of stress distribution is important to the understanding of fatigue yielding, 
which generally occurs under subclinical micro-deformation. Overall stress distribution 
within the tooth-restoration complex is determined by geometry and hard tissue-restorative 
material arrangement [13]. As demonstrated by Reeh et al,[14] non-destructive approaches, 
rather than experimental load-to-failure, may be the best approach to determining 
significant differences in stress distribution. 
Non-destructive approaches can provide greater insight into the performance of both tooth 
and restorative materials but may require complex modeling tools such as the finite element 
(FE) method. Experimental-numerical approaches now serve as comprehensive in vitro 
investigation methods for the examination of the complex mechanical behaviors of 
prostheses and surrounding structures. The aim of this study was to evaluate the stress 
distributionat the surface and interface of 3-unit posterior AFPDs with the 3-dimensional 
FE method. Restorative material used in this analysis was zirconia-dioxid (ZirCAD). 
 

2. Material and methods 
 
2.1. Description of modeled geometry 
 
Two natural extracted teeth (a mandibular second premolar and second molar) were 
selected and scanned to simulate a lateral dental segment with partial edentulism (missing 
first molar) [16]. A space of 13 mm was left between the teeth which were prepared with 
interproximal slots of specific dimensions. The corresponding fixed partial denture (FPD) 
was fabricated and digitized with a scanning device and used as a reference to trace the 
detailed contours of dental hard tissues and FPD components in a graphics software 
program CATIA v5 (Figure 1). Next step was to import modeled geometry in Ansys13. 
 

 
 

Figure 1. Catia model 
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Figure 2 shows geometry of the virtual model imported into Ansys13, consisting of a fixed 
partial denture made from ZirCAD, cemented onto two teeth, previously treated and 
prepared for attachment of the fixed denture. 
 

 
 

Figure 2. Modeled geometry after importing into Ansys13 

 
The form of the fixed partial denture, and its associated finite element mesh are shown in 
Figures 3 and 4. The appearance of the prepared teeth with associated mesh of finite 
elements are shown in Figures 5 and 6. The final model was defined using 3.427.253 nodes, 
i.e. 2.178.305 elements. 
 

 
 

Figure 3. Geometry of the fixed partial denture attained by joining multiple segments 

 

 
 

Figure 4. Finite element mesh of the fixed partial denture 
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Figure 5. Finite element mesh of the premolar 

 

 
 

Figure 6. Finite element mesh of the second molar 

 
2.2. Determination of the boundary conditions 
 
To foster a systematic understanding of mechanical events, the simulation was performed in 
2 steps. First, an evaluation and characterization of stress distribution with different 
abutment preparation configurations was undertaken. Second, the selected cofiguration was 
simulated to provide stress distribution in critical areas. 
During defining the boundary conditions an assumption was made that the teeth were not 
fixed in place, and that the root (and therefore the tooth) was allowed a certain amount of 
vertical displacement inside the alveole, which should not amount to more than two 
hundredths of a millimetre (distance between the alveole and the root). Except for the 
allowed displacement, the tooth should behave like a fixed support, and it is adopted that 
the entire system is supported by virtual springs, which have the ability to simulate the 
behaviour previously described (Figure 7). 
 
Table 1 shows the values of Young modulus of elasticity and Poisson coefficient used in all 
three cases: 
 

Material Young modulus of elasticity (MPa) Poisson coefficient 
Dentin 20000 0,3 

ZirCAD 210 0,23 
 

Table 1. The characteristics of the materials used in the analysis 
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Figure 7. Allowed displacement of premolar and second molar roots (marked in red) was 2x10e-5m in the z-
direction 

 
Three-dimensional FE models derived from scanned 3-unit AFPD were subjected to a three 
types of loads. Loads were applied from three directions that simulated contact with the 
antagonistic tooth during mastication. To simulate mastication, three areas were loaded on 
the outer inclines of the buccal cusps. The total load was 75 N at each loading areas. The 
load was applied from three directions: at 900 to the tooth axis (horizontally) (Figure 8), at 
450 to the tooth axis (angularly) (Figure 9) and at 00 to the tooth axis (vertically) (Figure 
10). Namely, vertical force was replaced with pressure application (8.145MPa). The 
postprocessing files allowed the calculation of the equivalent von-Mises stress at the tooth-
restoration interface. 

 
 

Figure 8. Directions and intensities of applied forces for the first loading case 

 

 
 

Figure 9. Directions and intensities of applied forces for the second loading case 
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Figure 10. In the third case, a pressure of 8.145MPa was applied to the upper surface of the fixed denture on the 
area marked in red 

 

3. Results 
 
Figures 11, 12 and 13 show obtained stress state of the entire model for all three analyzed 
cases, whereas the maximum values of stress and deformation are given in the Table 2. 
 

 
 

Figure 11. Three-dimensional stress distribution for the first loading case 

 

 
 

Figure 12. Three-dimensional stress distribution for the second loading case 
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Figure 13. Three-dimensional stress distribution for the third loading case (8.145MPa pressure) 

 
Loading 

case 
Max model 
stress (Pa) 

Element with 
maximum stress 

Maximum model 
deformation (m) 

Element with 
maximum def. 

First 4.865x108 Second molar 1.699x10-3 denture 
Second 2.709x108 Premolar 0.650x10-3 denture 
Third 4.894x108 Premolar 0.870x10-3 denture 

 
Table 2. Maximum values of stress and deformation for all three loading cases 

 
Figure 14, 15 and 16 show stress distributions for the most stressed elements of the system 
fixed denture – teeth, for external loads in all three cases. 
 

 
 

Figure 14. Three-dimensional stress distribution of the second molar for the first loading case 

 

 
 

Figure 15. Three-dimensional stress distribution of the premolar for the second loading case 
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Figure 16. Three-dimensional stress distribution of the premolar for the third loading case 

 
For the case of vertical loading, maximum stress values occur at contact points, i.e. at the 
connections of the beam with the supporting teeth (Figure 13). Maximum values appear at 
the edge area, which is prepared to be connected with the denture (Figure 16). The zone 
with significant stress concentration in the beam material is situated in the connector 
region, i.e. in the area of the transition to the retainer. 
For the case of angular (inclined) loading, maximum stress values occur at contact points, 
for the reason of increased strength of the diagonal cross-section in comparison to the 
vertical loading. With angular loading, the increase in stress is carried to the root of the 
tooth, to the zone of the contact with the periosteum. Also, an assymetrical stress 
distribution on the surface of the prepared denture cavity was observed. In this case a stress 
concentration can also be seen at the points of contact of the bridge and supporting teeth 
(Figure 15). Like the previous model, maximum stress occurs in the zone of the connection 
of the denture with the supports (Figure 12), but the maximum value is lower in this case. 
Like expected, the maximum deformation was obtained for horizontal force, followed by 
vertical load, while force at 45 degrees produced the smallest deformation (Table 2). 
 

4. Discussion 
 
By using digital scanning it is possible to obtain adequate and favourable model for finite 
element method analysis. Using appropriate software for processing the results of the 
scanning, it is possible to obtain aqurate models with reasonable expenditure of time and 
resources. The convergence of the models with different number of finite elements was 
adequate, which proved the reliability of procedure used. 
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Abstract. Developments in mini dental implants (MDI) manufacturing are aimed at making 
them more biocompatible and, at the same time, lighter, more durable and simultaneously 
safer than the existing implants. But, occasionally, during build-in process failure of MDI 
may occur or cracks may appear which could lead to the latter fatigue failure of MDI. In 
order to understand and assess crack growth in MDI, several different Finite Element (FE) 
tools capable of performing crack growth analyses on three dimensional models have been 
analyzed and the commercial tools Ansys13 and FRANC3D v5 have been selected. Using 
FRANC3D software different crack sizes and shapes have been made on 3D model of MDI 
and simulations of crack growth have been performed. Based on simulation results a more 
developed damage criterion is proposed and some hints on the mini dental modeling process 
are recapitulated. 

 
 
 

1. Introduction 
 
In recent years, both the literature and clinical practice showed more interest in finding new 
ways of treating and taking care of edentulous patients. Due to specificity of the lower 
muco-osseous foundation, construction of the lower complete denture is such a prosthetic 
problem, and in most cases represents a challenge for the therapist. During growth and 
development, teeth of the permanent dentition are in mandibular and maxillary alveolar 
extensions.  
Soon after tooth extraction, the alveolar ridge remains on the spot and being resorpted 
eventually, changes into residual alveolar ridge. Residual alveolar ridge (RAR) with 
surrounding tissues makes the support of the mobile replacement. Numbers of researchers 
[1], [7] agree that in terms of the intensity and direction of reduction process, the alveolar 
ridge of the lower jaw has more unfavorable course than the upper alveolar ridge. 
Implantology has improved the therapy of edentulous patients within the range of poor to 
much expressed RAR resorption. The oral rehabilitation, which uses two to four implants in 
supporting complete prosthesis, has been proved rather successful in 96% cases with one or 
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two-phase built-in implants. Many authors have published that patients were pleased with 
lower complete implant supported dentures.  
The atrophy of a edentulous jaw could limit the possibility of building in implants, 
especially in the lower jaw area. The anatomic limit as well as alveolar ridge resorption 
may compromise the number of implants, their length and position. Using standard 
diameter implants as a support of a complete denture often requires the ridge extension in 
order to obtain sufficient bone size. In case of older patients with serious medical illness or 
those who use anticoagulant therapy, the procedure of building in more than one standard 
implants raises the risk of surgical complications. Narrow-diameter titanium implants 
(2TA11 Titanium, Young's Modulus 1.171e11Pa, Poisson's coefficient 0.3), which are 
implanted without lifting the chop so that they could support conventional existing denture, 
represent the rehabilitation method for patients suffering from mandibular atrophy. 
Small-diameter dental implants have been used in different shapes for the last twenty years. 
Those implants have the diameter of 2.75 to 3.30mm, and they are placed on a jaw with a 
reduced bone volume. Mini dental implants (MDI) are even smaller- with the diameter of 
1.8 to 2.4mm [8], [9]. The advantage to MDI (Figure 1) usage is minimally invasive 
building in procedure which is completed in one visit [10]. Comparing to MDI, the building 
in procedure of conventional implants (of diameters 3.5mm and more), is aggressive 
surgical procedure which requires a surgery cut of gingiva, lifting the chop and osteotomia- 
bone preparation as it relates to existing implants. Such procedure requires healing time 
process of a tissue, in other words its regeneration, establishing vascular function and 
osseointegration of the implant itself. 

 

 
Figure 1. Mini dental implant 

 
Minimally invasive MDI building in technique is consisted of screwing the implant into the 
bone through the initial opening (Figure 3), without complete preparation of the lies in the 
implant bone [10]. This is why there were no signs of a damaged bone, neither the areas of 
bone injury during the implantation. But, occasionally, during build-in process failure of 
MDI may occur or very small cracks may appear which could lead, after some time, to 
fatigue failure of MDI. In order to investigate this phenomenon FE model of MDI's crack 
growth has been developed and analyzed. For that purpose virtual geometry in Figure 2 has 
been used. Results of this investigation are presented in this paper. 
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Figure 2. Total denture supported by four MDIs (Virtual model) 

 

 
 

Figure 3. Real model of built-in MDIs used to define numerical model 

 

 
 

Figure 4. Total denture supported by MDIs 

 

2. Finite element model and analysis 
 
In order to understand and assess crack growth in MDI, several different Finite Element 
(FE) tools, capable of performing crack growth analyses on three dimensional models, have 
been analyzed and the commercial tools Ansys13 and FRANC3D v5 have been selected. 
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Results published by the same authors in 2009 [21] have been used in order to define 
boundary conditions for crack growth analysis. 
 

   
 

          Figure 5. MDI before build-in          Figure 6. Broken MDI (during build-in) 

 
2.1. Determination of the magnitude and direction of load input 
 
During build-in of MDI there is a possibility of implant failure due to large torsional 
moment (Figure 6) or micro cracks may appear which can cause fatigue failure in cyclic 
stress environment. In order to simulate fatigue crack growth in damaged MDI, it is 
necessary to define realistic dynamic loads. 
There is a detailed data in literature [13, 16] on the determination of the magnitude and 
direction of the mastication force and for the edentulous patients force magnitude varies 
from 50N to 210N. Since many authors take the average value of 100N, in this study 
horizontal and vertical forces of magnitudes 0.005 had been applied on MDI during 
different time intervals (Figures 8 and Figure 9) and later these values were multiplied by 
cyclic load amplitude of 20000N in order to get maximum predicted value of 100N. It must 
be emphasized that load on MDI, caused by mastication force acting on the denture, is 
much less than 100N and varies over time. In order to simulate these variations, random 
load spectrum has been generated (Figure 7) with mean value of 5N, standard deviation of 
11.32N, maximum value of 100N and period of 94s. 
 

 
 

Figure 7. Load spectrum used for crack growth analysis 
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Figure 8. Horizontal component of load acting on MDI during first two seconds 

 

 
 

Figure 9. Vertical component of load acting on MDI during next two seconds 

 
2.2. Stress analysis results and identification of the critical MDI area 
 
After the loads had been applied, FE analysis has been performed and results are presented 
in Figure 10 and Figure 11. It can be seen that stress values are very low (0.0459MPa and 
0.00639MPa, respectively). This is due to the fact that small loads (0.005N) have been 
applied on MDI. But, during the second phase of the simulation these small loads have been 
multiplied by load spectrum in order to get more realistic dynamic loads. The main idea 
was to identify critical area of MDI in terms of fatigue crack appearance and to calculate 
number of cycles which will initiate crack growth. In Figure 12 critical area is clearly 
labeled and number of cycles of load spectrum which would initiate crack growth was 
found to be between 533 and 20000. This means that total time before crack would start to 
grow due to cyclic load environment is between 14 hours (worst case) and 500 hours 
(optimal case). 
 

494



 
Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 2011 C-17 

 

 
 

Figure 10. Stress distribution in MDI due to horizontal load component 

 

 
 

Figure 11. Stress distribution in MDI due to vertical load component 

 

 
 

Figure 12. MDI's critical area in terms of fatigue crack appearance 
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2.3. Simulation of fatigue crack growth in Ansys13 and FRANC3d software 
 
First step in setting the crack growth properties was to define initial crack length. Value of 
0.05mm was chosen (Figure 13). 
 

 
 

Figure 13. Crack Growth Properties setup (Initial Crack Length) 
 
Second step was to define crack geometry. In our case, it is assumed that the crack in the 
implant is much like a semi-circular crack in tension (Figure 14). 
 

 
 

Figure 14. MDI's semi-circular crack in tension 

 
Once the model is created in Ansys, the FRANC3D steps necessary to perform crack 
growth analysis are: read the mesh information, rebuild the mesh around the crack, perform 
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the Ansys analysis and compute stress intensity factors. The program begins the process of 
inserting the flaw into the original model and then meshes the resulting cracked model 
(Figure 15). 
 

 
 

(a)     (b) 
 

Figure 15. МDI model with initial crack length 0.05mm (a) and FE mesh (b) 

 
In Figure 16 interior view of generated crack in MDI is given. 
 

 
 

Figure 16. Interior view of generated crack and finite element mesh 

 
The default crack extension criterion used for simulation was Specified Median Extension. 
The relative extension at each point along the crack front was computed based on the 
chosen equation and a user-specified median extension. The median extension occurs at the 
point along the crack front with the median Mode I SIF value. To simulate crack growth a 
Paris-like power law was used. Power law equation for determining relative extension is 
shown here: 
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The next figures display the computed crack front in the model after five steps of 
calculation. After each step the extension was scaled, polynomial was adjusted to fit 
through the new crack front points, and the polynomial extrapolation was adjusted to ensure 
intersection with the model surface. 
 

 
 

Figure 17. The computed crack shape in MDI after five steps of calculation 

 

 
 

Figure 18. Interior view of crack front in the model after five steps of calculation 

 
Crack growth can slow or even stop under certain loading conditions. This effect can be 
assessed using crack retardation models. Here standard retardation algorithm was used. At 
the same time a number of cycles which can lead to critical crack length was calculated in 
Ansys. Plot in Figure 19 shows crack length versus cycle number, as shown below. It must 
be noticed that the initial crack length was 0.05mm as we inputted earlier. The final crack 
length is just over 1mm at about 500000 cycles. This is why the calculation in FRANC3D 
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continued until the crack reached length of 1mm. It turned out to be after tenth step of 
calculation. 
 

 
 

Figure 21. Crack length versus cycle number 

 

 
 

Figure 19. The computed crack shape in MDI after ten steps of calculation 

 

 
 

Figure 20. Interior view of crack front in the model after ten steps of calculation 
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3. Discussion 
 
The objective of the analysis that was carried out in this paper was to establish and to 
accept the methodology of investigation of fatigue phenomena, which are, in the most 
cases, the main reason of the failure of the supporting structures. As the supporting MDI 
elements are of vital importance for the toothless patients, and as the analysis of the fatigue 
phenomena is usually very difficult, the FEM analysis of the crack growth and the 
determination of the number of cycles which will lead to fatigue crack failure, must be 
employed in order to obtain better solutions. 
The vast number of software has the ability of determination of the critical areas in terms of 
fatigue crack appearance, but only FRANC3D has the capability of crack growth simulation 
through solid, i.e. 3D crack growth simulation, as well, and that was demonstrated in this 
paper. However, the FRANC3D uses Ansys solver for the model stress and strain state 
analysis, so it cannot be used independently. Furthermore, it cannot be used for geometry 
modeling, and the geometry of model must be imported from other software. Regardless of 
these limitations, it has been shown that FRANC3D has excellent algorithms for automatic 
and/or user defined crack growth simulation. 
 

4. Conclusions 
 

1. The main goal of this paper was to show that it is possible to simulate complex 
phenomena such as fatigue crack failure and micro crack growth in small supporting 
structures, such as MDI. 

2. It is well known, from the clinical practice, that the MDI are very reliable, and that the 
crack failure at MDI rarely occurs during the exploitation. However, the crack failure at 
MDI often occurs during the built-in process. So, it is presumed that micro cracks in MDI 
can also occur during that process. In that sense, critical area of the initial crack, that could 
grow in the future, was identified. The initial crack length was set to be just 0.05mm. 

3. After the crack was initiated, the number of cycles of randomly generated load spectrum 
of horizontal and vertical forces required to initiate crack growth was determined. It has 
been shown that those cycles number, when expressed in hours, vary between 14 and 500 
hours of exploitation, depending on where the crack would appear.  

4. Further calculation showed that the critical crack length that will lead to fatigue failure of 
MDI is slightly greater than 1 mm. It also showed that more than 500000 cycles were 
required for fatigue crack failure of MDI. This result confirmed the expectations that even 
the damaged implant will perform its function for a long period of time. This also concurs 
with clinical practice experiences, which shows that the fatigue crack failure at MDI rarely 
occurs during the exploitation. 

5. Given that, during the calculations, the worst load case scenarios were applied (load 
spectrum was very abrupt and rather long), it can be concluded that the minimal designed 
life of slightly damaged MDI of 520000 cycles is absolutely acceptable, considering the 
fact that it is used mostly by elderly patients. 
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6. Finally, this study is basis for further analyses which should include the variation of MDI 
geometry, i.e. further diminish of its dimensions. This will enable the built-in of MDI in 
significantly reabsorbed RARs, which is impossible today. 
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Abstract. Influence of small time-delays in coupling between noisy FitzHugh-Nagumo 
excitable systems on the coherence resonance is studied. It is shown that small time-delays 
can have profound effect on the noise induced coherent oscillations.  

 
 
 

1. Introduction 
 
Excitability is a common property of many physical and biological systems. Although there 
is no unique definition [1] the intuitive meaning is clear: A small perturbation from the 
single stable stationary state can result in a large and long lasting excursion away from the 
stationary state before the system is returned back asymptotically to equilibrium, further 
more, as an external parameter is changed, the global attractor in the form of the stationary 
point bifurcates into a stable periodic orbit, and the excitability is replaced by the 
oscillatory dynamics.  

Typical example of excitable behavior is provided by the dynamics of neurons. 
However, realistic models of coupled neurons must include the following two phenomena: 
(a) influence of different types of noise and (b) different time scales of the creation of 
impulses on one hand and their transmission between neurons on the other. It is well known 
that neurons in vivo function under influences of many sources of noise [2]. It is also well 
known that the noise of an appropriate small intensity can change the systems dynamics by 
turning the quiescent state of the neuron into the state of periodic firing [3]. There are 
different types of noise induced coherent oscillations that could occur in examples of 
excitable systems [4], as will be discussed later. Description of interactions between 
neurons should include the details of the electrochemical processes in real synapses which 
occur on much slower time scale then the occurrence of an impulse and its transport along 
axons [5]. Alternatively, the transport of information between neurons can be 
phenomenological described by the time-delayed inter-neuronal interaction. It is well 
known that, depending on the parameters the time-delay can, but need not, induce drastic 
qualitative changes on the evolution of coupled deterministic excitable systems (please see 
for example [6,7,8,9,10]). However, a system of delay-differential equations is infinite 
dimensional with initial states represented by a vector functions on the interval (  ). 

Stability of stochastic delay-differential equations has been studied by mathematicians [11, 
12]. Influence of noise on time-delay induced bifurcations and properties of 
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synchronization have been analyzed elsewhere, for example in [13, 14, and 15]. On the 
other hand the influence of coupling delay on different types of coherent oscillations that 
have been induced solely by the noise has, to the best of our knowledge, not been studied. 
Such analyzes would supply information complementary to the research on the effects of 
noise on the properties of oscillations and synchrony introduced by sufficient time-lag in 
the delayed coupling. It is our goal in this paper to study the effects of time-delay in the 
coupling between two excitable units on noise induced coherent oscillations in each of the 
units. 
 The structure of the paper is as follows. In the next section we present the model 
of two FitzHugh-Nagumo excitable systems wit noise perturbations and coupled by delayed 
electrical synapses. We restrict the parameter values to such domain that the deterministic 
system has the stable stationary state as the only attractor for any value of the time-delay. 
Both units are perturbed by noise in they second equations which can induce special type of 
coherent oscillations.  In section 3 we present and discuss the results of our numerical 
computations. We have analyzed effects of small time delay on coherence in the case that 
both units display the same type of noise induced coherent oscillations. We study the 
effects of time-delay on coherence properties of both single units and coincidence of 
spiking between units. Finally, in section 4, we summarize our results.  

 

2. The model 
 
Excitable behavior of a single neuron could be of two qualitatively different types [1]. They 
are distinguished phenomenologicaly by different properties of the frequencies and the 
amplitudes of the oscillatory dynamics in each of the two types, and the corresponding 
qualitative mathematical models are characterized by different bifurcation mechanisms. In 
this paper we shall consider typical type II excitable systems, as modeled by the FitzHugh-
Nagumo differential equation [1], where the excitable behavior bifurcates into the 
oscillatory regime via the Hopf bifurcation. Each of the excitable neurons in the model is 
subjected to white noise that could appear in the model equations in two qualitatively 
different ways. Thus each neuron is described by the following stochastic differential 
equations: 
 

11
3 2)3/(),( dWDdtyxxyxfdx     

,2)(),( 22 dWDdtaxyxgdy                                                                    (1) 

 

where yxdW ,  are independent increment of normalized Winer processes, that is 

,0)( idwE  ,)( ijjidWdWE   2,1, ji  and (...)E  denotes expectation with 

respect to the stochastic process. The small parameter , which is in our paper fixed 

as 210 , takes care of the different time scales in the dynamics of the excitatory 
variable x  (membrane potential) and the recovery variable y . The parameter a  is 

bifurcation parameter. For 1a  the deterministic system (1) is excitable and for 1a  

the stationary state is unstable and there exist a stable limit cycle. In this paper a is fixed to 
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05.1a . The two noise terms can produces series of spikes in the x  variable which for 

certain values of the parameters 1D  or 2D occur regularly so that the dynamics appears 

simply periodic i.e. coherent with quite well defined frequency. However the coherent 

oscillations induced by ,01 D  02 D  are qualitatively different from those that occur 

due to ,01 D  02 D . The first case: ,01 D  02 D  has been extensively studied, 

since it was reported in [16]. The effect is traditionally called coherence resonance [3], but 
we shall use the term stochastic coherence (SC) [17] in order to emphasize the noisy origin 
of the coherent oscillations. SC occurs only when the parameter a  is close to its 
bifurcation value, the properties of ensuing oscillation resemble the Hopf limit cycle of the 
deterministic system, and the properties of SC follow from this fact. The oscillations in the 

other case ,01 D  02 D are induced by quite different mechanism from that of the 

SC, it has been studied in details for example in [4], where it has been called self-induced 
stochastic resonance (SISR), but this will not be subject in this paper. 

We shall study a pair of excitable FHN neurons (1) coupled by the electrical 
synapses. This type of synapse is modeled by delayed diffusive coupling between the 
membrane potentials of the coupled neurons. The model equations are as follows: 
 

),,(

))((),(

iii

ijiii

yxgdy

dtxtxcyxfdx



 
           2,1. ji                                           (2) 

 

where ),( ii yxf  and ),( ii yxg  are given by (1). The coupling constant c in this paper 

always assumes positive values, which ensures that the system (2) with 05.1a  and for 

,1D 2D  all equal to zero, has the stable stationary state as the only attractor for any value 

of the time-lag . Thus possible oscillatory behavior of (2) can occur only because of the 
noise, and not because of strong coupling or time-delay. However, as we shall see, once the 
noise has produced spike trains that look coherent, quite small time delay for sufficiently 
strong coupling can induce important qualitative changes in the SC as well as in the 
properties of synchronization between the two units. 
 
 

3. Numerical results 
 
Each of the isolated noisy FHN neurons can display a train of spikes due to the noise even 
when the only attractor of the deterministic case is the stable stationary solution. Time 
distribution of the spikes can be regular with almost constant inter-spike interval. 
Occurrence of coherent series of spikes for particular values of the noise intensity is the 
common manifestation of SC. However, the two cases occur via quite different mechanisms 
and have different properties, like dependence of the inter-spike period and on the noise 
intensity. Mechanisms of SC and SISR, and their properties, have been compared in [4]. 
Coupling between the neurons which are in the state of SC or SISR could preserve the 
coherence of each of the units and furthermore lead to synchronization of noise induced 
oscillations. This effects have been studied in case of equal units, and in [17] for the case of 

504



 
Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 2011 C-18 

 
one unit in the state of SC and the other in state of SISR. In this section we illustrate the 
main effects of the time-delay in the coupling on the properties for both units in the SC 
state. 

The coherence of noise induced series of spikes in each of the neurons is 
commonly characterized by a kind of signal to noise ration defined by: 
 

   2/1
k

k

TVar

T
SISR                                                                                                          (3) 

 

Where  1 kkk ttT  is the k -th inter-spike time interval and the over line, like kT , 

denotes time averaging. Large SISR  corresponds to high coherence of the noise induced 
spike trains. 

The are different types of synchronization between the two coherently spiking 
neurons that could be of interest. For example, the strongest kind is the exact 

synchronization, i.e. )()( 21 txtx   for all 0tt  , and another commonly studied is the 

synchronization between phases of the two oscillators. We shall analyze the kind of 
synchronization such that each spike of one of the neurons occurs within the duration of 
some spike of the other neuron. This notion of synchrony is motivated by neurological 
considerations [19], and is quantified by the so called coincidence function (CF). This is 
defined as the time average of the ratio between the numbers of spikes of one the neurons, 
which are coincident with some of spikes of the other neuron, the average number of spikes 

per neuron. Two spikes are considered coincident whenever the sum of )()( 21 txtx   is 

larger then some threshold, say the high of spikes }max{ ix . This type of synchrony does 

not assume coherent spiking and is weaker then either exact or phase synchronization.  
In our numerical integration we have used Runge-Kuta 4-th order routine for the 
deterministic part of (2) and the Euler methods for the stochastic part. Many sample paths 

for each values of the variable parameters 2,1D  and   have been calculated. Values of 

SISR  and C  that are presented in what follows represent values that have been obtained 
with single typical sample paths. 

Results of our numerical calculations are illustrated in figures 1, and 2 where fig.1 
corresponds to two SC with 1  and fig.2 corresponds to 1 .  We fix the noise 

intensity of one of the neurons (second in our case), 2D  to the maximal coherence of SC 

type (fig.1 and fig.2) and study the dependence of firing coherence of both neurons and 

coincidence on the noise intensity 2D  of the adjustable unit and on the time-lag  . We 

consider only relatively small time-lags up to the refractory period of a single spike of an 
isolated excitable FHN neuron, which is about 3.1 . Coherence of noise induced 
spiking is not qualitatively affected by weak coupling with arbitrary time-delay. However, 
stronger coupling introduces significant modifications which also very much depend on the 
time-lag as is illustrated in fig. 1,2.  

 
Fig. 1 
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In fig.1a,b we show typical effects of small time-lag, illustrated with 4.0  and 

7.0 , on functions )(log1 210 DSISR  and )(log2 210 DSISR , when both neurons are 

of the SC type and the noise intensity of one of them (second) is held fixed at the SC 
maximum. We can see that those values of the time-lag less then 1 cause similar small 

modifications of the dependencies )(log1 210 DSISR  and )(log2 210 DSISR . However, 

large influence of the time-delay on )(log1 210 DSISR  and )(log2 210 DSISR  is 

demonstrated for all 1 , as is illustrated in fig.2 a,b,c for 1 , 1.1  and 3.1  

respectively. The curves )(log1 210 DSISR  and )(log2 210 DSISR  with 1  are 

qualitatively and quantitatively different from those with 1 . Let us stress that 

deterministic system with delayed coupling of the same coupling strength 1.0c show no 

bifurcation or other qualitative change for any 0 . Thus, qualitative change in the 

properties of noise induced spiking coherence achieved with 1  should be attributed to 
the simultaneous action of noise and time-delay.  
 
 
Fig. 2 

 
Figure 2d illustrate the influence of time-delay on coincidence of spiking of the 

two neurons as measured by the coincidence function. Obviously, when there is no 
interaction time-delay spike in one neuron immediately causes the other neuron to fire so 
the spikes largely overlap and are considered coincident. Spikes also coincide when the 
time-lag is close to the inter-spike interval, if such is relatively well defined. Otherwise 
nonzero interaction time-lag destroys the coincidence of spiking. As the noise becomes 
larger the coincidence that occurs at special values of time-lag decreases. 

In summary we can conclude that small time-lag 1  only slightly changes the 
properties of noise induced coherence in each of the considered cases. On the other hand 

1  introduces significant qualitative and quantitative changes in the functions which 

characterize the noise induces coherence 1SISR  and 2SISR . The firing coherence of 

both neurons as measured by )(log1 210 DSISR  and )(log2 210 DSISR  is significantly 

smaller for any 2D  for 1  then for 1 . The local maxima in )(log1 210 DSISR  and 

)(log2 210 DSISR  that appear for 1  must be considered as a consequence of very 

small variance over long time of the inter-spike intervals and not of large values of these 
intervals. In figure 3 we illustrate the coherent oscillations achieved with 3.1  and 

compare the time series with that for 1  and 1 . It is obvious that the coherence is 

significantly improved in the case 3.1  compared to 1  even though the frequency 
of the spiking is also increased. Let us stress once again that the two deterministic FHN 
neurons in the considered range of the parameters with delayed coupling do not display any 
oscillatory dynamics for any value of time-lag. 
  

Fig. 3 
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4. Summary 
 
 
We have studied a pair of FitzHugh-Nagumo neurons with noise coupled by time-delay 
diffusive coupling. The bifurcation parameters of each of the neurons and the coupling 
strength were such that the only attractor of the system without the noise terms is the stable 
stationary state for any value of the time-lag. Thus the deterministic system is excitable 
with no oscillatory dynamics for any value of the time-lag. Addition of white noise in 
second equation produces spiking that appears periodic for particular values of the noise 
strength. We have studied the influence of time-delay in the coupling on the coherent 
spiking induced by noise in the slow variable, called stochastic coherence (SC). This 
research is complementary to analyzes of the effects of noise on the properties of 
oscillations and synchrony introduced by sufficient time-lag in the delayed coupling. Noise 
induced coherent spiking is studied using the signal to noise ratio and coincidence between 
the two neurons was measured using the coincidence function. As pointed before, the 
isolated neurons without noise were always in the excitable regime and the coupling 
strength was always positive, which guaranties that the train of spikes can only be 
introduced by noise, and not by time-delay. Then we numerically studied changes in the 
signal to noise ratio introduced by small time-delay for each of the neurons in the pairs of 
SC-SC. Our main results can be summarized as follows: a coupled pair of SC-SC with the 
time-lag 1  induces only small changes to the signal to noise ratio. However, the time-

lag 1  and sufficiently strong coupling drastically change signal to noise ratio in the 
quantitative and qualitative way. New local minima and maxima of the signal to noise ratio 
as a function of the noise strength are created by the time-lag 1 , and the coherence of 
spiking measured by (3) can be greatly enhanced. We also observed coincident spiking for 
small noise intensity and time-lag proportional to the inter-spike interval of the coherent 
spike trains. 
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FIGURE CAPTIONS 
 

Figure1: Illustrates coherence in the SC-SC case. 2D of the second (SC) neuron is fixed to 

01.02 D  . 2D  of the second neuron, shown on the axes as 210log D  is adjustable. 

1SISR (circles) and 2SISR (triangles), for 0 (1a,1b black line),  4.0 (1a, 

red/gray line) and 7.0  (1b, green/gray line) are shown. Calculated values of 2,1SISR  

are indicated by symbols and the lines serve only to connect the values corresponding to the 

same   and different 210log D . 

 
 

Figure2: Illustrates coherence in the SC-SC case. 2D of the second (SC) neuron is fixed to 

01.02 D  . 2D  of the second neuron, shown on the axes as 210log D  is adjustable. 

1SISR (circles) and 2SISR (triangles), for 0 (2a,b black line), 1.0 (2a, 

orange/gray line),  1.1  (2b, blue/gray line) and  3.1  (2c, cyan/gray) are shown. In 

2d coincidence functions C for 0 (black full line), 1 (black dotted line) and 

7.2 (gray dotted line) are shown. Calculated values of 2,1SISR  and C are indicated 

by symbols and the lines serve only to connect the values corresponding to the same   and 

different 210log D . 

 
 

Figure3:  Time series )(1 tx  with 01.02 D  for the first neuron and for 3a)  ,0  

01.02 D  for the second; 3b) ,0 001.02 D  for the second; 3c) 1 , 

01.02 D  for the second and 3d) 3.1 , 001.02 D , corresponding to a local 

coherehce maxima in fig.2c, for the second. 
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ABSTRACT. The paper considers the case of optimum design of structures with 
multipurpose constraint functions. 
A part of the paper addresses the general optimum criterion and it is focused on the case of 
optimum design of the girders with two behaviour constraint functions. There are frequent 
considerations of optimum design cases of multiple loads with one constraint function or of 
optimum design cases of single loads that are individually associated to one constraint  
function.  As opposed to them, the problems of multipurpose behaviour constraints of 
structures are rare and more complex. 
This paper presents an optimum design of beams with two functions referring to different 
physical behaviours .  Each of them is related to different energies; one behaviour is elastic 
with bending ellastic deformation energy and the other is plastic behavior with plastic 
energy dissipation. Examples of such optimum designs are given in the paper. 
 
Keywords: optimum design, multipurpose behavior constraints, plasticity. 

 
 
  
1. Introduction  
 
The optimum conditions related to successive generalizations of the function of cost, and to 
the various load conditions or behaviour constraints. Cases where optimization is treated 
under multiple loads are associated with the same behaviour constraint are frequent. There 
are also loads which are individually loaded with one behaviour constraint which is of the 
physical nature. This category of problems is relatively new, and optimizations for multiple 
functions of behaviour constraints under different loads are rare. In this paper is presented 
the optimum condition with two functions formulated by the various physical behaviour, 
elastic on one end and plastic on the other. The optimum criterion is obtained observing the 
general optimum criterion. The examples taken are of the optimum beam design with 
practical behaviour limitations: the limit load an characteristic generalized displacement in 
the elastic region. 
 
 
2. Optimum condition  
 
Designing of the structure is aimed to define the sense in which we wish to achieve 
optimization. One of the cases is determining the least structural weight, and also very 
frequent case is minimization of structure cost C in its broader sense. The parameters e1, 
e2,... are variable designing parameters, for instance, shell thickness. 
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An assumption that C (Da, Db,..., Du) is a convex function is introduced. Each behaviour 
constraint function is added according to the principle of the minimum. Thus there is the 
inequation  

        dqDdqD bi
I
bbib ,,      (1)   

where it is assumed that dimensioning number I is satisfied by the behaviour constraint 
relation  with the equality sign, and that dimensioning number II, which is acceptable, is 
satisfied both by the sign of equality and of the inequality.  
The optimum criterions is: „If any dimensioning satisfies “u“ functions of behaviour 
constraint  with the sign of equality the expression  
 

0



i
iD

C                                          (2)   

is sufficient to make this dimensioning optimum. 
 
 
2.1. The optimum condition for two functions of  behaviour constraint 
 
From the optimum criterion (2) here the criterion condition becomes: 
 

0



a
aD

C  ,            0



b
bD

C  ,                      (3) 

where αa and αb are constants. 
The behaviour constraint functions are here the bending elastic deformation energy and the 
specific energy of plastic deformation Db. 
There is: 

kk
B

Da 2
 ,    (4) 

here: 
B- is the rigidity of the girder, 

k, k - is the curve of elastic line; 

kMD pb
 ,    (5) 

where Mp is the moment of plasticity. Starting from relation C=αb, the following is 
obtained  

                                                   kkk bbaa
                                          (6)  

As αa, αb and α are random designed constants, and when taking care about the accuracy 

degree , the expression (6) gets the following form: k
 

1 kkk                                                   (7) 

and this represents the optimum condition in the case when these constraints have influence 
on the optimum dimensioning of the girder. 
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3. Optimum design  
 
Without any limitations to our considerations let us take a random form of optimum 
continuous load of the intensity p(x) which is symmetrical in respect to the middle of the 
simple beam freely supported on its ends.  
For the beam there is a limit load defined by the factor s and there is a limitation of 

displacement at the center of the beam 







2

L . The function of the cost will be chosen so 

as the beam is designed with minimum usage of material. 
We assume that a part of beam will be in the elastic zone, and the remaining parts in the 
completely plasticized zone at the moment of failure.  
In this manner will the condition for the zone 0 ≤ x ≤ a will include both behavior 
constraint functions, thus the following is obtained: 
 

1kk   .    (8) 

 
Regarding that the relation of the beam rigidity and the bending moment has the following 
form  

d

sM
B  ,    (9) 

 
at the border of the interval, from the condition  
 

1kk     (10) 

 
it is obtained: 

 
2

2 ,2

ad

apMs
    (11) 

 
Combination of the expressions (9) and (11) is written as  
 

 
1

,


aM

apM
                (0 ≤ x ≤ a)   (12) 

 
If now the condition that the maximum displacement of the beam in the middle has been 
reached is expressed in the following way  
 

2

2/

20 1

kL
dv

B

MM
dx

B

MM L

a

a

  ,   (13) 
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that is, 

 
    kLdxMM

apM

aM
dxM

m

a L

a















 

0

2/

2

1

1 ,

,12
,  (14) 

the sought dimensioning b(x) are obtained from the expression B1 and MMB 2 . 

 
 
3.1 Freely supported beam with constant evenly distributed load  
 
Starting form the expression from the bending moment in this case  
 

   xL
px

xpM 
2

,    (15) 

The condition (12) obtains the form  

1



xL

aL
                     (0 ≤ x ≤ a)   (16) 

 
the limit value of plastic and elastic zone is now determined, and after integration, those are 
the equations  
 

   kL
L

aLLa
aLs

d

s

da














24

7
23

15

2

2

2/5
2/3

2

,  (17) 

 
and the dimensioning expressions are: 

   xL
d

spx
B 

21     ;    (18) 

  xLaL
d

spx
B 

22 .   (19) 

 
When this case of dimensioning is in question, one should endeavor to avoid the trivial case 
of dimensioning, which is indicated in (5). 
 
Parameter kSLd determines the area in which both constrains will be simultaneously 

valid, and that is: 
8 ≤ α ≤ 9,835               (20) 
 

For the values below the lower limit, dimensioning will be determined, and the plastic 
dimensioning will be relevant, while for α > 9,835 the optimum dimensioning will be in 
the elastic zone only. 
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3.2 The case of the beams with technological limitations  
 
The problem of the beam considered in the previous part of the paper will be extended by 
the requirement that there is a lower limit of the girder width b0. In this manner the actual 
girder, in which there is influence of the transversal force, will be able to receive this 
influence. We are looking for the optimum design of the beam of minimum volume, 
requiring: 

- That the minimum width of the beam is b0, i.e. b(x) ≥ b0; 
- That due to the evenly distributed load p the displacement of the middle of the 

beam is within previously set range; 
- That the failure load parameter is higher than the previously set values (see Fig.1.) 

 

 
 

The optimum condition for the zone a1 ≤ x ≤ a2, becomes: 
 

 
1

,

2

2 
Ma

apxM
,    (21) 

For the zone 0 ≤ x ≤ a1 
 
 

1
,

,

1
2

2

2 
apMa

apxMM
;                        (0 ≤ x ≤ a1)  (22) 

 
 
3.2.1 Constant distributed load  
 
The optimum criterion becomes 
 

   ;12 



xL

aL
 (a1 ≤ x ≤ a2)    

 

;1
)(

))((
2

1
2
1

2
2





aLa

aLxLx
 (0 ≤ x ≤ a1) .   

 
 
For dimensioning, the following condition is used  

2

2/

0 0 2

2

1

1 kL
dx

MM
dxM

s

d
dx

B

MM L

a

a

a

a

  
  (23) 
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and the following is obtained: 
 

  0bxb                        (0 ≤ x ≤ a1)  (24) 

   xpsMxY ,        (a1 ≤ x ≤ a2)  (25) 

  MMxB 8          (a2 ≤ x ≤ L/2)  (26) 

 
 
In the special case, when B0=0, the beam with technological limitations is reduced to the 
case of the beam without technological limitations which has already been considered, and 
for which a1=0 and a2=a. If then the value is a=0, we will have such optimum dimensioning 
in the elastic zone which can resist the anticipated plastic failure load. 
In the other limit case, when a=L/2, we will have such optimum plastic dimensioning 
which is capable to meet the condition that the maximum displacement is lower than the 
previously sat value of this displacement. 
The borders of the valid zone of elastic, mixed and only plastic dimensioning are 
determined by the relation (20). 
 
 
3. Cantilever beam case  
 
In this case, the bending moment is given by the expression  

    .
2

2
0xp

M     (27) 

 
The optimum condition for the zone a ≤ x ≤ L is in the plastic zone (Fig. 2.). The optimum 
condition for this zone yields  

1
x

a
     (28) 

 
and it is satisfied in all the points of the plasticized zone because x>a. 
 
 

 
 
For determination of the plasticized zone, we start from the equation  
  
 

   kLxdxdxMM
apM

a

m

a

a


















 
0

1
2

1

1

)(
),(

1
 (29) 
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After determining the value of the integral and after arrangement, the following is obtained  

kLmLa 1059 22    .   (30) 
 

Two behaviour constraint functions of the cantilever beam will have simultaneous effects in 
dimensioning if the parameter β is in the range  

4,05,0      (31) 

 
Purely elastic optimum dimensioning at the action of the load sp0 will be capable not to 
sustain plastic failure at the previously set value of the load parameter in this zone 
when 4,0 . For  5,0 we have purely plastic optimum design for which the 

maximum displacement, that is displacement of the free end of the cantilever is smaller 
than the previously set displacement limit. 
 
 
4 Conclusions  
 
(a) This paper laid out the optimum conditions and optimum plastic dimensioning 
examples of the beam supported on two points, separately for two zones in the surrounding 
of the support points and for the central zone of the beam. It has been proved that the zones 
in surrounding the support points are plasticized, and that the central zone is in the elastic 
zone and the validity ranges of two behavior constraint functions have been determined.  
(b) An example of a cantilever beam was presented for which the optimum condition was 
determined where two behavior constraint functions are valid. Here, too, was determined a 
zone when there is only elastic, only plastic and mixed optimum dimensioning. 
(c) The examples of simpler beams presented here represent a basis for solution of other 
more complex cases in an analogous way, and comprise a sort of a catalogue of solutions of 
simpler problems which can also serve for assessment of quality of approximate 
dimensioning which is solved in the framework of numerical analysis.  
 

This research was conducted in the framework of the research program in the field of 
technological development in the period 2011-2014, in the domain of Transport, town 
planning and civil engineering, project no. 36016, entitled Experimental and theoretical 
research of linear and planar systems with semi-rigid joints from the aspect of second 
order theory and stability University of Nis, The Faculty of Civil Engineering and 
Architecture.  
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Abstract. The Lyapunov exponent and moment Lyapunov exponents of two degrees-of-
freedom linear systems subjected to real noise are investigated. The method of regular 
perturbation is used to determine the explicit asymptotic expressions for these exponents in 
the presence of small intensity noises. The Lyapunov exponent and moment Lyapunov 
exponents are important characteristics for determining the almost-sure and moment 
stability of a stochastic dynamic system. As an example, we study the almost-sure and 
moment stability of a thin-walled beam subjected to eccentric stochastic axial load. 

 
 
 

1. Introduction  
 
In recent years there has been considerable interest in the study of the dynamic stability of 
non-gyroscopic conservative elastic systems whose parameters fluctuate in a stochastic 
manner. To have a complete picture of the dynamic stability of a dynamic system, it is 
important to study both the almost-sure and the moment stability and to determine both the 
maximal  Lyapunov exponent and the pth moment Lyapunov exponent. The maximal 
Lyapunov exponent, defined by 

 )q;t(log
t

1
lim 0
t

q q


 . (1) 

where )q;t( 0q is the solution process of a linear dynamic system. The almost-sure stability 

depends upon the sign of the maximal Lyapunov exponent which is an exponential growth 
rate of the solution of the randomly perturbed dynamic system. A negative sign of the 
maximal Lyapunov exponent implies the almost-sure stability, whereas a non-negative 

value indicates instability. The exponential growth rate ])q,q;t([E
p

00
q  is provided by 

the moment Lyapunov exponent defined as 

 ])q;t([Elog
t

1
lim)p(

p

0
t

q q


 . (2) 
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where  E  denotes the expectation. If ,0)p(q   then, by definition 

0])q,q;t([E
p

00 q  as t  and this is referred to as the pth moment stability. 

Although the moment Lyapunov exponents are important in the study of the dynamic 
stability of stochastic systems, the actual evaluations of the moment Lyapunov exponents 
are very difficult. 
Arnold et al. [1] constructed an approximation for the moment Lyapunov exponents, the 
asymptotic growth rate of the moments of the response of a two-dimensional linear system 
driven by real or white noise. A perturbation approach was used to obtain explicit 
expressions for these exponents in the presence of small intensity noises. Khasminskii and 
Moshchuk [2] obtained an asymptotic expansion of the moment Lyapunov exponents of a 
two-dimensional system under white noise parametric excitation in terms of the small 
fluctuation parameter , from which the stability index was obtained. Sri Namachchivaya et 
al. [3] used a perturbation approach to calculate the asymptotic growth rate of a 
stochastically coupled two-degrees-of-freedom system. The noise was assumed to be white 
and of small intensity in order to calculate the explicit asymptotic formulas for the 
maximum Lyapunov exponent. Sri Namachchivaya and Van Roessel [4] used a 
perturbation approach to obtain an approximation for the moment Lyapunov exponents of 
two coupled oscillators with commensurable frequencies driven by small intensity real 
noise with dissipation. The generator for the eigenvalue problem associated with the 
moment Lyapunov exponents was derived without any restriction on the size of  pth 
moment. Kozić et al. [5, 6] investigated the Lyapunov exponent and moment Lyapunov 
exponents of two degrees-of-freedom linear systems subjected to white noise parametric 
excitation. In the first, almost-sure and moment stability of the flexural-torsion stability of a 
thin elastic beam subjected to a stochastically fluctuating follower force were studied. In 
the second, moment Lyapunov exponents and stability boundary of  the double-beam 
system under stochastic compressive axial loading were obtained. Pavlović et al. [7] 
investigated the dynamic stability of thin-walled beams subjected to combined action of 
axial loads and end moments. By using the direct Lyapunov method, the authors obtained 
the almost-sure stochastic boundary and uniform stochastic stability boundary as the 
function of characteristics of stochastic process and geometric and physical parameters. 
The aim of this paper is to determine an asymptotic expansion for the moment Lyapunov 
exponent of the four-dimensional stochastic system under real noise excitation, which is 
modelled as an Orstein-Uhlenbeck process. The noise is assumed to be white noise of small 
intensity such that one can obtain an asymptotic growth rate. We apply the perturbation 
theoretical approach given in Khasminskii and Moshchuk [2] to obtain second-order weak 
noise expansions of the moment Lyapunov exponents. The Lyapunov exponent is then 
obtained using the relationship between the moment Lyapunov exponents and the 
Lyapunov exponent. These results are applied to study the pth moment stability and almost-
sure stability of a thin-walled beam subjected to eccentric stochastic axial loads. The 
stability regions for the I-cross section and narrow rectangular cross section are shown in 
the plane of variances of stochastic force and viscous damping coefficient. The motion of 
such an elastic system is governed by the partial differential equations in the paper by 
Pavlović et al. [7].  
 

2. Theoretical formulation  
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Consider linear oscillatory systems described by equations of motion of the form 

 
 
  ,0qKqK)t(q2qq

,0qKqK)t(q2qq

22212122
2

2
2
22

21211111
2

1
2
11








. (3) 

where 21 q,q  are generalized coordinates, 21,  are natural frequencies and 2
2

1
2 2,2   

represent small viscous damping coefficients and )t(  is an Ornstein –Uhlenbeck process 

given by 

 )t(dWdt)t()t(d  , (4) 

where )t(W is a standard Wiener process with. The correlation function and spectral 

density of the Ornstein-Uhlenbeck process )t(  are  

 ,e
2

)T(R T
2






  
22

2

)(S



 . (5) 

Using the transformation 

 4223221111 xq,xq,xq,xq   , (6) 

and denoting 

 
i

ij
ij

K
p


 , (i, j=1,2), (7) 

the above Eq.(3) can be represented in the first-order form by a set of stochastic differential 
equations 

   X)t(BXAA
dt

Xd 2   0 , (8) 

where  T4321 xxxxX is the state vector of the system and matrices A0, A and B 

are constant 44  matrices  given by 
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  (9) 

Applying the transformation 

 

,p    ,20,20,20

,)xxxx(aP

,sinsinax,cossinax,sincosax,coscosax

21

2p2
4

2
3

2
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2
1
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24231211
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 (8) 
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yields the following set of Itô stochastic equations for the pth power of the norm of the 
response and phase variables ),,( 21   

 

1,2.i   ,dt),,,(hd

  ,dt),,,(sd    ,dt),,,(gPdP

2

1j
21ij

j
1i
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 (9) 

In the above transformations, a represents the norm of the response, 1  and 2  are the 

angles of the first and second oscillators, respectively, and   describes the coupling or 

exchange of energy between the first and second oscillator. In the previous equation we 
introduced the following marking 
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Following Wedig [8], we perform the linear stochastic transformation 

 ,S),,,(TP,P),,,(TS 21
1

21    (11) 

introducing the new norm process S by means of the scalar function ),,,(T 21  which is 

defined in the stationary phase processes 21,  and    

   . dt),,,(TLεPdS 212
2
1110 LL   (12) 
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Here L0, L1 and L2  are the following first and second-order differential operators 
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 (13) 

If the transformation function ),,,(T 21   is bounded and non-singular, both processes P 

and S possess the same stability behavior. Therefore, transformation function 
),,,(T 21  is chosen so that the drift term, of the Itô differential Eq. (12), does not 

depend on the phase processes , 21,  and  , so that 

 dt),,,(T)p(PdtS)p(dS 21  . (14) 

By comparing Eqs. (12) and (14), it can be seen that such a transformation function 
),,,(T 21   is given by the following equation 

   ),,,(T)p(),,,(TLε 21212
2
1110 LL  . (15) 

Eq. (15) defines an eigenvalue problem for a second-order differential operator of three 
independent variables, in which )p(  is the eigenvalue and ),,,(T 21   the associated 

eigenfunction. From Eq. (14), the eigenvalue )p( is seen to be the Lyapunov exponent of 

the pth moment of system (8). This approach was first applied by Wedig [8] to derive the 
eigenvalue problem for the moment Lyapunov exponent of a two-dimensional linear Itô 
stochastic system. In the following section, the method of regular perturbation is applied to 
the eigenvalue problem (15) to obtain a weak noise expansion of the moment Lyapunov 
exponent of a four-dimensional stochastic linear system (3). 
 

3. Weak noise expansion of the moment Lyapunov exponent 
 
Applying the method of regular perturbation, both the moment Lyapunov exponent )p(  

and the eigenfunction ),,,(T 21  are expanded in power series of ε as 
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Substituting the perturbation series (16) into the eigenvalue problem (15) and equating 
terms of the equal powers of ε leads to the following equations 
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where each function ,2,1,0i,),,,(TT 21ii   must be positive and periodic in the 

range 20  ,  20 1  and  20 1 .  

 

3.1. Zeroth-order perturbation 
 
The zeroth-order perturbation equation is first equation of system (17) 

  00
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Since the momnet Lyapunov exponent 0)p(   passes through the origin, i.e.  
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one obtain 0)0(j  ,  j=0, 1, 2, … Because the left side of equation (18) does not depend 

on p, 0)0(0  implies 0)p(0  . Applying the method of separation of variables and 

letting  
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Eq. (18) becomes  
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and will be satisfied only if  
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where are a1 and a2 constants. Solutions of previous systems are  
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For ),,,(T 210  to be periodic function of period 2, constants must be 0a1  ,  0a2   

and 0C3  . Without reducing the generality, we adopt that the integration constants 

1C1  , 1C2  , 1C4  . Finally, the solution of zeroth-perturbation is 

 0)p(0  ,   0210 ),,,(T . (23) 

where  0  is a function to be determined.  

The associated adjoint differential equation of (18) is  
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Employing the method of separation of veariables with  
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it is easy to show that  
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i.e. the Ornstein-Uhlenbeck process )t(  is a normally distributed random variable with 

mean 0  and standard deviation  2 . Finally, the solution of (24) is 

    


 *
0

*
0221

*
0 Z

4

1
),,,(T ,  (27) 

where  *
0  is a function to be determined.  

 

3.2. First-order perturbation 
 
Since 0)p(0  , the first-order perturbation becomes 

 010110 T)p(TLTL  . (28) 

Form the Fredholm Alternative, for previous equation to have nontrivila solutions, it is 
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where )g.f(  denotes the inner product  
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Both ),,,(s 211   i ),,,(g 211  are linear function of , it is required that 
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Equation (29) can be satisfied only if 

 0)p(1  .  (32) 

Now, equation (28) becomes 
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The solution of the previous equation we can determine on the form 
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where, according to the author of [9], ),,(S 211   and ),,(Q 211  are  
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 (35) 

Finally, function ),,,(T 211  is  
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where   1,2...6i   ,,ff 21i1i1   are function on the form 
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In the previous equation we introduced the following marking 
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
 

 1111 2sin2cos2J  ,  2222 2sin2cos2J  , (38) 

      212121M sincosJ  ,   

      212121P sincosJ  . 

 

3.3. Second-order perturbation 
 
With respect to Eqs. (23) and (32), the second-order perturbation becomes 

 02021120 T)p(TLTLTL  . (39) 
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Form the Fredholm Alternative, for previous equation to have nontrivial solutions, it is 
required that  

     0T,LTL)p(T,TL *
0021102

*
020  . (40) 

After integration by 1 , 2  i , the previous equation has the form 
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Where the function ),,(R 210  , ),,(R 211   i ),,(R 212  given by the expressions 

       

         , 4cosPPP
128

2pp
2cosPP

16

p

32

P2pp

2

p
                      

PPp6Pp310
128

p

2

p
),,(R

63165
2

21

63121210








 






 

         

         ,SS 2coscotptgpcotptgp
32

1

4sin
64

PPP1p
2sin

32

PP1p

32

P2p

2

1
),,(R

2121
2
21

2
12

2
21

2
12

651652
21211











 





 










 4cos
128

PPP
2cos

32

PP

128

PP3P2P
),,(R 631435431

212 , (42) 

with the constants given by  
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 (43) 

How Eq. (41) must be satisfied for arbitrary function  *
0 , this leads to the following 

differential equation for )(0   

   ,0L 0   (44) 

where  

     ).(R)p(
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

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  (45) 

As in Wedig [8], the solution of Eq. (44) can be calculated from an orthogonal expansion, 
where may assume 0  as a Fourier cosine series [10].  Thus, inserting  

   

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N

0k
k20 k2cosK . (46) 
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When N tends to infinity, the solution (46) of equations tends to the exact solution.  The 
existence of a nontrivial solution for k2K  requires that the determinant of the coefficient of 

matrice  
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equals zero, where  

        

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2

0

mn dn2cosm2cosL a , (m, n=0,1 2, 3, ... N), (48) 

Assuming a solution for the function of  0  to take only the first member of the cosine 

series, i.e. 0K , the conditions of existence nontrivial solution 0a00   gives us the solution 

of )p(2 in the form 
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When  , the Ornstein-Uhlenbeck process )t( approaches )t(W , where )t(W  

denotes formally a unit Gaussian white-noise process. In this case, the spectral density of 
stochastic proces is constant  
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212121 SS2S2S  , (50) 

and, from Eq. (49), one obtains the moment Lyapunov exponent in the form 
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obtained by Janevski at all. [11]. 
Assuming a solution for the function of  0  in the form  

       2cosKK 200 , (52) 

we can determine moment Lyapunov exponent )p(2 in form 

    

 

    ,)p(DPP
16

1
PP

64

3

256

p11

512

p3

P
64

1

256

p21

512

p13

2

p
)p(

25463

2

1

2

212





















 (53) 

where 
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(54) 

 

4.  Application to a thin-walled beam subjected to eccentric stochastic axial load  
 
 
The purpose of this section is to present the general results of the above sections in the 
context of real engineering applications and show how these results can be applied to 
physical problems. To this end, we consider the flexural-torsinal vibration stability of a 
homogeneous, isotropic, thin waled beam with two planes of summetry which is subjected 
to eccentric axial load (Fig.1.a) where R is eccentricity. By transferring the eccentric load to 
the plane of symmetry of the cross-section of the beam, an axial load and a couple are 
obtained which are shown in Fig. 1.b. 
 

 
a. 

 
b. 

Fig. 1 Geometry of a thin-walled beam system 
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The governing differential equations for the coupled flexural and torsional motion of the 
beam can be written as (Pavlović et al. [7]) 
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 (55) 

where U is the flexural displacement in the x-direction,  is torsional displacement,  is 
mass density, A is area of the cross-section of beam, yI , pI , SI  are axial, polar and 

sectorial moment of inertia, J is Saint–Venant torsional constant, E is Young modulus of 
elasticity, G is shear modulus, U ,   are viscous damping coefficients, T is time and Z is 

axial coordinate. Using the following transformations 
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 (56) 

where l is the length of the beam, crF  is Euler critical force for the simply supported narrow 

rectangular beam, S1 and S2 are slenderness parameters, 1  and 2  are reduced viscous 

damping coefficients, we get governing equations as 
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 (57) 

Taking free warping displacement and zero angular displacements into account, boundary 
conditions for the simply supported beam are 
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Consider the shape function )zsin(  which satisfies the boundary conditions for the first 

mode vibration, the displacement )z.t(u  and twist angle )z,t(  can be described by 
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 zsin)t(q)z,t(u 1  ,  zsin)t()z,t( 1  . (59) 

Substituting )z,t(u  and )z,t(  from (59) into the equations of motion (57) and employing 

Galerkin method unknown time functions can be expressed as 
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If we define the expressions 
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and assume that the compressive axial force is stochastic processes (4) with small intensity 

 )t()t(F  , (62) 

then Eq. (57) is  reduced to Eq. (3). 
Using the above result for the moment Lyapunov exponent 
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with the definition of the moment stability 0)p(  , we determine analytically (the case 

where N = 0, )p(2 is shown with Eq.(49)) the pth moment stability boundary of the 

oscillatory system in the second-order perturbation 
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where, for the sake of simplicity, we assume, in previous equation and in what follows, that 
two viscous damping coefficients are equal 

  21  (65) 

It is known that the oscillatory system (60) is asymptotically stable only if the Lyapunov 
exponent 0 . Then expression 

 )(O 3
2

2  , (66) 

is employed to determine the almost-sure stability boundary of the oscillatory system in the 
first-order perturbation (the case where N = 0) 
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For the case where N = 1 ( )p(2 is shown with Eq.(53)), the pth moment stability 

boundary of the oscillatory system in the second-order perturbation is expressed by  
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and the almost-sure stability boundary is expressed by, when 0 , 
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 (69) 

 

5. Numerical results and conclusions 

  
Inequalities (64) and (69) give the possibility to obtain almost-sure stability regions for 
thin-walled beams. Also, by using expressions (67) and (68), we can determine the pth 
moment stability regions. Numerical results are calculated for steel beams with elastic 
constant ratio 59.2GE   and two types of cross sections: I-section and narrow 

rectangular cross section.  
With respect to standard I-section, we can approximately take 2bh  , 11b 1  , where h 

is the depth, b is the width, d is the thickness of the flanges and 1 is the thickness of the rib 

of I-section. These ratios yield  21 hR6S    22 h01928.0S l  and 276.1e  . For the 

thin-walled cross section, according to assumption 1.0h  ,  21 hR12S  , 

 22 h01928.0S l  and 0e  , using the approximation   1h1 2  . All examples in this 

paper were presented to the values of small parameter 1.0  and the relative eccentricity 
02.0r  .  
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Fig. 2 Stability regions for standard I-section 
 
Fig.2 shows the almost-sure and pth moment stability boundaries with respect to the 
damping coefficient  and the intensity of random process  for the standard I-section. The  
figure shows the stability boundaries for when this function is assumed in the form of 
Fourier cosine series (46) taking the first one or two members. Almost sure stability 
boundaries coincide, while the stability limit for the values p = 2 and p = 4 is slightly 
different, with stricter criteria for the case N = 1. This is not true in the case of rectangular 
plates (Fig 3.), when the criteria for the case N =1 is a lot tighter, and not taking another 
member of the line (46) can lead to erroneous conclusions.  
 

 

 
 

Fig. 3 Stability regions for the narrow rectangular cross section 
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Fig. 4 Moment Lyapunov exponent )p(  for standard I-section 

Typical results of the moment Lyapunov exponents )p(  for system (55) in the second 

perturbation are shown in Fig. 4 for I-section and Fig. 5 for rectangular cross section. Both 
views are presented for values of damping coefficient 2.0 and characteristic of 

stochastic process  2  and 5 . The moment Lyapunov exponents are shown for the 
case N = 0, 1 and 2, for when we take the three members of the order (46). It is observed 
that the discrepancies exist between the curves for case N=0 (does not depend on the  )  

and the cases when function T0 depend on  (N=1 and 2).  

 
 

Fig. 5 Moment Lyapunov exponent )p(  for the narrow rectangular cross section 
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Further increase of N number of members does not make sense, because the curves merge 
into one. Generally speaking, function 0 should assume the form (46), where the satisfying 
accuracy is achieved by getting the first two members.  
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Abstract. In this paper the consequences of the assumption that Λε = Λε (θ) (irrespective
of whether the classical entropy flux relation is valid or not) are investigated. We consider it
as a sufficient condition in order to derive the entropy flux – heat flux relation for all isotropic
materials as well as for some crystal classes including transverse isotropy, orthotropy, triclinic
systems and rhombic systems. Under this assumption first the entropy flux and heat flux
relation for viscoelastic materials, isotropic elastic materials, transversely isotropic elastic
bodies and transversely isotropic rigid heat conductors examined by I. Müller and I-Shih
Liu is reexamined. In addition all crystal classes given in [14], for which representations
of anisotropic functions with respect to the symmetry groups of these crystal classes can be
expressed in terms of isotropic functions, are considered. For all of them the entropy flux
and heat flux relation is derived explicitly. The procedure is very general in the sense that the
constitutive relations used here are non linear. Particularly, it appears that all crystal elastic
bodies, examined here, are hyperelastic which is a generalization of I-Shih Liu conclusion for
the transversely isotropic bodies he examined.

Also, the entropy flux and heat flux relations were derived for the all crystal classes when
considering them as rigid conductors.

1. Introduction

One of the important problems in thermodynamics is the relationship between the entropy
flux and the heat flux for phenomena far from equilibrium.

The entropy principle based on the Clausius-Duhem inequlity in the spacial description
is

ρη̇ +div
q
θ
−ρ

r
θ
≥ 0, (1)

where ρ is the masss density, θ is the temperature, η is the specific entropy density, q
the heat flux and r the heat supply; by (̇) and "div" the time derivative and divergence
operator are denoted, respectively. It has been widely adopted in the development of modern
rational thermodynamics, after the fundamental work of Coleman and Noll [1]. The main
assumptions, motivated by the result of classical thermostatics, are that the entropy flux ΦΦΦ
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and the entropy supply s are proportional to the heat flux and the heat supply, respectively.
Moreover, both constants of proportionality are assumed to be the reciprocal of the absolute
temperature., i.e.

ΦΦΦκ =
1
θ

qκ , s =
1
θ

r. (2)

These main assumptions, while tacit in the classical theory of continuum mechanics, are
not particularly well motivated for materials in general. In fact, it is known that they are
inconsistent with the kinetic theory of ideal gases, and are also found to be inappropriate to
account for the thermodynamics of diffusion.

There is an alternative approach to the formulation of the second law of thermodynamics
which has been extended and applied to nonequilibrium thermodynamics by J. Serrin [2] and
Šilhavy [3] and summarized by C. Truesdell and S. Bharatha [4]. See also Muschik [5]

One of the extension of this inequality has been proposed by I. Müller [6], [7]. It is
usually called the entropy inequality and seems to be the most general formulation of the
continuous second law of thermodynamics which has been proposed so far. In this theory,
Müller [8] abandon the assumptions, given in (2), by treating the entropy flux ΦΦΦ and the heat
flux vector q as independent constitutive quantities and hence leaving the entropy inequality
in its general form

ρη̇ +divΦΦΦ−ρs≥ 0. (3)

Making use of this inequality Müller [7] first proved that for viscous heat-conducting fluids
and isotropic thermoelastic bodies [6], the entropy flux is proportional to the heat flux with
the coefficient, called the coldness, depending only on the empirical temperature.

Further, I-Shih Liu proposed in [9] a method of exploitating the inequality (3) which
is of the classical method of Lagrange multipliers in mechanics. Instead of this inequality
restricting the solution of field equations he consider solutions of an extended inequality
which should hold for all fields. This can be done if one consider the field equations as
constraints on solutions of the energy inequality.

Recently Liu [10] analyzed the thermodynamics theory of viscoelastic bodies and
proved that for isotropic viscoelastic materials, the results are identical to the classical results
(2)1. In the same paper, he also proved that the body is hyperelastic as a consequence of the
Lagrange multiplier Λε = Λ(θ), irrespective of whether the classical entropy flux relation is
valid or not.

However, for anisotropic elastic materials in general, the validity of the classical entropy
flux relation is yet to be explored.

The first contribution in this direction has been given very recently by Liu [11]. It
is proved by considering transversely isotropic elastic bodies that the classical entropy flux
relation (2)1 need not be valid in general. The same conclusion also holds for transversely
isotropic rigid heat conductors [12].

In this paper we explore the functional dependence of the Lagrange multiplier Λε =
Λ(θ), irrespective of whether the classical entropy flux relation is valid or not in general.
The consequence of this enable us to derive the entropy flux and heat flux relations for some
crystal classes including transverse isotropy, orthotropy, triclinic systems, monoclinic systems
and rhombic systems.
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2. The entropy principle

Here we present the basic idea of the entropy principle proposed by Müller and I-Shih Liu
for viscoelastic materials. We state the balance laws of mass, linear momentum and energy

ρ̇ +ρdivẋ = 0,

ρ ẍ−divT = ρb, (4)
ρε̇ +divq−T·gradẋ = ρr,

where x is the spacial position material particle X , T is Cauchy stress tensor and ε is the
specific internal energy density; the external supplies b and r are given.

Note that for solid bodies it is more convenient to use a referential description. Also
since constitutive relations do not depend on external supplies, in exploiting thermodynamic
restrictions it suffices to consider only supply-free bodies. Then we have the following
balance laws

ρ = J−1ρκ ,

ρκ ẍ−DivTκ = 0, (5)
ρκ ε̇ +Divqκ −Tκ · Ḟ = 0,

and the entropy inequality

ρκ η̇ +DivΦΦΦκ ≥ 0. (6)

Here the first Piola-Kirchhoff stress tensor Tκ , the material heat flux vector qκ and the
material entropy flux vector ΦΦΦκ are related to the Cauchy stress tensor T, the heat flux vector
q and the entropy flux vector ΦΦΦ by

Tκ = JTF−T , qκ = JF−1 q, ΦΦΦκ = JF−1 ΦΦΦ, (7)

where F = ∇x is the deformation gradient in referential coordinates and J = |detF|. "Div" is
the divergence operator with respect to the referential coordinates.

It has been shown that the entropy principle imposes severe restrictions on constitutive
functions and the exploitation of such restrictions based on the Clausius Duehem inequality
are relatively easy. For elastic materials, in general, the thermodynamic restrictions can be
easily obtained by the well-known Coleman-Noll procedure [1].

On the other hand, the exploitation of the entropy principle based on the general entropy
inequality for a supply free body, first considered by Müller [6], [7], was much more difficult
and later the procedure, based on the use of Lagrange multipliers, has been improved greatly
by Liu [9]. The derivation of the relation between the entropy flux and the heat flux, referred
to simply as entropy flux relation, is a typical problem in this new theory. The problem usually
relies on the isotropic properties of material bodies with the use of either explicit isotropic
representations or the flux relation theorems for isotropic vector functions given in [13].

Here we outline the analysis for isotropic viscoelastic materials with isotropic elasticity
as a special case. The constitutive relations for viscoelastic materials can be written as
functions of the state variables

(
F, Ḟ, θ , gκ

)
, (8)
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i.e.

Tκ = T̂κ
(
F, Ḟ, θ , gκ

)
,

qκ = q̂κ
(
F, Ḟ, θ , gκ

)
,

ε = ε̂
(
F, Ḟ, θ , gκ

)
, (9)

η = η̂
(
F, Ḟ, θ , gκ

)
,

ΦΦΦκ = Φ̂ΦΦκ
(
F, Ḟ, θ , gκ

)
,

where gκ = ∇θ , θ is regarded as an empirical temperature, which is some convenient measure
of the hotness (or the coldness) of the thermodynamic state. For the purpose of determining
the constitutive restrictions, the regularities of constitutive functions as well as the state
variables are usually assumed to be as smooth as the contexts requires. Note that the density
field ρ(X, t) is completely determined by the motion x(X, t) and the density ρκ(X) in the
reference configuration. Therefore the thermodynamic process is define as the solution

{x(X, t), θ(X, t)} (10)

of the field equations by introducing the constitutive relations for Tκ , qκ , and ε into the
balance laws of the linear momentum and energy.

To find the restrictions imposed on constitutive functions by the entropy principle is one
of the major objectives in modern continuum thermodynamics.

I-Shih Liu has proposed in [9], a method of exploitation of the inequality (3) in a way
which reminds the classical method of Lagrange multipliers in mechanics. Namely, instead
of this inequality restricting the solution of field equations he proposed that solutions of an
extended inequality which should hold for all fields. This can be done if we consider field
equations as constrains on solutions of the energy inequality.

2.1. Method of Lagrange multipliers

According to Müller and I-Shih Liu, there exist Lagrange multipliers Λv and Λε , depending
on the state variables, such that the inequality

ρκ η̇ +DivΦΦΦκ −ΛΛΛv·(ρκ ẍ−DivTκ)−Λε (
ρκ ε̇ +Divqκ −Tκ · Ḟ

)≥ 0 (11)

is valid under no constraints, i.e. valid for any field x(X, t), θ(X, t).
In addition to this we invoke the condition of material objectivity, which implies the

following reduced constitutive equations for viscoelastic materials

Tκ = T̂κ
(
C, Ċ, θ , gκ

)
,

qκ = q̂κ
(
C, Ċ, θ , gκ

)
,

ε = ε̂
(
C, Ċ, θ , gκ

)
, (12)

η = η̂
(
C, Ċ, θ , gκ

)
,

ΦΦΦκ = Φ̂ΦΦκ
(
C, Ċ, θ , gκ

)
,

where C = FT F is the right Cauchy-Green tensor.
Since the inequality (11) must hold for any x(X, t), θ(X, t), the values of

{
θ , gκ , C, Ċ

}

and
{

θ̇ , ẍ, ġκ , C̈, ∇gκ , ∇C, ∇Ċ
}

in (11) can be arbitrary given at any point and any instant.
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First of all, from (11) we note that it is linear with respect ẍ. Also the coefficient of ẍ is
ρκ ΛΛΛv and therefore we conclude that

ΛΛΛv = 0. (13)

Thus (11) becomes

ρκ (η̇−Λε ε̇)+DivΦΦΦκ −Λε Divqκ +Λε Tκ · Ḟ≥ 0. (14)

Next, we write

η̇−Λε ε̇ =
(

∂η
∂θ

−Λε ∂ε
∂θ

)
θ̇ +

(
∂η
∂gκ

−Λε ∂ε
∂gκ

)
·gκ +

+
(

∂η
∂C

−Λε ∂ε
∂C

)
· Ċ+

(
∂η
∂ Ċ

−Λε ∂ε
∂ Ċ

)
· C̈,

DivΦΦΦκ −Λε Divqκ =
(

∂ΦΦΦκ
∂θ

−Λε ∂qκ
∂ θ

)
·gκ +

(
∂ΦΦΦκ
∂gκ

−Λε ∂qκ
∂gκ

)
·∇gκ +

+
(

∂ΦΦΦκ
∂C

−Λε ∂qκ
∂C

)
·∇C+

(
∂ΦΦΦκ

∂ Ċ
−Λε ∂qκ

∂ Ċ

)
·∇Ċ.

Note that (
∂ΦΦΦκ
∂gκ

−Λε ∂qκ
∂gκ

)
·∇gκ (15)

in component form this reads as
(

∂ΦΦΦκ
∂gκ

−Λε ∂qκ
∂gκ

)
·∇gκ =

(
∂ΦκK

∂ θ,L
−Λε ∂qκK

∂ θ,L

)
θ,LK (16)

The same rule holds for the other terms in the above expression.
Substituting these expressions into (14), by inspection, we conclude that this inequality

is also linear with respect to the following derivatives
{

θ̇ , ẍ, ġκ , C̈, ∇gκ , ∇C, ∇Ċ
}

.

As the inequality must hold for all fields we have eliminated the constraints imposed
by the field equations. The coefficients of the above derivatives have to vanish identically.
Otherwise we could choose the fields in such a way that one negative term would dominate
all others and the inequality would be violated. Hence we obtain

ΛΛΛv = 0,

∂η
∂ θ

−Λε ∂ε
∂ θ

= 0, (17)

∂η
∂gκ

−Λε ∂ε
∂gκ

= 0,

∂η
∂ Ċ

−Λε ∂ε
∂ Ċ

= 0.

(
∂ΦΦΦκ
∂gκ

−Λε ∂qκ
∂gκ

)

sym
= 0,
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∂ΦΦΦκ
∂C

−Λε ∂qκ
∂C

= 0, (18)

∂ΦΦΦκ

∂ Ċ
−Λε ∂qκ

∂ Ċ
= 0.

Then the entropy inequality reduces to(
∂ΦΦΦκ
∂ θ

−Λε ∂qκ
∂θ

)
·gκ +ρκ

(
∂η
∂C

−Λε ∂ε
∂C

)
· Ċ+Λε Tκ · Ḟ≥ 0. (19)

Making use of second Piola-Kirchhoff tensor Sκ = F−1 Tκ = J F−1 TF−T , which is a
symmetric tensor, and Ċ = ḞT F + FT Ḟ = 2

(
ḞT F

)
sym, the inequality (19) can be written

in more compact form as

σ =
(

∂ΦΦΦκ
∂θ

−Λε ∂qκ
∂ θ

)
·gκ +ρκ

(
∂η
∂C

−Λε ∂ε
∂C

+
1

2ρκ
Λε Sκ

)
· Ċ≥ 0.(20)

Moreover, from (17) we obtain

dη = Λε dε +
(

∂η
∂C

−Λε ∂ε
∂C

)
·dC (21)

which is in the form of the thermostatic Gibbs relation.

3. Entropy flux relation for viscoelastic materials

For further evaluation of the consequences of the entropy principle, particularly in connection
with relations (18), we invoke the material symmetry condition that has to be satisfied by
{ε, Tκ , qκ , ΦΦΦκ , η} for isotropic viscoelastic bodies. For instance, heat flux can be expressed
as

q̂κ
(
QCQT , QĊQT , θ , Qgκ

)
= Qq̂κ

(
C, Ċ, θ , gκ

)
, ∀Q ∈ O, (22)

where O is the full orthogonal group. Thus q̂κ is an isotropic vector-valued function of and
therefore is restricted in its dependence on the independent variables

(
C, Ċ, θ , gκ

)
.

After lengthy calculation, from (18), Liu proved that Λε must be independent of C, Ċ
and gκ . Thus

Λε = Λε(θ). (23)

Accordingly (21) becomes

dη = Λε dε +
∂η
∂C

(η−Λε ε) ·dC, (24)

or

dη = Λε
(

dε− ∂ψ
∂C

·dC
)

, (25)

where

ψ = ε− 1
Λε η . (26)

By comparison with the classical Gibbs relation in thermostatics, the function Λε can be
identify as the reciprocal of the absolute temperature θ , i.e.

Λε =
1
θ

. (27)
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Moreover, the following entropy flux relation

ΦΦΦκ =
1
θ

qκ (28)

is valid.
Following the Müller-Liu procedure for viscoelastic bodies, given above, one can easily

see that for isotropic elastic materials with state variables (F, θ , gκ), the relation (27) holds.

3.1. Entropy flux of anisotropic elastic materials

We now come to the problem of the derivation of the relation between the entropy flux and
the heat flux for anisotropic materials with state variables (F, θ , gκ). The following relations
have to be satisfied

∂η
∂θ

−Λε ∂ε
∂θ

= 0, (29)

∂η
∂gκ

−Λε ∂ε
∂gκ

= 0,

(
∂ΦΦΦκ
∂gκ

−Λε ∂qκ
∂gκ

)

sym
= 0, (30)

∂ΦΦΦκ
∂C

−Λε ∂qκ
∂C

= 0,

At this stage we come to the problem of the material symmetry condition that has to be
satisfied by {ε, Tκ , qκ , ΦΦΦκ , η} for anisotropic elastic bodies.

The first paper dealing this problem, in fact for transversely isotropic elastic bodies, was
published by Liu in [11], which relies on his paper [14]. The main result of this paper is based
on the fact that many anisotropic materials possesses structures which can be characterized
by certain directions, lines or planes, specifically, by some unit vectors m1, . . . ,ma and some
tensors M1, . . . ,Mb. Let g be the group which preserves these characteristics, i.e.

g =
{

Q ∈ G; Qm = m, QMQT = M
}

, (31)

where G is a subgroup of O. Here we use the following abbreviations

m = (m1, . . . ,ma) , (32)
M = (M1, . . . ,Mb) .

In other words g is characterized by the set (m, M) and the group G ∈ O, i.e.

g = (G; m, M). (33)

Theorem. A function f (v, A) is invariant to g if and only if it can be represent by

f (v, A) = f̂ (v, A, m, M), (34)

where f̂ (v, A, m, M) is invariant relative to G.
Here v is vector, A is tensor of second order and f stands for either scalar-valued, vector-

valued or tensor valued.
Particularly, if f̂ (v, A, m, M) is isotropic function then:
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for scalar-valued function

f̂ (Qv, QAQT , Qm, QMQT ) = f̂ (v, A, m, M), (35)

for vector-valued function

Q f̂ (v, A, m, M) = f̂ (Qv, QAQT , Qm, QMQT ), (36)

tensor-valued function

Q f̂ (v, A, m, M)QT = f̂ (Qv, QAQT , Qm, QMQT ). (37)

In the same paper Liu gives a list of 14 such groups g for some crystal classes.
In order to write the exact form of constitutive functions we used in further investigation

we need several functional relations, particularly, among orthonormal vectors ni and Ni, i.e.

ni·n j = δi j. (38)

and skew-symmetric tensors defined by

Ni = ei jkn j⊗nk, i, j,k = 1,2,3, (39)

These basic relations are given in Appendix.
Liu [11] considered only two different classes of transversally isotropic bodies

g2 = (O; Qn1 = n1) ,
g5 =

(
O; Qn1⊗n1QT = n1⊗n1

)
,

where n1 is the preferred direction of transverse isotropy.
In applying the isotropic representation of constitutive functions he used the Green-St.

Venant strain tensor E, i.e.

E =
1
2
(C− I) (40)

which vanishes when there is no deformation, and considers constitutive functions qκ and
ΦΦΦκ of (E, θ , gκ) up to bilinear terms in E and gκ , i.e.

qκ = (a1 +a2trE+a3n·En)gκ +a4Egκ +
+(b1 +b2trE+b3n·En)(n⊗n)gκ +b4(n⊗En)gκ +b5(En⊗n)gκ +
+(c1 + c2trE+ c3n·En)n+ c4En,

ΦΦΦκ = (α1 +α2trE+α3n·En)gκ +α4Egκ +
+(β1 +β2trE+β3n·En)(n⊗n)gκ +β4(n⊗En)gκ +β5(En⊗n)gκ +
+(γ1 + γ2trE+ γ3n·En)n+ γ4En,

where all the material coefficients are functions of temperature θ only.
For the class of transversally isotropic bodies defined by

g2 = (O; Qn1 = n1) , (41)

he was able to prove that Λε is a function of temperature only, i.e.

Λε = Λε(θ) =
1
θ

, (42)

as well as the entropy flux and the heat flux relation

ΦΦΦκ =
1
θ

qκ + k(θ)n1. (43)
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Therefore, for this class of transversally isotropic bodies the classical result does not hold, in
general.

For the class of transversally isotropic bodies defined by

g5 =
(
O; Qn1⊗n1QT = n1⊗n1

)
, (44)

he also obtained

Λε =
1
θ

, ΦΦΦκ =
1
θ

qκ , (45)

the classical results.
In all these cases we had first to find a functional forme of Λε in order to determine

the relation between entropy flux and heat flux. It appears that Λε = Λε(θ) holds in all
these cases, i.e. Λε = Λε(θ) is necessary condition for the determination of relation between
entropy flux and heat flux. We pose the question whether is it also sufficient condition?
Having this in mind we proceed first by reexamining the above cases.

This assumption differs substantially from Green & Laws [18], as well as from Hutter
[19] and Bargmann & Steinmann [20] postulates. In Green & Laws [18] the entropy flux and
heat flux relation is defined as ΦΦΦκ = 1

ϕ qκ , where ϕ is a constitutive function which reduces
to the absolute temperature θ in equilibrium. Hutter [19] postulated the classical entropy flux
and heat flux relation. In their contribution Bargmann & Steinmann [20] adopted the Green
& Naghdi approach for non-classical theory of thermoelasticity for isotropic materials and in
order to obtain the entropy flux and heat flux relation, even in this case, made use of some
mathematical assumptions.

This is also in accordance with Eringen’s statement [22] that "it is always possible to
express the entropy influx and entropy source as

ΦΦΦ =
1
θ

q+ΦΦΦ1 (46)

where ΦΦΦ1 is the entropy influx due to all other effects except heat input."

4. The consequence of the assumption that Λε = Λε(θ)

Under this assumption we first reconsider isotropic viscoelastic bodies and transversally
isotropic material bodies.

4.1. Isotropic viscoelastic bodies

The starting point is the set of equations (18)
(

∂ΦΦΦκ
∂gκ

−Λε ∂qκ
∂gκ

)

sym
= 0,

∂ΦΦΦκ
∂C

−Λε ∂qκ
∂C

= 0, (47)

∂ΦΦΦκ

∂ Ċ
−Λε ∂qκ

∂ Ċ
= 0.

Let

k = ΦΦΦκ −Λε qκ . (48)
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Generally,

k = k̂(C, Ċ, θ , gκ). (49)

Then (18) can be written as(
∂k
∂gκ

)

sym
= 0,

∂k
∂C

= 0, (50)

∂k
∂ Ċ

= 0.

Thus k = k̂(θ , gκ) must satisfy
(

∂k
∂gκ

)

sym
= 0. (51)

For the moment we shall write it in componential form, i.e.

∂ki

∂g j
+

∂k j

∂gi
= 0, (52)

where ki and gi are components of k and gκ , respectively.
By differentiation we obtain

∂ 2kp

∂gr∂gq
+

∂ 2kq

∂gr∂gp
= 0. (53)

The other two relations
∂ 2kq

∂gp∂gr
+

∂ 2kr

∂gp∂gq
= 0,

∂ 2kr

∂gq∂gp
+

∂ 2kp

∂gq∂gr
= 0,

are obtained by cyclic permutation. From them we have

∂ 2kp

∂gr∂gq
= 0. (54)

The solution of this simple set of differential equations is

kp = Apq(θ)gq +ap(θ), A(pq) = 0. (55)

We shall write it as

k(θ , gκ) = A(θ)gκ +a(θ), (56)

where A(θ) is skew symmetric.
Since we are dealing with isotropic viscoelastic bodies k(θ , gκ) must be vector-valued

isotropic function. Thus

Qk(θ , gκ) = k(θ , Qgκ) (57)

must hold for every Q ∈ O and every gκ . Equivalently,

QA(θ)gκ +Qa(θ) = A(θ)Qgκ +a(θ). (58)
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Particularly for Q =−I we have

a(θ) = 0. (59)

Then

QA(θ)gκ = A(θ)Qgκ . (60)

We write it as

QA(θ)QT Qgκ = A(θ)Qgκ . (61)

Since this must hold for every Q ∈ O and every gκ we have that

QA(θ)QT = A(θ) (62)

from which we have A(θ) = ł(θ)I. Thus ł(θ) = 0 since A(θ) is skew symmetric. Hence
A(θ) = 0 and

k = ΦΦΦκ −Λε qκ = 0. (63)

4.2. Entropy flux relation for anisotropic elastic materials in general

Next, we consider anisotropic bodies with

g =
{

Q ∈ O; Qm = m, QMQT = M
}

. (64)

In other words g is characterized by the set (m, M) and the group O, i.e.

g = (O; m, M). (65)

Then

k = k̂(θ , gκ , m, M) = A(θ , m, M)gκ +a(θ , m, M) (66)

is isotropic vector-valued function, i.e.

Qk(θ , gκ , m, M) = k(θ , Qgκ , Qm, QMQT ), (67)

or

QA(θ , m, M)gκ +Qa(θ , m, M) =
A(θ , Qm, QMQT )Qgκ +a(θ , Qm, QMQT )

which must hold for every Q ∈ O and every gκ . Particularly for gκ = 0, we have

Qa(θ , m, M) = a(θ , Qm, QMQT ), (68)

i.e. a(θ , m, M) is vector valued isotropic function of its arguments. Moreover,

QA(θ , m, M)gκ = A(θ , Qm, QMQT )Qgκ (69)

or

QA(θ , m, M)QT Qgκ = A(θ , Qm, QMQT )Qgκ . (70)

This must hold for any for every Q ∈ O, and hence

QA(θ , m, M)QT = A(θ , Qm, QMQT ), (71)

i.e. A(θ , m, M) is skew symmetric tensor valued isotropic function of its arguments.
Now we need representations in three dimensional space for vector-valued and skew-

symmetric tensor valued isotropic functions (See G.F. Smith [15], A. J.M. Spencer [21], . . . ).
We shall write it for all groups of crystal classes given by Liu [14].
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5. Conclusion

In this paper we investigated the consequences of the assumption that Λε = Λε(θ) irrespective
of whether the classical entropy-flux relation is valid. We used this assumption to derive the
relationship between the entropy flux and heat flux for all isotropic materials as well as for
some crystal classes including transverse isotropy, orthotropy, triclinic systems and rhombic
systems. Under this assumption we first re-examined the entropy flux-heat flux relation for
viscoelastic materials, isotropic elastic materials, transversely isotropic elastic bodies and the
transversely isotropic rigid heat conductors examined by I. Müller and I-Shih Liu [6]-[13].
For all these cases our analysis confirms that Λε = Λε(θ) is a sufficient condition for the
determination of the entropy flux-heat flux relation.

Furthermore, we derived the entropy flux-heat flux relations for all the crystal classes,
given by I-Shih Liu [14], for which representations of anisotropic functions with respect to
the symmetry groups of these crystal classes can be expressed in terms of isotropic functions.
Our derivation is very general in the sense that the constitutive relations are non-linear. One
of our main results is the proof that all crystal elastic bodies, we considered, are hyperelastic.
This is a generalization of I-Shih Liu’s finding for transversely isotropic bodies, the only case
he analysed, where our results fully agree with his.

Also, we derived the entropy flux-heat flux relations for the all crystal classes considered
when assumed to be rigid heat conductors.

We would like to draw attention to the following three points:

i. The vector function a and skew-symmetric function A are isotropic functions depending
only on the set (θ , m, M) which simplifies the procedure,

ii. Generally the classical entropy flux-heat flux relation does not hold; it is true for all
crystal classes investigated here except for g2, g6 = g14.

iii. The heat flux in the absence of a temperature gradient is not zero for all crystal classes.

Of course, all our predictions have to be verified to show that Λε = Λε(θ) is also a
necessary condition, at least for all crystal classes investigated above. This is a task for future
investigation.

Appendix

>From (38) and (39) it is ease to see that

ni⊗n j = (ni⊗n j)
n for any natural number n,

Niv =−ni×v,

NiN j = ni⊗n j−δi jI,
NiN jv = (ni·v)n j−δi jv,

N2
i N j =−δi jNi,

w·Niv = w·(v×ni) ,
w·NiN jv = (ni·v)(n j·w)−δi j (v·w) ,
trNi = 0,

trNiN j =−2δi j
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for any vectors v and w.
We note also that

ni⊗n j−n j⊗ni = ei jkNk,

NiN j−N jNi =−ei jkNk.
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Abstract: 
Wide spread application of car tires has led to huge amount of waste tires which need to be 
handled. According to EU directive 1999/31/EC, since the year of 2003. it is no longer 
permitted to dispose whole waste tires and since 2006. neither the pieces of waste tires in 
the environment. Recycling and reusing waste tires is a significant contribution to 
sustainability through a decrease of emissions of toxic gasses and conservation of natural 
resources. Results of own experimental investigation on concrete made with recycled rubber 
aggregate are presented in this paper. Density, consistency and air content were investigated 
on fresh state concretes. Mechanical properties (compressive and tensile strength), as well 
as durability investigations were made on composites in hardened state. At last, an overview 
of possibilities for utilization of recycled rubber in civil engineering is given. 
Key words: concrete, composite, recycled rubber, mechanical properties, deformation 
properties, durability. 

 
 
 
1. Introduction 
 
Civil engineering represents a field in which natural resources are consumed in large 
amounts. For example, in global concrete production around 9 billion tons of aggregate are 
used each year. Respecting the sustainability postulates, the main goal is to find alternative 
sources of raw materials. Waste tyres may be regarded as a valuable raw material, because 
it can be completely recycled and reused for different purposes – among others as a partial 
substitute for concrete aggregates.  
 
The primary product in the waste tire recycling process is the rubber granulate; the mass of 
so obtained grains represents 55-65% of the total mass of recycled tyres. The secondary 
product in this process is the steel wire with amount of 25-30% and the tertiary product are 
textile fibers with quantity of approximately 10% of the initial waste tyre mass [1,7].  
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Wide application of natural and artificial rubber materials in the last 200 years, especially in 
the car industry, has led to huge amount of used tyres which need to be handled. For 
instance, it is estimated (lacking accurate official data) that more than 28000 tons of waste 
tyres are "generated" in Serbia each year – of which around 7000 tons end up as fuel for 
cement industry. Recently, "Tigar" factory from Pirot has started to manufacture recycled-
tyre products in its department for pressed rubber [2]. 
 
The basic problem for recycled tyres disposal sites represent the size and geometry of a 
tyre, i.e. the fact that 75% of the space it occupies is actually empty. Also, large quantities 
of used tyres at disposal sites are becoming a health hazard, being an excellent ground for 
pests (insects and rodents) and potentially a serious fire threat.  
 
According to the EU 1999/31/EC Directive, since the year of 2003 the disposal of whole 
car tyres is forbidden and since 2006 even the disposal of cut (shredded) tyres is not 
allowed anymore. 
 
In this paper, the results of own experimental research on rubberized concrete (i.e. concrete 
made with recycled rubber as a partial substitute for classic aggregate) will be presented. 
 
 
2. Experimental part 
 
Thanks to the kindness of "Tigar" corporation representatives, the Material Testing 
Laboratory of the Faculty of Civil Engineering in Belgrade received a certain quantity of 
recycled tyre aggregate in size 0.5-4.0 mm. This granulate was used as the first fraction of 
aggregate in order to investigate the physical-mechanical properties of concrete based on 
recycled rubber addition. 
 
With the intention of establishing and monitoring any changes in properties of concrete 
(both in fresh and hardened state) due to addition of recycled aggregate, certain amount of 
normal aggregate was substituted with waste rubber. Thus, three different concrete mixes 
were designed: reference concrete (marked as mixture number "1") with 0% of recycled 
tyre aggregate, mixture number "2" with 10% and mixture number "3" with 20% of waste 
rubber content in relation to the total mass of aggregate.  
 
 
 
3. Testing of physical-mechanical properties of component materials 
 
Considering the fact that the influence of the addition of waste rubber aggregate on 
properties of normal concrete was investigated, the usual amounts of component materials 
were used. Therefore, the quantity of cement in all three concrete mixtures was the same: 
350 kg/m3. Also, the water/cement ratio was constant and it amounted to 0.5. The projected 
consistency of all mixtures corresponded to the usual practical applications ranging 
between plastic and semi-plastic condition. For recycled rubber concrete mix design (i.e. 
for mixtures "2" and "3") an admixture was also applied: superplasticizer Sika ViscoCrete 
5-800 based on modified polycarboxilate, in amount of 0.5% related to the mass of cement.  
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Such composition of concrete points to the fact that mixtures "2" and "3" can be placed into 
category of lightweight concrete composites (with density in fresh state less than 2000 
kg/m3). The actual composition of all investigated concrete mixtures is presented in the 
following Table 1. 
 

Table 1 – Designed concrete mixtures 
 

Concrete ω 
mc 

(kg/m3) 
mad 

(kg/m3) 
mw 

(kg/m3) 
ma 

(kg/m3) 
mI 

(kg/m3) 
mII 

(kg/m3) 
mIII 

(kg/m3) 
mrr 

(kg/m3) 
"1" 0.5 350 - 175 1804 769 393 642 - 
"2" 0.5 350 1.75 175 1464 624 319 521 146 
"3" 0.5 350 1.75 175 1232 525 269 439 246 

 
Symbols used in the table: ω – water/cement ratio, mc – mass of cement, mad – 
mass of superplasticizer, mw – mass of water, mа – mass of aggregate, mI – 
mass of the first fraction of aggregate, mII – mass of the second fraction of 
aggregate, mIII – mass of the third fraction of aggregate, mrr – mass of 
recycled rubber. 

 
 
 

The specific gravity of recycled rubber granulate was determined using pyknometer test. 
Considering the fact that diameter of the rubber grains ranged between 0 and 4 mm, and 
that any additional cutting was not possible, these grains were only dried in the oven before 
the test. For this testing, terpentine with density of 0.85 g/cm3 was applied. The average 
specific gravity of the recycled rubber granulate was determined to be γsr=1.144 g/cm3.  
 
Based on the glass jar method, the average value of rubber aggregate density was adopted 
to be γr=0.470 g/cm3. 
 
Determination of grain size distribution of recycled rubber was conducted using the dry 
sieving method according to SRPS EN 933-1:2009 standard, which is the same procedure 
as for the natural aggregate. The results of this test are presented in Table 2. Most part of 
the applied recycled rubber aggregate (even 71.6%) had grain size between 1 and 2 mm, 
which can be seen in Figure 1.  
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Figure 1 – Grain size distribution curve of recycled rubber aggregate 
 
As a binder, Portland cement type PC 20M(S-L) 42.5R “Lafarge”Beočin was used, with 
measured specific gravity of 3.05 g/cm3. Natural river coarse aggregate "Moravac" was also 
applied. The grain size distribution of all aggregates (three standard fractions of river 
aggregate + rubber granulate) is shown in Table 2. 
 
 

Table 2 – Grain size distribution of applied aggregates 
 

Sieve opening (mm) 0.125 0.25 0.5 1 2 4 8 16 31.5 45 
I (0/4 mm) 1.9 14 54.2 68.2 83.4 98.2 100 100 100 100 
II (4/8 mm) 0 0 0 0 0.6 16.3 95.4 100 100 100 
III (8/16 mm) 0 0 0 0 0 0.5 4.5 99.2 100 100 
Rubber granulate 0 0.1 0.3 11.9 83.5 100 100 100 100 100 

 
 
As it was already mentioned, in order to improve the consistency of concrete mixtures "2" 
and "3", Sika ViscoCrete 5-800 admixture was used in amount of 0.5%. It is a third 
generation superplasticizer, usually applied for concrete with prolonged transportation and 
placing time, when significant water reduction is needed (up to 30% in relation  to 
reference concrete) as well as high workability of mixtures. The density of this admixture 
was 1.077 g/cm3, and its рH value 4.5-5.5. According to the producer’s technical sheets the 
recommended dosage of the admixture varies between 0.3-0.8% (of cement mass) for 
normal concrete, i.e. 0.8-1.6% for flowing consistency and Self Compacting Concrete. 
 
The following mixing procedure was adopted for concrete number "1": 
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- The prescribed quantities of cement and aggregates were measured; 
- These components were put into the mixing drum in the following order-first the 

coarse fractions II and III, then cement and finally the fine aggregate fraction I; 
- Next, the prescribed quantity of water was measured; 
- The dry components were mixed for 30 seconds; 
- At last, the measured quantity of water was added into the mixer during the next 

30 seconds and the mixing of fresh concrete was continued for total time of 90 
seconds. 

 
 

Considering the usually poor adhesion between the artificial (rubber) and natural (stone) 
aggregate, somewhat modified mixing procedure was adopted for concrete mixtures "2" 
and "3". Namely, in this case, first water and cement were mixed together, for a period of 
approximately 90 seconds. Next, the rubber granulate was added to the mixture in order to 
allow the cement paste to surround the rubber grains – preparing them for better connection 
with the natural aggregate. During the next period of 120 seconds, the chemical admixture 
(i.e. superplasticizer) was gradually put into the mixing drum. At last, the two fractions of 
the natural aggregate were added and the fresh concrete was mixed for another 120 
seconds. 
 
All three concrete mixtures were placed into molds using vibrating table with smaller 
amplitude and frequency – due to the high possibility of segregation (i.e. separation of the 
rubber granulate from the fresh concrete mix). For the same reason, during the mixing 
process of mixtures "2" and "3", the vibrating time was reduced for one third.  
 
After placing, the concrete specimens were cured in a chamber protected from vibrations 
and impact, at min 95% relative air humidity and temperature of 20±2°С, for the first 24 
hours. After this initial period, the specimens were demolded and put into the 20±2°С warm 
water to be cured until the day of testing. 
 
 
 
4. Fresh concrete testing 
 
 
The consistency of fresh concrete mixtures was determined according to the SRPS EN 
12350-2:2010 standard. Slump values of 50 mm, 65 mm and 51 mm were obtained for 
concrete mixtures "1", "2" and "3", respectively. These results correspond to the semi-
plastic grade of consistency, defined as the class S2.  
 
Density of concrete in the fresh state was determined according to the SRPS EN 12350-
6:2010 standard. First, the concrete samples were compacted on the vibrating table and 
after that the density was measured. The average values of density for concrete mixtures 
"1", "2" and "3" (each one based on 28 testing results), are presented in the Table 3, 
together with slump and entrained air content values. 
 
 

Table 3 – Testing results for fresh concrete 
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Concrete mixture "1" "2" "3" 

Density (kg/m3) 2382 2004 1748 
Slump (mm) 50 65 51 
Air content (%) 3.1 4.8 6.4 

 
 
 
These testing results indicate that the density of fresh concrete is decreasing with the 
increment of rubber content - almost with linear rate, which corresponds with the 
conclusions made by other researchers in this field [3-5].  
 
 
 
5. Hardened concrete testing 
 
The investigation performed on hardened concrete included: testing of compressive 
strength at 7 and 28 days (marked as fc,7 and fc,28), axial  tensile strength (ft,28) and splitting 
tensile strength (fst,28), deformation properties, as well as simultaneous aggressive action of 
frost and deicing salts.  
 
The results acquired during the strength testing of all three concrete mixtures in hardened 
state, are presented in Table 4. Below that, there is a Figure 2 showing compared values of 
compressive strength of concretes "1", "2" and "3" at 7 and 28 days of age. 
 
 

Table 4 – Results of compressive and tensile strength testing [MPa] 
 

Concrete fc,7  fc,28  ft,28  fst,28  
"1" 39.8 41.8 2.82 2.98 
"2" 10.9 13.5 1.27 1.68 
"3" 6.2 6.6 0.63 0.62 
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Figure 2 – Compressive strength of concrete at 7 and 28 days of age 
 
 
Axial tensile strength and splitting tensile strength were determined according to the 
dispositions shown in the following photos (Figure 3). 
 

  

   
 

Figure 3 – Appearance of concrete specimens before, during and after the axial tensile test 
(upper row of photos) and the splitting tensile test (lower row of photos) 
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Deformation characteristics of composites conducted by deflections (Fig. 4) and using 
ultrasonic pulce velocity method as well as measuring the dynamic modulus of elasticity 
through resonant frequency (Fig. 5). 
Obtained results of these measurements are presented in Table 5. 

 
 

Figure 4 – Testing of static modulus of elasticity 
 

 
 

Figure 5 – Ultrasonic pulse velocity measurements 
 
 

Table 5 – Results of static and dynamic modulus of elasticity 
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Concrete
Density 
(kg/m3) 

Es 

(GPa) 
ED 

(GPa) 
v 

(m/s) 
  
(/) 

"1" 2370 30.9 38.8 4211 0.18 
"2" 1931 17.1 18.4 3123 0.23 
"3" 1702 6.3 9.1 2415 0.25 

 
 
The testing of simultaneous action of frost and deicing salts consisted of cyclic frost/thaw 
periods (25 cycles) using three concrete specimens (per each mixture) with upper surface 
subjected to the NaCl water solution – according to the Serbian standard SRPS 
U.M1.055:1984. After the prescribed treatment, the visual evaluation of concrete surface 
degradation was performed. This procedure showed that there were no visible traces of 
degradation on any of the concrete specimens. 
 
 
6. Conclusions 
 
Based on the experimental research results, the conclusion can be drawn that the waste 
rubber granulate can be successfully applied as aggregate for cement based composites. It is 
important to stress out that the rubber content (i.e. the percentage of natural aggregate’s 
substitution) has significant influence on properties of concrete, both in fresh and hardened 
state. The influence on fresh concrete properties is mostly visible when changes in density, 
air content and mixing procedure are concerned, but there is also increased need for 
superplasticizer application in order to achieve the target consistency.  
 
The addition of recycled rubber has also considerable influence on hardened concrete 
properties – leading to reduced mechanical strengths. Namely, both compressive and tensile 
strength tend to decline with increased content of applied rubber aggregate. This conclusion 
was also reached and documented in several previous investigations [3-5]. 
 
The so-called rubberized concrete belongs to the category of lightweight cement 
composites 
(density: γ<2000 kg/m3), with possible wide-range application in civil engineering.  
 
Observing the deformation characteristics through resonant frequency, ultrasonic pulse 
velocity and modulus of elasticity it is obvious that rubberized composite materials have 
shown the decrease of these values. 
 
As far as the durability of such composite materials is concerned, the experimentally 
proved fact that they are substantially resistant to the combined action of frost and deicing 
salts is very promising.  
 
Due to its advantages, such as elasticity, durability and  frost/thaw resistance, the waste 
rubber granulate has already found different applications in the field of road construction. 
Namely, for a long period recycled tyre has been used as addition to the asphalt mixtures, in 
order to exploit fully the advantages of this material – such as: traffic noise reduction, 
decreased stopping distance, as well as prolonged service life of pavement combined with 
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better resistance to cracks. Recycled rubber based composites are also widely applied for 
production of precast concrete elements in road and railroad construction, such as: parking 
and traffic barriers, curbs, grade crossings, railroad track ties, rubber panels, speed 
reducers, bumps, etc.  
 
Considering the facts that rubberized concrete has high capacity of vibration and sound 
absorption, as well as lower sensitivity to temperature changes, recycled tyres can also be 
applied for roof insulation, soundproofing barriers, water-tight membranes, porous bitumen 
binders, pipes, sport fields and playground areas, pavements in parks and pedestrian zones, 
etc. 
 

Acknowledgement. The research described in this paper is a part of Project No 36017: 
"Utilization of by-products and recycled waste materials in concrete composites in the 
scope of sustainable construction development in Serbia: Investigation and environmental 
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Abstract. Creep and shrinkage of concrete affect the behavior of steel-concrete composite 
beams and should be taken into account in the analysis of these structures. A number of 
methods which have different level of accuracy are available for the time analysis of 
composite structures. Eurocode 4, the contemporary European code for design of steel-
concrete composite structures, recommends simple methods for calculation of creep and 
shrinkage effects. In this paper, the deflections of continuous composite beams calculated 
with method proposed by Eurocode 4 and the more accurate Age Adjusted Effective 
Modulus Method (AAEM) are compared. Cracking of concrete is also considered. Through 
a set of numerical examples, accuracy of methods proposed by Eurocode 4 is discussed.  

 
 
 

1. Introduction 
 
Creep and shrinkage of concrete affect behavior of continuous composite steel-concrete 
beams. Due to these viscous deformations, the redistribution of stresses and change in 
deformations of composite beam occur in time. Therefore, the analysis should include these 
effects [1].  
There are several methods that with different accuracy take into account the viscous 
deformations. In this paper, two methods are explained and studied: method proposed by 
Eurocode 4 [2] which is based on the Effective Modulus Method (EM) and the Age 
Adjusted Effective Modulus Method (AAEM) [3]. 
 

2. Creep and shrinkage effects according to Eurocode 4 
 
Eurocode 4 [2], the contemporary European code for design of steel-concrete composite 
structures, recommends a simple method for including viscous deformations of concrete 
into analysis. According to this code, creep and shrinkage effects can be taken into account 
using the following modular ratio nL for the concrete: 

557



Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 2011 C-26 

 

  tLL nn  10  (1) 

with: 
n0 the modular ratio between modulus of elasticity of steel and concrete for short 

term loading Ea/Ecm, 
Ecm the secant modulus of elasticity of concrete for short-term loading  
φt the creep coefficient determined according to Eurocode 2 [4] 
ψL the creep multiplier which depends on the type of loading and is equal to 1.1 for 

permanent loading, 0.55 for effects of shrinkage and 1.5 for prestressing by 
imposed deformations. 

This method is based on the well-known Effective Modulus Method (EM) [3] with the 
effective modulus of concrete Ec,eff given by the expression: 

 
tL

cm
effc

E
E




1, . (2) 

The stress-strain relation for concrete in time t is linear: 

 )()( , shceffcc Et    (3) 

where εc is the concrete strain and εsh is the shrinkage strain. 
Therefore, according to this method, analysis of composite beam under long-term loading is 
equivalent to the analysis of composite beam under short-term loading, with the difference 
that instead of modulus of elasticity of concrete Ecm, the effective modulus of concrete Ec,eff 
is used. 
 

3. AAEM method 
 
The assumed stress-strain relation for concrete in time t according to the AAEM method is:  

 cocshcaeffcc Et   )()( ,  (4) 

where 
Ec,aeff is the age-adjusted effective modulus of concrete equal to:  

 
t

co
aeffc

E
E




1,  (5) 

Eco is the modulus of concrete at the time of loading t0; 
χ is the aging coefficient with values in the range (0.6-0.9); 
ρc the coefficient equal to (1- χ)φt / (1+ χφt) 
Analysis according to this method is, because of the accepted stress-strain relation (4), more 
complex than EC4 analysis, but, due to consideration of the aging of concrete, it is also 
more accurate.  
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4. Numerical study 
 
In order to compare the maximal deflections of continuous composite beams obtained with 
taking into account creep and shrinkage effects through the two previously explained 
methods, the following numerical examples are studied.  
Four continuous composite beams with spans commonly used in building structures are 
analyzed with the computer program “Kontinualac” [5]. The study is limited to girders 
applied in buildings, not mainly intended for storage, not pre-stressed by controlled 
deformations and constructed as propped. A brief description of beams follows. 
Beam 1 is the two span continuous composite beam (Fig. 1) with equal span lengths 
L1=L2=10m. Dead loading is 16 kN/m and live loading is 24 kN/m.  

 
Figure 1. Beam 1 and its cross-section. 

Spacing between adjacent beams is 5m, reinforcement in the slab is Ø10/12.5cm with 
fsk=42kN/cm2 and Es=210kN/mm2, constructional steel grade is S235 and concrete class is 
C25/30. 
Beam 2 is the two span continuous composite beam (Fig. 2) with equal span lengths 
L1=L2=12m. Dead loading is 17.1 kN/m and live loading is 25.6 kN/m.  

 
Figure 2. Beam 2 and its cross-section. 

Spacing between adjacent beams is 3m, reinforcement in the slab is Ø12/15cm with 
fsk=50kN/cm2 and Es=210kN/mm2, constructional steel grade is S355 and concrete class is 
C25/30. 
Beam 3 is the two span continuous composite beam (Fig. 3) with equal span lengths 
L1=L2=9.5m. Dead loading is 21.8 kN/m and live loading is 20 kN/m.  

 
Figure 3. Beam 3 and its cross-section. 
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Spacing between adjacent beams is 4m, reinforcement in the slab is Ø8/10cm with 
fsk=46kN/cm2 and Es=210kN/mm2, constructional steel grade is S355 and concrete class is 
C25/30. 
Beam 4 is the three span continuous composite beam (Fig. 4) with equal span lengths 
L1=L2= L3=9m. Dead loading is 22 kN/m and live loading is 25 kN/m.  

 
Figure 4. Beam 4 and its cross-section. 

Spacing between adjacent beams is 3m, reinforcement in the slab is Ø12/10cm with 
fsk=42kN/cm2 and Es=210kN/mm2, constructional steel grade is S235 and concrete class is 
C25/30. 
 

4.1. Type of analyses 
 
According to EC4 [2], for verification of serviceability limit states, the creep effects need to 
be taken into account. The effects of shrinkage of concrete in some cases can be neglected 
[6]. Also, cracking of concrete in the area of intermediate supports has to be included in the 
analysis. EC4 [2] allows two simple methods for taking into account this effect: “15% 
cracked” analysis and “cracked analysis”.  
In the “15% cracked” analysis, the following variation of flexural stiffness over the length 
of a beam is assumed: within the support range, over 15% of the field length, flexural 
rigidity is EaI2 of the cracked section (Ea is modulus elasticity of steel, I2 is second moment 
of area of the equivalent steel section neglecting concrete in tension but including 
reinforcement); in the remaining regions, flexural rigidity is the “uncracked” section 
rigidity, EaI1 (I1 is second moment of area of the effective equivalent steel section assuming 
that concrete in tension is uncracked). Flexural rigidity EaI2 does not include the tension 
stiffening effect. 
The “cracked” analysis is an iterative procedure. In the first iteration, internal forces and 
moments are calculated assuming uncracked concrete slab (stiffness EaI1). In the areas 
where concrete tensile stresses exceed prescribed value (2.0fctm, fctm is the mean value of the 
axial tensile strength of concrete), flexural rigidity is reduced to the value of the cracked 
section (EaI2). The second iteration starts with this new distribution of flexural rigidities, 
and so on.  
Referring to the shear lag effect, the constant effective width is assumed over each span 
with widths found from the expressions given in EC4 [2].  
Considering all mentioned effects, the following 4 analyses suitable for serviceability limit 
state verifications are performed in order to found maximal deflections: 
Analysis 1: The effects of shrinkage are neglected; creep effects are taken into account by 
using two different modular ratios no and nL for short-term and long-term loadings. 
Variations of this method, related to cracking of concrete effect, are explained below: 

a)  “15% cracked” analysis is applied 
b) “cracked” analysis is applied 

100x8

400x6
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Analysis 2: The creep effects are taken into account by using two different modular ratios 
no and nL for short-term and long-term loadings. Shrinkage effects are calculated using the 
appropriate modular ratio ns. The same variations of this method a) and b), related to 
cracking of concrete effect, are performed. 
Analysis 3: The effects of shrinkage are neglected. Separate analyses for long-term and 
short-term loadings are done and long-term effects are calculated according to AAEM 
method. The a) and b) variations of this method, related to cracking of concrete effect, are 
performed. 
Analysis 4: The effects of shrinkage are included. Separate analyses for long-term and 
short-term loadings are done and long-term effects are calculated according to AAEM 
method. The a) and b) variations of this method, related to cracking of concrete effect, are 
performed. 
 

4.2. Results 
 
Results of the analysis are given in Table 1 and Table 2. 

Table 1 Maximal deflection in [m], Analysis 1 and 2  

Analysis 1 Analysis 2 
Beam type: 

a)   b)   a)   b)   
1 0,0183 0,0171 0,0223 0,0199 
2 0,0344 0,0336 0,0405 0,0390 
3 0,0212 0,0199 0,0255 0,0230 
4 0,0191 0,0180 0,0233 0,0213 

Table 2 Maximal deflection in [m], Analysis 3 and 4  

Analysis 3 Analysis 4 
Beam type: 

a)   b)   a)   b)   
1 0,0184 0,0172 0,0222 0,0198 
2 0,0347 0,0340 0,0405 0,0390 
3 0,0214 0,0200 0,0255 0,0230 
4 0,0192 0,0181 0,0232 0,0212 

 

According to the results of Analysis 1 and Analysis 3, the deflections found by the AAEM 
method are very slightly greater than found by EC4 method. However, these differences 
between the results are negligible. 

According to the results of Analysis 2 and Analysis 4, when shrinkage effects are also 
included, differences between results of the two analyses completely disappear. 

Therefore, the application of simple method proposed by EC4 is fully legitimate for 
deflection analysis of continuous composite beams. 
The effects of shrinkage increase maximal deflections by approximately 20%. Also, in all 
studied cases the “15% cracked” analysis gave larger deflections than “cracked” analysis, 
which is on the safe side. 
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5. Conclusions 
 
EC4 allows use of simple method based on the EM method for taking into account the 
creep and shrinkage effects. Results for maximal deflections for set of four continuous 
composite girders obtained with this analysis are compared with the results obtained with 
more accurate AAEM method. The results have shown that the differences in results are 
negligible, and that is, therefore, EC4 method suitable for practical applications due to its 
simplicity.  
 

Acknowledgement. The first author would like to thank the Ministry of Science of the 
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Abstract The paper shows the results obtained in the simultaneously testing of the hole in 
plate specimen made of structural steel, using conventional methods and thermography. The 
main aim of testing was to relate the temperature changes of the spacemen, continuously 
recorded by thermography, with stress – extension diagram. It enables to predict reaching 
the critical stresses, which cause the appearance of fractures and to define the criteria on 
determining the maximum sample temperature alteration in the field of the elastic and 
elastic-plastic strains. The testi of specimens was carried out on the electromechanical 
testing machine, with the displacement and the strain (extension) control at room 
temperature. Infrared camera Therma CAM SC640, FLIR Systems, was used for the 
thermograms recordings. The tests using the methods of fracture mechanics were applied 
due to the safety assessment of metal structures. The conventional methods were applied 
simultaneously. The numerical simulation of stress is made for the same sample. The tensile 
test and thermography give visible data of surface stress distribution. This proves that the 
variations in temperature captured by the IR camera are strongly correlated to the loads 
actually applied to the specimen. Numerical simulation of stress distribution on the same 
model under same condition is presented, too. 

 

Keywords:  thermography, fracture techniques, tension, steel 

 

 

1. Introduction 

 

The characteristics, which describe the appearance and growth of the fatigue cracks under 
the impact of the static and dynamic loads, are the most important for exploitation safety of 
the complex metal structures. The conventional testing methods of the metal structures are 
well known [1-3]. The properties, obtained by tension tests describe the global mechanical 
behavior of the materials.  

Thermography stands among the different NDT&E techniques, as an attractive tool for fast 
inspection of large surfaces. Thermography is a method which provides the analysis of 
thermoelastic stress, based on the measurement of infrared radiation, emitted by the object 
surface, which is exposed to dynamic or static, linear elastic or plastic strain and its 
conversion into visible image, named thermogram [3]. The surfaces emitting various amounts 
of infrared radiation can be differentiated on the thermogram by various colors or brightness 
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levels, whereas the surfaces emitting the equal heat amounts have the same color (isothermal 
surfaces). 

In order to calculate the temperature of the monitored object from the radiation reaching the 
camera sensor and link it with stresses, it is necessary to know emissivity of the object 
surface, temperature of the surrounding objects, camera distance from the tested object, 
thermal losses, air temperature and relative humidity [2,3]. Because of that, it is very 
difficult to apply infrared thermography for quantitative, large objects inspection in the 
exploitation conditions. 

Benefits of applying thermography as a nondestructive technique for inspection, monitoring 
and maintenance surveys of complex structures, operating in the real conditions of the static 
and dynamic loads, would be better used, if calibration diagrams (obtain in laboratory 
conditions) for structural materials and specific shape exist [2-8].  

This paper presents some results relating to simultaneously testing of the contractual hole in 
plate specimen using conventional methods and thermography. The main aim of testing 
was to relate the temperature changes of the spacemen, continuously recorded by 
thermography, with stress – extension diagram.  

Numerical simulation of stress distribution on the same model and same condition is 
presented, too. Finite element method (FEM) was chosen to simulate operating conditions 
(boundary conditions and load) [9-13]. The CATIA (Computer Aided Three-dimensional 
Interactive Application)  software package has been used for generating finite element 
meshes, composed of tetrahedron type, three-dimensional finite elements [14]. FEM is 
based on a physical discretization of the considered parts of a continuum of finite 
dimensions and simple shapes called finite elements (FE). All finite elements are connected 
by common nodes to form the original structure. The basic types of finite elements are: 
one-dimensional (rods, beams, pipe fittings), two-dimensional (triangular, rectangular, 
membranes, plates and shells), three-dimensional (tetrahedron, prism, axisymmetric and 
others). In FEM studied domain (the strain body) is shared by using fictitious line on a 
number of finite elements.  Set of finite elements for the entire domain make a network of 
finite elements. Stress and strains are described by interpolation functions and a finite 
number of parameters in the nodes. They are the basic parameters of the FEM. When the 
basic relations in the FEM are setting up, using the same principles and procedures, that are 
valid beyond the classical discrete models, they relate force and stress and stress and 
strain. By grouping the basic equations finite elements gets the equation structure in matrix 
form.   
 

2. Experimental procedure 

 

Experimental setup for structural steel, hole in plate specimen’s tensile test is illustrated on 
the fig. 1. The testing of specimens was carried out on the electromechanical testing 
machine RM400, with displacement and the tension control at room temperature. The 
tension speed was 5 mm/min. The extension was registered using double extensometer. The 
precision of extensometer measurement is ±0,001 mm. Tensile testing and thermographic 
measurements were performed simultaneously.  
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Elements with circular hole in plate are often integral parts of the complex structures. For 
this reason, a series of spacemen have been investigated.  

In Figure 2, the tested specimen is presented, schematic presentation of specimen before 
and after stretching (a), and photo of the same specimen after tensile test. 

The samples have been coated using grey paint with known uniform emissivity, in order to 
improve their emissive properties. 

Thermo CAM SC640 Infrared camera, FLIR Systems, has been used for recording 
thermogram. The camera resolution is 640 x 480 pixels. It was positioned on the distance of 
0.5m related to the sample surface. Camera sensitivity is 60mK at 30°C, field of view is 
24°x18°, minimum focus distance is 0.3m, spatial resolution is 0.65 rad, recording 
frequency is 30 Hz and electronic zoom is 1-8x continuously. Detector type is Focal Plane 
Array, non-cooled micro bolometer 640 x 480 pixels [3]. Camera spectral range is 7.5 to 
13μm, whereas the temperature range is from -40°C to +1,500°C, with precision of ±2°C, 
±2.  

 

Figure 1. Specimens with a circular hole in RM400 

During tests, thermography camera detected the temperature changes on spacemen surface 
and made the continuous track. The thermograms, as track sequences, were selected in 
characteristic time, which was chosen on the stress VS extension curve: force impact start, 
(elastic strain start), plastic strain start (Yield stress), point where is reached of maximum 
force, (end of homogeneous plastic strain), up to the final specimen fracture and finally 
after crack.  

For real-time and static image analysis the associated software is used, because it contains 
powerful measurement and analysis functions for extensive temperature analysis, including 
isotherms, line profiles, area histograms, image subtraction capability and many more [3].  
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3. Results and discussions 

The testing results are shown simultaneously in order to comprehend the possibilities based 
on the comparative analysis and to define the criterion for applying the thermography in 
predictions material and plate elements with hole behavior during inspection, monitoring 
and maintenance surveys of complex structures operating in the real conditions of the static 
and dynamic loads.  

 

a 

 

b 

Figure 2. Specimen with a circular hole, a-shematic presentation, b-photo after specimen crack 

 

With the help of the Thermo CAM Researcher software, the measuring areas were 
positioned around the hole of the specimen thermogram, AR01 bellow, AR02 above the 
hole, AR03 left and AR04 right of hole [2,3]. For a more precise analysis of the 
temperature variations on the tested specimen surface and its link to the mechanical 
properties, the detailed analysis has been conducted into the areas.  

The upper left corner presents the recorded thermograms, right corner field indicates the 
minimum, average and maximum temperatures at the moment of recording. The bottom 
field contains the temperature distribution into the measuring areas. Figure 3a gives the 
distribution of maximum and minimum temperatures in the first 14 s after the test start, 3b 
after 7th s to 22nd s, while 3c gives the same information in same time interval, but only for 
minimum temperature changing.  Fig 3d gives the temperature in marked areas during time 
interval 14th  to 28th s.   
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The temperature monitoring during the test by thermography, provides the detection of the 
initial temperature variation, indicating where the conditions for the crack initiation under 
the load impact are.  
The experiment lasted about 28s. to monitor The minimum temperature is monitored on the 
surfaces AR01 and AR02, while the maximum temperature values in the AR03 and AR04. 
The tested sample temperature was in equilibrium with the environment. Ambient 
temperature was 29 º C. Temperatures recorded at the surface of the sample were in the 
range of 28-30 º C, which is the result of different surface sample emissivity. Fig 3a shows 
that there were small variations of temperature in the first 18 s of tensile test. After that 
there was a sudden rise of temperature, on the right side (AR03 to 37.5 º C) and on the left 
one (AR04 to 32.5 º C). The right side was broken. The temperature on both sides declined 
to 30.3 ºC after 3s. In 22.5th seconds (4.5 seconds after the first fracture of the sample) there 
was a sudden rise of temperature on the left, to the value of 37 º C and fracture of the 
sample on the left side (fig 3d).  The temperature of the sample was 33.5 º C on both sides 
of the circular hole after 3 s, and it remained to the end of the test. 
 

 a 

 b 
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c d 

Figure 3. The temperature around the hole on the surface of the structural steel specimen  

 

At the same time, the minimum temperatures in the zones AR01 and AR02 ware changed.   
The temperature rose from 28 to 28.8 º C at the time of first fracture and that value is 
retained until the end of the experiment (fig 3c and 3d). 

Fig.4 shows the diagrams of stress vs. extension and maximum temperature vs. time on the 
surface of the sample. Some characteristic points are illustrated with corresponding 
thermograms: the beginning of elastic deformation, the beginning of plastic deformation, 
reaching maximum force, the homogeneous plastic deformation to the final fracture of the 
specimen. 

The analysis of the results presented in Fig.4 shows that in the first 18 seconds the force 
reaches 42 kN. The temperature of the sample was not changed and elastic deformation 
occurred within the specimen. The total elongation is 1, 5 mm. The increase in force of only 
a few N leads to the appearance of plastic deformation and fracture of right side. The 
maximum stress in that moment was 8.954 N/m2. From 18s to 19,5s, the temperature 
decreases from 310,8K to 303,6K on the right and from 306 to 303,4K on the left side. The 
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specimen total elongation in 22th s was 1,85mm. Then a rapid increase in temperature 
occurs on the left side of circular hole. Immediately before 23th s, the left side was cracked. 
The total elongation of the sample was 1,9mm. This value of elongation is measured after 
the test (fig 2a). Figures 4a-4c show stress distribution for a plate in tension containing a 
centrally located hole, under applied uniform stress. 

It is evident that, crack initiation is a highly localized event which is strongly affected by 
the random distribution of material properties and defects that exist at the micro structural 
level. The temperature monitoring during thermography test provide the detection of the 
initial temperature changes, indicating where are conditions for appearance and growth of 
cracks under the load impact.  

 
Figure 4. Flow chart of tested specimens  

 

4. Numerical simulation 

 
Stress analysis of hole in plate specimen is made with FEM. It is an efficient and reliable 
numerical procedure for modeling both, linear and nonlinear behavior of materials and 
structures [ ]. Numerical method FEM has been used in order to confirm the ability of 
thermography to predict the crack of spacemen. Elastoplastic, numerical analysis of the 
hole in plate made of structural steel is made. The primary aim was to obtain the maximum 
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strain that correspond to the experiment. The finite tetrahedron type element and model 
specimen with finite element mesh are shown in fig.5 and fig.6.  

 

 
 

Figure 5. Finite element type tetrahedron 

 

 
Figure 6. Model specimen with finite element mesh before tensile test 

 
Finite element mesh is consisted of 6,178 elements and 11,099 nodes with three degrees of 
freedom, so the system has a total of 33,297 equations. A global stiffness matrix system of 
finite element meshes in this case has 33297 x 33297elements. Using equations which link 
displacement and strain, and the equations of deformation and stress, stress distribution is 
determined. External load were entered into the model on the front surface of the board, 
while the other plate wedged. 

 
Figure 7. Model specimen with finite element mesh after tensile test 

  
Specimen with  the Von Mises stresses is shown in Fig. 8. 
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Figure 8. Tensile test simulation, specimen with the Von Mises stresses,  

 
The highest stress in the plate, around the hole, is 8.83·108 N/m2 (Fig. 9). Numerical 

results demonstrate a good agreement with experiment (8.95·108 N/m2). The static stress 
concentration factor in the elastic range, Kt, is defined as the ratio of the maximum stress, 
max, to the nominal stress, snom. For the infinite plate containing a hole and loaded in 
tension,  Kt = 3. [10]. As the width of the plate decreases, the maximum stress becomes less 
than three times the nominal stress at the zone containing the hole. 

The zoomed part of specimen around the hole with Von Miss stress distribution is 
presented in fig. 9.  

 
Figure 9. Increase part of specimen with the field of stress 

 
Figure 10  shows the point with the maximum stress, where the initiation of crack started, 
while figure 11 show  temperature distribution in left area of specimen (AR03) based on 
recorded thermogram immediately before crack. 
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Figure 10. Point  with maximum of stress  

 

 
Figure 11. Temperature distribution in left area of specimen (AR03) based on recorded thermogram 

 

 5. Conclusion 
 

 The experiments and results of thermography application, simultaneously with the 
conventional methods, for testing the tensile properties of metal spacemen with complex 
shape are presented. The main aim of testing was to relate the temperature changes of the 
spacemen, continuously recorded by thermography, with stress – extension diagram. As a 
conclusion can be pointed out that: 
-The obtained results confirm that it is very useful to use thermography for early 
diagnostics of the complex structures in the exploitation or service conditions. 
-This technology enables conducting stress analysis and estimation of fatigue limits in a 
nondestructive and non-contact method within a shorter period. The tensile test allowed 
obtaining visible data of surface stress distribution using thermography. The numerical 
simulation determined the maximum stress value and distribution, which was very similar 
to experimentally obtained.  
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-This proves that the variations in temperature captured by the IR camera were strongly 
correlated to the stress and strain as result of loads applied to the specimens. 
-The results, considered in this paper, show that its can be used for someone quickly to 
make a conclusion that critical zone appeared in that place if  the temperature increase.  
-Thermography provides simple and fast location of the defects in the material which could 
be the spots of the potential cracks initiation and growth.  
-Infrared thermography has proven to be an invaluable tool to solve a wide range of 
scientific questions and problems related to the reliable assessment of the structure integrity 
and life time. 
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Abstract. The paper presents the solution for forward and inverse kinematics of the vertical 
5-axis turning centers with 2 linear and 3 rotational axes (Cy, X, Z, Bt and Ct) which for the 
5-axis milling achieves the motion accomplished by 3 linear and 2 rotational axes (X, Y, Z, 
Bt and Cy). It has been done in such a way to provide for machine motion programming as if 
machining were performed on a 5-axis gantry milling machine. This has essentially 
facilitated machine programming, because tool positions and orientations required for 
programming are determined disregarding the workpiece swiveling during machining and 
current positions and orientations taken by the tool during machining relative to the 
workpiece. Turning center has a 2-rotary-axis head with axes Ct and Bt which do not 
intersect. This type of angular head has increased the possibilities of machining and allowed 
for performing certain types of machining without machine’s taking the singular positions, 
but it has made the machine control algorithm more complex. A high number of rotating of 
the table, required for turning, causes heating of the table bearing support and base thermal 
dilatation. If milling or drilling is done immediately after turning, the table and X axis 
motion control should be corrected to eliminate the error in machining appeared due to 
dilatation, as has been done in this paper. 
Keywords: Vertical five-axis turning centers; Forward and inverse kinematics; Thermal 
errors 

 

 
 

1. Introduction  
 
Nowadays, the precision and productivity that users demand from 5-axis machining of 
complex workpiece surfaces is gradually increasing. To satisfy this requirement different 
structures of the 5-axis machines are developed. The machine denominations, where L is a 
linear axis and R is a rotation axis, will be given now. LLLRR-The cutting tool is supported 
by a two-rotary-axis head, one for head rotation and another for tool tilting. This 
configuration is used in large gantry machine tools. RRLLL-The workpiece is supported by 
a double turning table, i.e. the work table has two rotational axes. This configuration is 
commonly used in small compact machines or in machines with auxiliary rotary tables. 
RLLLR-The workpiece is supported by a rotary turning table and the tool has one rotational 
degree of freedom (swivelling head). 
 

574



Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 2011 C-28 

 
The present paper deals with the control algorithm development for vertical 5-axis turning 
centre, where the work table becomes the axis of auxiliary motion (Cy axis), whose 
swivelling, with cutting tool motion along the X axis according to the corresponding law, 
produces motion corresponding to the motion along the Y axis, not existing here. The ram 
carrying turning tools is replaced by the turning, drilling and milling unit for rotating tools. 
By addition of the replaceable two-axis angular head to this unit, the 5-axis milling and 
drilling is possible to achieve. This way, a machine with 2 linear and 3 rotational axes was 
obtained, which for the 5-axis machining achieves the motion accomplished by 3 linear and 
2 rotational axes. A machine with Cy, X, Z, Bt and Ct axes, the RLLRR machine type, was 
thus obtained. 
 
In the control algorithm given in this paper, the compensation for error caused by machine 
base thermal dilatation has been carried out, because it is the biggest error and because it is 
very difficult to eliminate it by corresponding structure, cooling and mounting.  When 
workpiece turning is performed with a large number of revolutions there occurs a 
substantial heating of the work table bearing support. The bearing support temperature is 
transferred to the machine base, causing its thermal dilatation. This causes the table 
rotational axis shift by a few tenths of a millimetre. The work table moving along the X and 
Y axes (xc and yc) has impact on milling and drilling accuracy. To eliminate the influence 
of the work table thermal dilatation on machining accuracy, real-time measurements and 
machine control algorithm correction are required, as has been done in this paper. 
 
Control algorithm of a vertical 5-axis turning centre was integrated into its control system, 
developed at Lola Institute too. The control system was obtained by extending the Lola-
Industrial Robot Language [1] with commands for machine tool, by integration of the new 
solutions for forward and inverse kinematics of this machine in this control system and by 
adapting of its trajectory planner to novel commands for tool moving. 
 
In this paper, forward and inverse kinematics has been solved for such machine with an 
angular head, where axes do not intersect (Fig. 1). Such angular head increases the 
machining possibilities and helps to avoid singularity positions of the machine work table. 
Some possible singular positions of the work table have been discussed. Control algorithm 
for the work table and Ct axis has been given, eliminating their singular positions. 
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Figure 1. Vertical 5-axis turning center with two axis head. 

 

2. Coordinate frames of machine components and matrices determining their 
relations 
 
This section defines coordinate frames for the components of vertical 5-axis turning centre 
and matrices determining their relations. Machine components, their links and coordinate 
frames are denoted using the Denavit-Hartenberg convention (D-H) [2,3,4]. The machine is 
viewed as a system consisting of two entities performing cooperative motion; one entity 
comprises a work table with a workpiece, swivelling according to a certain law, and another 
is a serial mechanism with 2 translational and 2 rotational axes, carrying the cutting tool. 
(Fig. 2) shows frames for machine components. The machine base is denoted by 0, and the 
last serial component by 4. The table rotation by angle c is denoted with Cy. The first 2 
serial links are translational and another 2 rotational, so the corresponding translatory 
movements d1 and d2 and angles 3 and 4 are variables. It was adopted that the angle 3 is 
positive when the component’s 3 rotation is in the negative mathematical direction, and that 
the angles 4 and c are positive when the component’s 4 rotation and the rotating table is in 
the positive mathematical direction. D-H parameters of machine components are given in 
Tab. 1. 

Table 1  D-H parameters of vertical 5-axis turning centre components 

Link Variable a [mm] ay [mm] d [mm]  []  [] 
1-Z d1 0 0 d1c 1=90,1=90 1a=90
2-X d2 0 0 0 0 0 
3 (-)3 a3 0 0 3=90 3a=90
4 4 0 0 0 4=-90 0 
5-Cy C xc 

yc 
0 0

 
0 
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Figure 2. Coordinate frames of vertical 5-axis turning centre components. 

 
The homogenous matrix that transforms the coordinates of a point from frame xnynzn to 
frame xmymzm is denoted by nTm. The homogenous transformation describing the relation 
between one link and the next is called Ai=A(i-1,i) matrix [4]. The following homogenous 
matrices for the coordinate frames of the machine links are defined to derive the kinematic 
equations for the machine: 
 

),x(),dz(),x(),z(),dz()0,1( 1010101a01c0   RotTransRotRotTransAA1

),dz((1,2) 212 TransAA   

),x(),ax(),z(),z()3,2( 323232a323   RotTransRotRotAA

),x(),z()4,3( 43434   RotRotAA  
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By using the convenient shorthand notation sin()=s and cos()=c the transformation 
matrices defined above are written as follows:  
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3. Programming of the machine 
 
5-axis programs are generated by CAD/CAM systems or, manually, by G codes. 
Programming of the milling operations on the vertical 5-axis turning centre is performed in 
the movable working table coordinate system xcyczc and not in the machine basic coordinate 
system x0y0z0 (Fig. 2). 
 
In programming by G codes the tool orientation is given in Euler angles or RPY angles via 
At, Bt, and Ct (in degrees) or by the tool direction vector which points from the tool tip 
towards the toolholder. If we define the approach vector a=ax5i+ay5j+az5k, where i, j and k 
are unit vectors along the xc, yc and zc coordinate axes of the rotating table, which lies in the 
zt direction from which the tool approaches the workpiece (Fig. 2), the components of the 
tool direction vector would be: -ax5, -ay5 and -az5. 
 
The output of the CAM systems is cutter locations, Xt, Yt, Zt, -ax5, -ay5 and -az5, which 
define the tool positions and the tool direction vectors with respect to the workpiece 
coordinate system given in the CL data file [5,6,3]. The tool path between two CL points is 
a straight line relative to the workpiece. CL motion commands from the CL data file are 
further converted in motion commands of the NC program (in G code). 
 
Afterward, the tool path, given in NC program, is converted in the sequence of consecutive 
positions of all machine axes that will produce the desired tool location (inverse 
kinematics). The calculation of inverse kinematics can be performed either by the 
CAD/CAM system, by the post-processor or by the NC unit. The control system developed 
in Lola Institute for vertical 5-axis turning centre calculates complete path interpolation and 
inverse kinematics in real time. 
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4. Forward kinematics 
 
The forward kinematics is used to calculate the tool position and orientation Xt, Yt, Zt, Bt 
and Ct from the machine axis variables: c, d1, d2, 3 and 4. In vertical 5-axis turning centre 
we will determine the position and orientation of the component 4 and the tool relative to 
the rotating table. It is obvious from (Fig. 2) that the component 4 position and orientation 
relative to the machine base is given by the equation 0T4=A1A2A3A4 

and relative to the 
rotating table by the equation  
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(6) 

where is: )as(s)acd(cX yc33cxc331c5   ,  

)as(c)acd(sY yc33cxc331c5   , 2c15 ddZ   

Tool position relative to the rotating table is determined by matrix: 
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(7) 

Here lt is length, rt is radius and 4Tt is tool position matrix relative to the component 4 (Fig. 
2). In an initial position it is: c=3=4=Ct=Bt=0, 
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(8) 

Now, using the tool orientation matrix terms [n o a], obtained by Eq. (6), tool orientation 
angles will be determined. 
 

4.1. Calculations of the RPY tool orientation angles 
 
There follows the analysis and discussion of the solutions used to calculate angles -90  Bt 
 90 and -180  Ct  180 defined by RPY orientation angles. Tool orientation matrix for 
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RPY angles and for the case when At=180 reads:

   ORIZYX(Ct,Bt,At) = Rot(z,Ct) Rot(y,Bt) Rot(x,At), i.e. 
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From here it is obtained Rot(z,Ct)
- 1 [n o a] = Rot(y,Bt) Rot(x,At), i.e. 
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i.e.
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Using terms of the matrix Eqs. (9), (10) and (11), it is possible to determine the angles Bt 
and Ct in a few ways. These solutions will be analyzed now. Some solutions differ mutually 
by ±180, however, in some cases, when the argument of a function atan2 reads 0,0 
inaccurate results are obtained, which are inapplicable. 
 
The solutions of equations that yield values of the angles Bt and Ct will be analyzed using 
Eq. (9) to obtain tool orientation angle, by virtue of known values for these angles. 
Afterward, using the terms of this matrix, orientation angles will be calculated. Only 
solutions that for each tool orientation position yield solutions equal to starting tool 
orientation angles will be adopted. 

 

4.1.1. Calculations of the angle Bt 
 
The terms (3,1) and (3,3) of matrix Eqs. (9) and (10) yield: 

)a,n(2tanaB 5z5zt    (12)  

This solution is independent of the angle Ct, while the components nz5 and az5   (Fig. 3) of 
the argument of a function atan2 are not simultaneously equal to zero in any position of the 
tool, which would result in ambiguity or inaccurate solution. Consequently, this solution 
gives an accurate result in any tool position. 
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Figure 3. Tool orientation vectors. 

 
If calculations for the angle Bt are done after those for the angle Ct, then other expressions 
can be also used. Using terms (1,3) and (3,3) or (1,3) and (1,1) or (3,1) and (1,1), 
respectively, of Eq. (10) the expressions (13), (14) and (15) can be obtained. Like the 
expression (12), the expressions (13), (14) and (15) always yield accurate results. 

)a,asac(2tanaB 5z5yC5xCt tt


 
nc,asac(2tanaB 5xC5yC5xCt ttt

(13)
)ns 5yCt



)nsnc,n(2tanaB 5yC5xC5zt tt


 
(14)       

 
(15) 

 

The term (1,3) of Eq. (11) (Fig. 3) yields the solutions 

)n,a(2tanaB 5x5xt   and )n,a(2tanaB 5x5xt   (16), (17)  

The values for these two solutions differ mutually by ±180. If Ct (90,180]
 
or if Ct (-

90,-180]
 
an accurate result is obtained by Eq. (16), and if Ct (-90,90) an accurate 

result is obtained by Eq. (17). However, for the values of Ct=-90 and Ct=-90, the 
components nx5 and ax5 

are always equal to zero. Therefore, these two equations are 
inapplicable in these cases.    
 

The term (2,3) of Eq. (11) gives the solutions  

)n,a(2tanaB 5y5yt   and )n,a(2tanaB 5y5yt 
 

(18), (19) 

The values for these solutions also differ mutually by ±180. If Ct (0,180), an accurate 
result is obtained by Eq. (19), and if Ct (0,-180) an accurate result is obtained by Eq. 
(18). However, for the values of Ct=0 and Ct=180, the components ny5 and ay5 are always 
equal to zero. Therefore, these two equations in these two cases are inapplicable. 
Sine of the angle Bt can be calculated, for the known value of the angle Ct, using the terms 
(1,3) or (2,3) of Eq. (9), therefore sin(Bt)=-ax5/cCt or sin(Bt)=-ay5/sCt. Cosine of the angle Bt 
can be calculated, in this case, using the terms (1,1) or (2,1) of mentioned equation, 
therefore cos(Bt)=nx5/cCt or cos(Bt)=ny5/sCt. However, using these terms does not always 
yield accurate results, and in some cases there occurs division by zero, so these terms are 
not suitable for calculations of the angle Bt. 
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4.1.2. Calculations of the angle Ct 
 
The terms (1,2) and (2,2) of Eq. (11) give  

)o,o(2tanaC 5y5xt 
 

(20) 

The components ox5 and oy5 of the argument of a function atan2 are independent of the 
angle Bt, they always lie in the x0y0 plane (oz5=0) and are never simultaneously equal to 
zero. Therefore, the expression (20) can be used to calculate the angle Ct.  
 
When the value of angle Bt is known, the angle Ct 

can be calculated using the expressions 
obtained by the terms (2,1) and (1,1) or (1,2) and (1,1) or (2,2) and (1,1) of Eq. (11), 
respectively.  

)asnc,asnc(2tanaC 5xB5xB5yB5yBt tttt


 
(21)  

)asnc,o(2tanaC 5xB5xB5xt tt


 
(22)  

)o,asnc(2tanaC 5y5yB5yBt tt


 
(23) 

Like Eq.(20), the Eqs. (21, 22 and 23) always yield accurate results.  
The term (2,3) of Eq. (10) gives the solutions  

)a,a(2tanaC 5x5yt   
and )a,a(2tanaC 5x5yt 

 
(24), (25) 

The values of these two solutions differ mutually by ±180. If Bt[-90,0) accurate results 
are obtained by Eq. (24), and if Bt[0,90) accurate results are obtained by Eq. (25). 
However, for Bt=0 the components ax5 and ay5 are always equal to zero. Hence, these two 
equations in this case are inapplicable. 
 
The term (1,2) of Eq. (10) gives the solutions  

)n,n(2tanaC 5x5yt   
and )n,n(2tanaC 5x5yt   (26), (27) 

If Bt(-90,90) Eq. (26) yields an accurate result, while Eq. (27) yields the result differing 
by ±180. However, for Bt=±90, the components nx5 and ny5 are always equal to zero. 
Consequently, these two equations in this case are inapplicable. 
 

5. Inverse kinematics 
 
The inverse kinematics is used to determine the set of axis variables c, d1, d2, 3 and 4 that 
will produce the desired cutter location (Xt, Yt, Zt, -ax5, -ay5 and -az5) given in the CL data 
file, or Xt, Yt, Zt, Ct  

and Bt given in G codes. Control unit primarily utilizes the inverse 
kinematics. In this case, during machining in each interpolation period, i.e. for each 
interpolated point of motion, it determines the cutting tool position and orientation relative 
to the swivelling table, respectively movable work table coordinate system. This section 
discusses some possible machine singular positions. Control algorithms are given for the 
work table and the axis Ct that eliminate their singular positions. 
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Here we will determine machine component positions in virtue of its tool position relative 
to the rotating table (Cy axis) given by the matrix Tt, Eq. (7). The component 4 position 
relative to the rotating table is defined by the expression:   

1
t

4
t5

 TTT  (28) 

This way, for tool orientation defined by RPY and for At=180 the preceding equation 
reads: 

























1000

Zlcrsc0s

Ylssrcsssccs

Xlscrccscscc

ttBtBBB

ttBCtBCBCCBC

ttBCtBCBCCBC

5

tttt

ttttttttt

ttttttttt

T

 

(29) 

Multiplying both sides of Eq. (6) by the matrix Ac on the left side we obtain 

Eq. , i.e. 

 

43214
0

5c AAAATTA 




00

on

cosncn

socnsn

5z5z

c5xc5yc5xc

c5xc5yc5xc

  dscsc























10

Za

YcXsacasos

YsXcasacoc

55z

yc5c5c5yc5xc5y

xc5c5c5yc5xc5y




 ac



















1000

ddc0s

assccs

2c144

3334343

33143334

 

(30) 

Multiplying Eq. (30) consecutively by , then by  and lastly by  on the left 

side we obtain Eq. , i.e. 

1
1
A

4
3T 

1
2
A 1

3
A

45c
1

1
1

2
1

3 ATAAAA 
















































1000

0010

0c0s

0s0c

1000

....)asa(cs)aca(sc........

....a........

....)asa(cc)aca(ss........

44

44

y5cx5c3y5cx5c3

z5

y5cx5c3y5cx5c3

 (31) 

 

5.1. Calculation of the angle c 
 
The term (2,4) of Eq. (30) reads:  

33yc5c5c asYcXs    (32) 

The term (1,2) of Eq. (30) yields 5yc5xc3 osocs   (33) 
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The terms (2,3) and (3,1) of Eq. (30) yield 5z5yc5xc3 n)acas(s   (34) 

The terms (2,1) and (3,3) of Eq. (30) yield 5z5yc5xc3 a)ncns(s   (35) 

 

It is possible to calculate s3 only by the help of the components of vector a, obtained from 
CL data file, but in this case it is needed to have the information on the sign of the angle 4. 
Namely, for 40,

 
the terms (2,3) and (3,3) of Eq. (30) yield 

)a1)(sign()acas(s 2
5z45yc5xc3    (36) 

and for 4=0 is s3=0.  

Now, Eq. (32) can be written in the following form: 

yc
2

y
x

2 )c(tan1

p
p

)c(tan1

)ctan( 





 (37)  

Eqs. (33) and (37) yield 35y5x aoXp   and 35x5y aoYp   (38) 

Eqs. (34) and (37) yield 5z35x5x naaXp  and 5z35y5y naaYp   (39) 

Eqs. (35) and (37) yield 5z35x5x aanXp 
 
and 5z35y5y aanYp   (40) 

Eqs. (36) and (37) yield )a1)(sign(aaXp 2
5z435x5x  

 
and 

)a1)(sign(aaYp 2
5z435y5y    for  04  (41) 

and  and  for 5x Xp  5y Yp   04 . 

Eq. (37) can be written in the form )c(tan1p)ctan(p 2
ycyx    and 

 i.e. 

.  

))c(tan1()ctan(pp2p)c(tanp 22
ycyx

2
y

22
x  

0p)ctan(pp2)c(tan)p( 2
yc

2
yyx

22
yc

2
x  

The solution for the preceding equation is 

: )p/())p()p(pppparctan((c 2
yc

2
x

2
yc

2
y

2
yc

2
x

2
y

2
xyx   . 

As the table swivelling angle decreases with the table moving in the direction of the  

axis, caused by thermal dilatations (yc>0), the sign – will be adopted in the preceding 
expression, such that:  

oy

)p,pppp(2tanac 2
yc

2
x

2
yc

2
y

2
xycyx90    (42) 

The table swivelling angle c in the expression (42) is denoted by c90 for the reason that this 
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expression always gives angle c in the range [-90,90], except when , which is a 

special case. For the case when the angular head axes intersect, a3=0, and there is no 
thermal dilatation, yc=0, the solution for Eq. (32) would read: c=atan2(-Y5,X5). 

2
yc

2
xp 

 

5.1.1. Algorithm for calculations of the angle c 
 
The X axis feed will be limited so that the cutting tool moves from the table axis to the 
maximum positive value. To achieve this, and given that the value of X5 can be negative 
too, the table swivelling angle c should be in the minimum range of [-180,180]. In order 
to reduce the additional positioning of the workpiece and angular head during milling, the 
range of [-360+c90,360+c90] will be adopted for the table swivelling angle c. Hence, it is 
necessary to extend the range of the angle c, obtained by the expression (42), from [-
90,90] to [-360+c90,360+c90]. To achieve this, but also to avoid uncontrolled work table 
swivelling in singular positions by approximately ±180 or ±360, this paper proposes a 
novel algorithm for calculating the angle c. It consists of three steps presented below. 
 
Step 1.  Step 1 involves the calculations of the angle c for the case without thermal 
dilatation. The range of the angle c obtained here is [-180,180]. For yc=0, the expression 
(42) reads: 

)p,p(2tanac xy   (43) 

Let angle c be denoted by cprev for the previous interpolation period. The angle c increment 
for the next interpolation period will be 

 prevccc   (44)  

Step 2. In Step 2 it is checked if the value of the angle c, calculated in Step 1 for a single 
interpolation period, changes by approximately c±180  or c±360. The procedure is 
presented, which makes this impossible and which, if necessary, extends the range of the 
angle c from [-180,180] to [-360,360]. For calculations of the angle c in the next 
interpolation step, the value will be assigned to cprev=c. 
 
Step 3. In Step 3 the angle c is determined for the case if yc0. First, in virtue of the 
expression (42) the value of the angle c90 is calculated. Using this and the value of the angle 
c obtained in Step 2, the range of the angle c is extended from  [-90,90] to [-
360+c90,360+c90]. 
 
The difference between the angle c90 obtained by the expression (42) and the angle c 
calculated in Step 2 will be denoted by  

ccc 9090   (45) 

Now, the value of the table swivelling angle (c90) will be corrected by ±180 or by ±360 as 
follows: 
If c<-7/4, then c=c90+2; 
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If c[-/4,-5/4], then c=c90+; 
If c[/4,5/4], then c=c90-; 
If c>7/4, then c=c90-2; 
Else c=c90; 

Note: If  in the expression (42), the discriminate of the argument of a 

function in this expression (42) being smaller than zero, therefore its argument is not a real 
number. In this case, the solution does not exist for angle c that will lead the surface of 
machining to the machine X axis. It should be waited for the table base to cool and for the 
table axis to return to the zero position. 

2
yc

2
y

2
x pp 

 

5.2. Work table singular positions 
 
A special issue associated with rotary axes is the problem of singular configuration. 
Sometimes the singular configuration represents the borderline between two possible 
solutions for the inverse kinematics, but most often the singular configuration is at the end 
position of one of the rotary axes. The problem with the singularity is that the C axis 
sometimes has to make a quick turn, often 180, in order to produce the desired tool 
motion. In the subsection 5.1.1. the algorithm given prevents the work table to swivel by 
180 or 360, in a single interpolation period.  
This algorithm has also extended the table swivelling range to [-360+c90,360+c90], 
whereby many singular positions were avoided as well. 
 
Some possible singular positions of the work table have still remained. They will be 
discussed now. Analyzing the expression (42), it is noticeable that in some specific 
situations, in order to correct motion caused by thermal dilatation yc, the work table 
swivelling occurs by 180 or 90 in short time intervals. These singular positions will be 
presented below. 

1. If px=0, then ),p(2tanac yc
2
yc

2
y   . This entails that for the case when 

pyyc, and for yc>0, there holds c180, and for yc<0,
 
it holds c0. If pyyc, the 

discriminate  is smaller than or equal to zero, therefore the assigned 

motion is not achievable. 

2
yc

2
ypD 

2. If py=0, then )p,(2tanac 2
yc

2
xyc   . This entails that for the case when 

pxyc and for yc>0, there holds c90, and for yc<0, it holds c90. If pxyc, the 

discriminate 
 
is smaller than zero, therefore the assigned motion is not 

achievable. 

2
yc

2
xpD 

3. A special case of machining is when py=0 and yc=0. Then c=atan2(0,px) holds, so in 
changing the sign of the parameter px, there occurs the table swivelling by the angle of 
180. Table swivelling is performed here at programmed velocity and programmed 
acceleration, while the remaining 4 axes do not rotate. The control algorithm itself 
provides for further continuation of motion along the X axis in a positive direction.   
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ble

r 180 and to change the sign of the angle Bt. This will change the parameters px and py 
work table singular positions. 

les Bt and Ct, using Eq. (9), we can calculate tool orientation matrix 
coefficients. Afterward, using terms (1,2) and (2,2) of Eq. (30), we can calculate the angle 
3 by the equation:  

During previous 3 motions the machine passes through singular points, so abrupt ta  
swivelling occurs. Owing to the two-axis angular head with the axis that do not intersect it 
is possible in singular position to change its orientation in the way to change the angle tC  

fo
in Eq. (42), and thereby avoid 
 

5.3. Calculations of the angle 3 
 
The angle 3, similar to the angle Ct, as described in subsection 4.2.2, can be calculated in a 
number of ways. In case that programming is done in G code and if tool orientation is 
assigned by the ang

)ocos,osoc(2tana 5yc5xc5yc5xc3 
 

(46) 

In 4.1.2. it has been shown that components ox5 and oy5 of the argument of a function atan2 
do not depend on the angle Bt, that they always lie in the x0y0 plane and that they are never 
simultaneously equal to zero. Hence, for this case, the expression (46) can be used for 
calculations of the angle 3. When the table swivelling angle c equals zero, the expression 

0) used to calculate the angle Ct is identical to the expression (46), which now reads: 

se in order to determine the machine axis position all 9 tool orientation matrix 
terms cannot be used, but only the component
yields     

(2
3=atan2(ox5,-oy5). 
 
As mentioned in section 3, when CAD/CAM system is used in programming, its output are 
the assigned tool position and direction vector a given in the CL data file. This means that 
in this ca

s ax5, ay5 and az5. The term (3,3) of Eq. (31) 

)asac,acas(2tana 5yc5xc5yc5xc3    (47) 

And: 

)asac,acas(2tana 5yc5xc5yc5xc3 
 

(48) 

Previous 2 equations, for the case when the work table swivelling angle c equals zero, are 
identical to Eqs. (24) and (25). As mentioned in 4.1.2. the values of these two solutions 
mutually differ by 180. For Bt=0 the components ax5 and ay5 equal zero, so Eq. (47) 
always yields 3=0, while Eq. (48) always gives here 3=180, irrespective of the current 
value of the angle 3. Now, we will present the algorithm that will in the application of 
either of the two previous equations preven  at abrupt angular head swivelling round the 

n for the angle 3 for Bt=0. Let 3prev 
denote the 

d. 
;   

 3-3prev[-/2,3-/2], then 3=3+;   
;   

vertical axis and that will yield solutio
angle 3 in the previous interpolation perio
If 3-3prev[/2,3/2], then 3=3-
If
If ax5=0 and ay5=0, then 3=3prev
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When programming is performed in CAD/CAM system, by the help o
angle 4 can be calculated using the terms (1,2) and (2,2) of Eq. (31), 

5.4. Calculations of the angle 4 
 

f the CL data file, the 
such that: 

)a),acas(s)acas(c(2tana 5z5yc5xc35xc5yc34   (49) 

In case that tool orientation is given by the angles Bt and Ct, the angle 4 
can be calcu  

in other manner using differen erms of Eqs. (30) and (31), such as, e.g.  
lated

t t

)a,n(2tana 5z5z4   (50) 

.5. Calculations of the parameters d  and d  (the X and Z axes positions) 

The term (1,4), Eq. (30), determining motion along the X axis yields:                               

 

5 1 2

 

xc335c acYsXcdX 5c1    (51) 

The term (3,4), Eq. (30), determining motion along the Z axis yields:                                

work table, matrix Tt, by the help of 
e expressions (42), (46) or (47) or (48), (49) or (50), (51) and (52), respectively, we have 

ositions c, 3, 4, d1 and d2 of machine  

lowing 
 is 

illing machine, which essentially 

lar 
g axes, which increases the achievability of machining in some 

ases. For the case of control of the angular head with intersecting axes, the mentioned 

ror by 
e. Also, this algorithm extends the angle range, so it is greater 

5c12 ZddZ    (52) 

This way, using the cutting tool position relative to the 
th
calculated the p
 

6. Conclusion 
 
It has been shown that on the 5-axis turning centre with 2 linear and 3 rotational axes, 
besides the turning, it is possible to achieve 5-axis milling, drilling and boring identical to 
that on the milling machine with 3 linear and 2 rotational axes. Control algorithm al
for this was presented. Thanks to the proposed control algorithm, machine programming
possible in identical way as done for the 5-axis m
simplifies writing the machining program or taking over the CL data from CAD/CAM 
systems developed for the milling machines. 
Forward and inverse kinematics has been solved for the case of utilizing the 2-axis angu
head with non-intersectin
c
algorithm is simplified. 
 
The proposed algorithm fully eliminates the inaccuracy of machining caused due to base 
thermal extension. Here the solving of the table swivelling angle was a specific problem. 
The algorithm was given that performs compensation of the base thermal extension er
correcting mentioned angl
than ±360. Thus, additional positioning of the work table and angular head during 
machining is decreased.  
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 necessary, it is possible to incorporate into the control algorithm the compensations for 
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