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Abstract. The paper deals with a numerical analusis for the seismic response of reinforced 
concrete structures containing cable elements. The cable behaviour is considered as 
nonconvex and nonmonotone one and is described by generalized subdifferential relations 
including loosening, elastoplastic - fracturing etc. effects. The problem is treated 
incrementally by double discretization: in space by finite elements and piece-wise 
linearization of cable - behaviour, and in time by the Newmark method. Thus, in each time - 
step an incremental linear complementarity problem is solved with a reduced number of 
problem unknowns. Finally, an example from civil  engineering praxis is presented and 
some results are discussed. 
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1. Introduction 
 
Braces play an important role for the strengthening, repair and  earthquake resistant design 
and construction, see e.g. [1],[2]. This holds especially for reinforced concrete structures, 
exposed to environmental actions and requiring a strengthening procedure to continue to be 
serviceable. So, the seismic analysis of braced-structures, such as framing systems, 
suspended roofs and bridges, offshore platforms and braced towers, is an active 
investigation field [3],[4],[5]. 
A special class of braced structures are those containing cable elements. The peculiarity is 
that these elements can transmit tensile stresses only. The so-caused nonnegativity 
inequality for cable stresses is the principal condition in the relevant mathematical 
formulation of the problem. This is nonlinear, not only because of the presence of stress 
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inequalities, but also because the considered cable stress-strain law is nonlinear, non-
convex and non-monotone. 
Thus, the formulated theory is a large displacement inequality theory, as usual in cable-
structures, see e.g. Panagiotopoulos [3], [6] . A compact mathematical treatment of the 
static problem of cable-structures has been also  presented by Panagiotopoulos [3], [7], on 
the basis of the variational or hemivariational inequality approach. As well known, the 
hemivariational  inequality concept has been introduced into Mechanics and Applied 
Mathematics by P.D. Panagiotopoulos for first time in 1983, see [8], and constitutes now 
the basis of the so-called Non-Smooth Mechanics. 
Further, as concerns numerical aspects, a remarkable approach to the above inequality 
problem has been obtained by piece-wise linearization of the cable constitutive laws and by 
using mathematical programming [3], [4], [5], [12]. 
The aim of this paper is to present a numerical analysis to the seismic problem of cable  
braced reinforced concrete structures. For this purpose we use a double discretization. First 
the problem is discretized in space by the finite element method and by piece-wise 
linearization of the constitutive laws of cable-elements. Then, due to large cable 
deformations, the problem is given an incremental formulation. Further, a time 
discretization is applied by using the Newmark  method. In each time-step an incremental 
non-convex linear complementarity problem, with reduced number of unknowns, is 
formulated and solved. Finally, the developed numerical procedure is applied to a practical 
Civil Engineering example. 
 

2. Problem formulation 
 
The structural system is discretized in space by using finite elements of the "natural" type, 
see e.g. [3],[6],[14]. Pin-jointed bar elements are used for the cables. The behaviour of 
these elements includes loosening, elastoplastic or/and elastoplastic-softening-fracturing 
and unloading - reloading effects. All these characteristics can be expressed mathematically 
by the relation:  

 i i i i
ˆs  (d )     S (d )  . (1) 

where si and di are the (tensile force) and the deformation (elongation), respectively, of the 

i-th cable element, ̂  is the generalized gradient and Si  is the superpotential function, see 
Panagiotopoulos  [7], [8]. By definition, relation (1) is equivalent to the following 
hemivariational inequality expressing the Virtual Work Principle: 

 i i i i i i i iS  (d ,e d )  s (d )  (e d )     . (2) 

where iS  denotes the subderivative of  Si and ei, di are kinematically admissible (virtual) 

deformations. 
From the mathematical point of view, using (l) and (2), we can formulate the problem as a 
hemivariational inequality one by following [7] and investigate it. Instead of this, and 
because here we are interested for the computational treatment of the problem, we proceed 
directly by piece wise linearizing the constitutive relations (l). So, in a way similar to that in 
elastoplasticity –see e.g. Maier [5],[6] - and in unilateral elastodynamics –see e.g. Liolios 
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[9]-, we have the following constitutive relations (in matrix notation, underlined symbols) 
for the cable elements: 
 

 Tψ  B σ Aυ r, (r 0)    . (3) 

 Tψ 0,      υ 0,      ψ υ 0   . (4a,b,c) 

Here  σ  is  the stress vector of the whole structural system; B is a transformation matrix; A 
is the  current symmetric interaction matrix; and ψ, (-υ), r  are the yield, slackness and 
ultimate capacity (resistance), respectively, vectors of cable elements. 
The remaining  constitutive relations for the unassembled structural system are: 

 e  ε Bυ θ   . (5) 

 -1σ  E ε or ε  E  σ  . (6) 

where  e, ε, θ  are the total, pure elastic and imposed (e.g. thermal or dislocations) strain 
vectors, respectively, and  E  is the current elasticity matrix, symmetric and positive 
definite. 
Next, dynamic equilibrium and compatibility for the assembled structural system are 
expressed, respectively, by the relations 

 GG σ + K  u  =  p - Cu - Mu  . (7) 

 Te  =  G  u . (8) 

Here G  is the equilibrium matrix and  GT , its transposed, is the compatibility matrix; u and 
p are the displacement and the load vectors, respectively; C and M are the damping and 
mass matrices, respectively, both  symmetric and in general positive (semi)- definite. The 
geometric stiffness  matrix  KG depends linearly on preexisting constant load [6]. Through 
the term  KGu alone the geometry changes affect the equilibriumn (second order geometric 
effects). As usua1, dots over symbols denote derivatives with respect to time. On the other 
hand,  for the case of seismic excitation, it is 

 gp  =  -M x . (9) 

where xg(t) is the ground seismic displacement. 
Finally, the initial conditions are 

 u(t 0) u  ,   u(t 0) u  , υ(t 0) υo o o       . (10a,b,c) 

where  uo, uo and υo  are known quantities. 

Thus the problem consists in finding the response set {σ(t), u(t), ε(t); ψ(t), υ(t)} which 
satisfies (3)-(10) for the given excitation set  {p(t), -or xg(t)-,  θ(t), uo, uo , υo}. 

 

3. The  Incremental  Linear  Complementarity  Approach 
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Due to nonmonotone and nonconvex cable behaviour (large deformations, loosening, 
elastoplastic-softening-fracturing effects, unloading-reloading etc.), E and A depend on u 
and υ, respectively. Therefore, an incremental formulation for the problem is more suitable. 
For this purpose, let  Et, At, ψ(t), υ(t) etc. denote known quantities at the time t and let Δt be 
the time increment. Then the linear complementarity conditions (4) at the next time-
moment (t + Δt) are written  as follows: 

  T
t tt t

ψ + Δψ  0 ,   υ + Δυ  0 ,   (ψ + Δψ) υ + Δυ  = 0   . (11a,b,c) 

Next, the remaining problem conditions (3), (5)-(8) take the incremental form 

 T
tΔψ  B Δσ A Δυ  . (12) 

 Δe  Δε BΔυ Δθ   . (13) 

 -1
t tΔσ  E  Δε or Δε  E  Δσ  . (14) 

 GΔσ + K  Δu  =  Δp - C Δu - M Δu  . (15) 

 TΔe  =  G  Δu . (16) 

Further, we use a time discretization scheme for the step-by-step solution of problem (11)-
(l6). As known - see e.g. [10], for implicit time integration methods, relations of the 
following form hold: 

 1Δu  =  c Δu + a . (17a) 

 2Δu  =  c Δu + b . (17b) 

where c1 and c2  are positive constants in terms of Δt, and a, b known quantities from 
previous time-steps. So, for the constant-average acceleration method, which is chosen here 
from the Newmark time-integration schemes, we have 

 1 22

4 2
c    ,           c    

ΔtΔt
  . (17c,d) 

In order to reduce the unknowns number, we substitute (l7) into (l5) and eliminate Δσ, Δε, 
Δe, Δu from (l2)-(l6). So we eventually arrive at 

 Δψ  =  Λ Δυ + λ . (18) 

where 
 

 T -1 TΛ  =  H  K  H - A - B  E B . (19a) 

 H  =  G E B . (19b) 

 T
G 2 1K  =  G E G  + K  + c  C + c  M . (19c) 

 T -1 Tλ  =  H  K  (Δf  + C b + M a) - B  E Δθ . (19d) 
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 Δf   =  Δp + G E Δθ . (19e) 

Now, (18) with (11) constitute a Linear Complementarity Problem (LCP). In comparison to 
problem of (1)-(10), the LCP has a reduced number of unknowns. The LCP is solved in 
terms of the increments Δψ and Δυ by available computer codes of mathematical 
programming, see [5], [6], [7], [13]. Finally, by using Euler relations  u = ut + Δu,  υ = υt + 
Δυ  etc.,  we complet the solution at time  (t + Δt). 
 

4. Numerical Example 
 
The 6-storey framing system of reinforced concrete class C16/20 in Fig. 1, with L = 6 m 
and h = 4 m, was initially designed and constructed without cable-braces. The beams are of 
rectangular section 30/75 (width/height, in cm) for the floors i=1,2,3,4, section 25/60  for 
the floors i=5,6, and have a total vertical distributed load 50 kN/m (each beam). The 
columns have section dimensions, in cm: 35/50 for the i =1,2 floors, 30/35 for the i = 3,4 
floors, and 25/30 for the i = 5,6 floors.  
Due to environmental actions, corrosion and cracking has been taken place. This had 
caused a reduction for the section inertia moments, which is estimated  [11] to be 10% for 
the columns and 50% for the beams. So it was necessary for the system to be strengthened. 
Because of architectural reasons, the cable-braces system shown in Fig. 1 has been applied, 
and not the usual  X-braces [1]. The cable elements, of steel class S400, have a unilateral 
behaviour depicted in Fig. 2, with yield strain  ε y = 0.2 %, fracture strain  ε f = 2 % , yield 
stress  σ y = 34.78 kN/cm2, and elasticity modulus  Ec = 200 GPa. The branch  OA is a  2-nd 
degree parabola with an horizontal tangent at point A. 
The system is subjected to the horizontal ground seismic excitation: 
 

 -2t
g ox (t) = x  e  sin(4πt) . (20) 

where  xο = 0.025 m. The graphic representation of  xg(t)  is shown in Fig. 3. The 
corresponding maximum seismic ground acceleration is 0.32 g, where g = 9.81 m/sec2 is the 
gravity acceleration. 
Further, for comparison reasons, we introduce the comparison coefficients 

 c

f

Q
c = 

Q
. (21) 

where  Q  is the absolutely maximum value which takes a response quantity during the 
seismic excitation. Index (c) is for the cable-braced system and index (f) for the free (i.e. 
without cables) system.  
Some representative results, obtained by applying the numerical method developed in 
previous sections,  are shown in  Table 1.  Two  cases  of  cross-sectional  area of  cables 
are considered:   a) Fc = 3.8 cm2,   b)  Fc = 7.4 cm2. These results concern on the one hand 
the comparison coefficients  cs  for the floor shear forces and  cd  for the floor horizontal 
displacements, and on the other hand the stress  si [kN/cm2] and the percentage [%] 
permanent plastic deformation  di  for the i-th cable element (i = 1,...,6). 
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Figure 1: Numerical example: The cable-braced 6-storey structural system 

 

 

 

 
          Figure 2: Cable-elements constitutive law Figure 3: Seismic horizontal ground 

displacement 
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Table 1.  Some results for the  numerical example. 

 

 Comparison coefficients Cable-Element 

Floor cs 

(Shear Force) 

cd 

(Displ. Horiz.) 

max si  

[kN/cm2] 

di 

[%] 

(0) (1) (2) (3) (4) 

1 a 0.921 1.001 17.84 0.128 
 b 0.884 1.007 17.38 0.107 

2 a 0.984 0.963 12.37 0.078 
 b 0.981 0.945 12.24 0.068 

3 a 0.971 1.004 19.63 0.147 
 b 0.948 1.011 18.01 0.118 

4 a 0.971 0.968 15.63 0.108 
 b 0.982 1.103 15.07 0.091 

5 a 1.123 1.171 18.17 0.137 
 b 1.237 1.378 17.88 0.118 

6 a 0.848 1.357 34.78 0.374 
 b 0.837 1.617 34.78 0.238 

 
 
As the table values of columns (1) and (2) show, the most influenced floors due to cable 
behaviour are the two higher ones. So, in the 5th floor the shear floor force increases about 
24 %  and the displacement about  38 %  for case b) with Fc = 7.4 cm2. In the 6th floor it is 
appeared a decrease about  15 %  for the shear force  and an increase about  62 %  for the 
displacement. These results can be explained by energy considerations on the basis of the 
values on columns (3) and (4).  Indeed, the cable in the 6th floor has been plastified. 
Therefore the seismic energy absorbed by it until plastification has returned partially to the 
frame system.  
Such effects can be of impact type when cable-elements are fractured, and so the change of 
response values for the frame can be ocurred in a sudden and pounding way. Moreover, the 
6th floor is influenced by the unilateral behaviour of the 6th cable alone. On the contrary, 
each of the lower floor beams is affected by the combined action of two cables at the same 
time, and so it is subjected to actions similar to those caused by X-braces. The latter have 
merely a bilateral character instead of a purely unilateral one. As regards the response of 
the lower floors, we remark from the table values that as long as the cable remain in the 
elastic or the early elastoplastic range of their behaviour, i.e. without fracturing, the braced 
structure appears a reduced response in comparison to that one of the free structure. This 
fact concerns especially  the shear forces in the floors 14, where  the corresponding 
coefficients are about  0.90.  
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5. Concluding remarks  
 
An incremental approach has been herein presented, by which the unilateral dynamic 
problem of  the seismic analysis of cable-braced reinforced concrete structures can be 
treated numerically. This approach takes into account the unilateral behaviour of cable 
elements and leads to a linear complementarity problem, in each time increment, with a 
reduced number of problem unknowns.  
The numerical realization is obtained by available computer codes of the finite element 
method, of step-by-step time integration schemes and of mathematical programming 
(optimization) algorithmes. Moreover, as it has been verified in an example, the herein 
developed approach can treat in a realistic way the seismic problem of cable-braced 
reinforced concrete structures in civil engineering praxis.Paper could be divided into 
sections and subsections. 
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Abstract. This paper presents a mobile system that is used to prevent failure of structures. 
Beginning of the research involved a review of technical measurement system with two 
cameras – stereometric measurement and machine vision. Fracture mechanics is theoretical 
number of possible solutions of problems of cracks development approach for assessing 
structural integrity. There are numerous examples where the rating integrity is used very 
successfully, but there are still opportunities for new methods of achieving greater efficiency 
and further cost reduction engineering construction and service.   

 

 

1. Introduction  
 
Machine Vision systems are systems for video processing in industrial conditions where the 
most common use of these system for product quality control, automatic control of robotic 
systems, determining the number of people in place frequented, to monitor object in 
systems for monitoring traffic in biomedical engineering, while in this paper an 
stereometric system used within an expert system for structural integrity assessment. The 
term Machine Vision among other things, we mean digitization, analysis and various ways 
of handling the image (video) which is covered by concept of processing image. 
 

 
Figure 1. Video cameras "Aramis" with the tested sample at the centre  [1] 

 
There are two functionally different methods used for automated control area, this puts an 
emphasis on surface recording, it will result in this paper used recording surface cracks 
using stereometric methods: 

1. Error detection of uniform structure surface (scratches, marks, holes, etc.)  
2. Error detection in the copies preserved in relation to a reference model 
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Namely, recording with two video cameras were evaluated as suitable contactless method, 
to obtain information about behavior of the structures during operations. The surface 
components can spray a contrasting color (black or white background), which are 
discretized  by computer program such as a fingerprint in a unique discretized record of 
surface. When the construction is loaded, a displacement of points, are saved. This method 
helps to better understand material and component behavior and is ideally suited to monitor 
experiments with high temporal and local resolution. This is a non-contact and material 
independent measuring system providing, for static or dynamically loaded test objects, 
accurate: 3D surface coordinates, displacements and velocities,  
Surface strain values (major and minor strain, thickness reduction), Strain rates 
This is the ideal solution for: Determination of material properties (R- and N-values, FLC, 
Young's Modulus, etc...), Component analysis (crash tests, vibration analysis, durability 
studies, etc...), Verification of Finite Element Analysis. It is ideally suited to measure, with 
high temporal and local resolution as well as with a high accuracy, three-dimensional 
deformation and strain in real components and material specimens. For static or 
dynamically loaded specimens and components, ARAMIS allows for non-contact and 
material independent determination of 3D coordinates and 3D displacements, 3D speeds 
and accelerations, Plane strain tensor and plane strain rate, Material characteristics. 
 
By this method is possible to obtain a complete picture of deformation of structural 
components by the real time with the change of the spatial components of 
deformations . Coordinates of selected points of the network are changing due 
shifting these points, caused by increasing load. , monitoring of coordinates is possible by 
using a complex mathematical apparatus, which contains expressions to determine the 
strain components, and expressions that are used for assessing structural integrity.   
 
The aim was stereometric measurement applications application in the analysis if structures 
under the influence of external loads. Fracture mechanics is theoretical number of possible 
solutions of problems of crack development approach for assessing structural integrity. 
 There are numerous examples where integrity assessment is used very 
successfully, but there are still possibilities of new method to achieve greater efficiency and 
further cost reduction engineering, construction and service construction. A special problem 
is the structure composed of several different materials. Basis for stereometric measuring 
are two examples of transient crack and an example of surface cracks in tubes for fracture 
mechanics testing. 
 

2. Setting up the experiment and development of numerical models 
 

In the thesis [2] made the following test tubes:  
- experimental (in laboratory for mechanical testing) 
- stereometric measurements (monitor the deformation in real time during 

mechanical load) 
- numeric (using licensed software for calculation of FEM), and 
- analytical (FAD and CDF diagrams) 
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Figure 2. Model for numerical analysis. 

 
In Figure 3, the data of distribution of equivalent von Mises’s stress obtained for model 
with crack and fine mesh finite elements. The results obtained are preliminary, because the 
tensile properties of materials that make up circuit modeled using a simplidied bilinear 
strength curves.  
 

     
Figure 3.  Distribution of von Mises’s stress on models with a crack and fine mesh. 

 
 
3. Results obtained by stereometric measurement  
Stereometric measurement was performed on two specimens, because strength testing 
machine and get better results stereometric results steremetric stereometric measurement, 
the specimens have gone to further processing and finishing before the test.  
 
The test were concluded welded joints of low-carbon steel increased strength X60, which is 
designed for longitudinally welded pipes exposed to high pressure vessels. Chemical 
compositions and mechanical properties of X60 steel are given in Table 1 and Table 2, 
consequently.    
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Figure 3. Tensioning specimen in testing machine with controlled growth force and stereometric monitoring crack 

growth. 

 
 

Table 1. Chemical Compositions, X60 

mass. % 
C Mn P S Co V Nb 

0.12 0.33 0.020 0.010 0.35 0.045 0.056 

 
Table 2. Mechanical Properties, X60 

 

 

 

 

 

 

 

 

 

 
448 596 22.7 55.6 76 

 
Plate specimen with initial  crack in the test specimen material resistance to fracture and 
define standards. Initial crack the test specimen with K welded joint were conducted 
electro-erosion and dynamically changing load. The study was concluded on electro-
mechanical testing machine, and was used stereometric method.  
 

     
Figure 4. Stereometric measurement of specimen with initial crack. 
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Figure 5. CMOD, obtained by software package, Aramis. 

 
By increasing the force on the testing machine, continues stereometric measurement, and 
after completion of measurement is a complete picture of the state of stress and strain on 
tube along all three axes coordinate system, as measured on real construction provides an 
assessment of its integrity. 
 

 
Figure 6. Testing and measuring the fracture of specimen. 

 
Based on measurements performed stereometric, give the appropriate. Diagrams for 
analysis to assess the structural integrity. What is certainly be seen in Figure 6, is careful 
analysis of the crack can be seen in situations of internal cracks, the numerical methods not 
possible to accurately predict. Based on the results stereometric measurements, it is clear 
that there has been fracture specimen – Plastic collapse. These results were confirmed 
analytic on the FAD and CDF diagrams, shown in Figure 7 and Figure 8, where shows that 
the fracture of specimens in the zone of plastic collapse.  
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Figure 7. FAD diagram for specimen 

 

 
Figure 8. CDF diagram for specimen 

 

   
Figure 8. Fracture specimen 
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4. Conclusion  
The research of this study showed good agreement between experimental, analytical and 
numerical analysis of deformation behavior of structural components with different 
configurations and different ways of cracking loads. Paramerers of fracture mechanics and 
limit load were calculated analytically and numerically, and experimentally verified 
aquipment measuring displacement and strain at the surface were studied components. 
Comparisons between analytical and numerical results on surface and corresponding 
experimental results have shown that it is possible to trace the behavior structural 
components of the cracked and assume the existence, location size and development of 
internal cracks.  
The agreement between analytical, numerical and experimental results is good for surface 
cracks. Less agreement of numerical and experimental results are in internal cracks because 
they cannot be assumed true, the reason lies in the structure of material, as in the case 
welded jointsm, which are usually not taken into account in numerical modeling base 
material, but is taken into account in welded joints when differences in strength exceed 
some percentage (eg SINTAP- Structural Integrity Assessment Procedures for European 
Industry-is more than 10%).  
Results showed that data obtained with stereometric method correspond well with 
numerical and analytical results which gives us justification for introducing such expert 
system. 
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Abstract. The goal of this paper is the establishment of computation method for the 
evaluation of the residual life of structural elements in the presence of initial damage which 
appears in the form of cracks. Therefore in this paper computation method for the evaluation 
of the residual life of structural elements with initial damage subjected to cyclic loading of 
constant amplitude load spectrum are presented. Computational methods for the evaluation 
of the residual life of structural elements with initial damage basically rely on crack 
propagation analysis. In this investigation for crack propagation analysis Strain Energy 
Density (SED) method will be used. This method uses the low-cycle fatigue (LCF) 
properties of the material, which are also being used for the lifetime evaluation until the 
occurrence of initial damage. Therefore experimentally obtained dynamic properties of the 
material such as Paris` constants are not required when this approch is concerned. The 
complete computation procedure for the crack propagation analysis using low-cycle fatigue 
material properties is illustrated with  the damaged structural elements. To determine 
analytic expressions for stress intensity factors (SIF)  singular  finite elements are used. 
Results of numerical simulation for crack propagation based on strain density method have 
been compared with  own experimental results. 

Key words: Fatigue, residual life, damaged structural elements, aircraft attachment lugs, 
strain energy density method, low-cycle fatigue properties, finite elements 

1. Introduction  
 
Methods for design against fatigue failure are under constant improvement. In order to 
optimize constructions the designer is often forced to use the properties of the materials as 
efficiently as possible. One way to improve the fatigue life predictions may be to use 
relations between crack growth rate and the stress intensity factor range. These are fairly 
well established for constant amplitude loading, at least for common specimen geometries. 
Loading histories in engineering structures do however often exhibit varying amplitudes. 
For such cases the prediction capacity is markedly lower. Ideally, the crack advance under 
varying amplitude should be possible to predict using experimental data from constant 
amplitude testing. Numerous investigations address this problem but so far without 
reaching any total success. 
Design based on damage tolerance criteria often deals with notched components giving rise 
to localized stress concentrations which, in brittle materials, may generate a crack leading 
to catastrophic failure or to a shortening of the assessed structural life. For a successful 
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implementation of the damage tolerance philosophy to the design and in-service operation 
of structures subjected to fatigue loading it is crucial to have reliable crack growth 
prediction tools. Damage tolerance application to the aircraft structural components is 
limited to critical parts. A part, that if it fails, alone may cause the loss of an aircraft is 
classified as a critical part. This definition means, that aircraft wing-fuselage attachments 
must be comply with the damage tolerance requirements [1,2]. The main goal is a safe life 
design, i.e. a slow crack growth structure not requiring any insection during its full life.  
The Damage Tolerance approach assumes the components have a preexisting flaw from 
which a crack will grow under dynamic loads. This assumption makes it possible to 
account for in-service or manufacturing defects in determining the dynamic life. The 
Damage Tolerance Methodology uses fracture mechanics to predict the fatigue crack 
growth in a structure. In the design analysis of a slow crack growth structure it is most 
important to make correct estimates for the early portion of the crack growth process, 
because it is there the life is. In most cases this implies that maximum accuracy is needed 
for small corner cracks.  
The ability to successfully maintain aircraft airworthiness and structural integrity is 
critically dependent on the application of appropriate fatigue crack growth (FCG) 
prediction tools. The prediction tools are required to accurately predict FCG in aircraft 
structures and components under flight spectrum loading, and thus reliably provide total 
economic lives or inspection intervals as part of a stringent aircraft structural integrity 
management plan. 
Fatigue crack growth in aircraft structures and components under flight spectrum loading is 
traditionally predicted based on FCG rates obtained from constant-amplitude (CA) crack 
growth testing using the cycle-by-cycle approaches [14,15]. 
Attachment lugs are particularly critical components in crack initiation and growth because 
of their inherently high stress concentration levels near the lug hole. For these reasons, it is 
important to develop analytical/numerical as well as experimental procedures for assessing 
and designing damage tolerant attachment lugs to ensure the operational safety of aircraft. 
Over the years, several extensive studies [3-5] have been made on lug fatigue performance, 
involving both experimental and numerical means. 
In the work of fatigue crack growth and fracture behavior of attachment lugs [6,7], an 
accurate calculation of the stress intensity factor is essential. Over the years several 
methods have evolved to compute the stress intensity factors for structural components 
containing cracks. These methods include analytical as well as experimental approach. The 
experimental backtracking approach was used to derive empirically the stress intensity 
factors for structural components using the growth rate data of through-the-thickness cracks 
for simple geometry subjected to constant-amplitude loading. 
The finite element method is used to precise determine SIF`s using singular finite elements.  
Accurate stress-intensity factor (SIF) solutions are required to conduct thorough damage 
tolerance analyses of structures containing cracks. Exact closed form SIF solutions for 
cracks in three-dimensional solids are often lacking for complex configurations; therefore, 
approximate solutions must be used. Over the past two decades, considerable effort has 
been placed on developing computationally efficient methods which provide highly 
accurate SIF solutions for cracks in three-dimensional bodies.  
The purpose of this investigation was to test the accuracy of the crack growth models. All 
necessary parameters, such as material property data, stress intensity solutions, and the load 
spectrum, were defined. To determine residual life of damaged structural components here 
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are used two crack growth methods: conventional Forman`s crack growth method and crack 
growth model based on the strain energy density method. The last metod uses the low cycle 
fatigue properties in the crack growth model. 
 

2. Crack growth model based on Strain Energy Density Method 
 
In this work fatigue crack growth method based on energy concept is considered and then it 
is necessary to determine the energy absorbed till failure. This energy can be calculated by 
using cyclic stress-strain curve. Function between stress and strain, as recommended by 
Ramberg-Osgood provides good description of elastic-plastic behavior of material, and 
may be expressed as 
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where E is the modulus of elasticity, /2 is strain amplitude and /2 is stress amplitude. 
Equation (2.1) enables the calculation of the stress-strain distribution by knowing low 
cyclic fatigue properties. As a result the energy absorbed till failure become [10,11] 
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where f
/ is cyclic yield strength and f

/ - fatigue ductility coefficient. Given the fact that 
strain energy density method is considered, the energy absorbed till failure must be 
determined after the energy concept is based on the following fact: The energy absorbed 
per unit growth of crack is equal to the plastic energy dissipated within the process zone per 
cycle. This energy concept is expressed by 
 

Wc a = p,             (2.3)  
                                                                                         

where Wc is energy absorbed till failure, p- the plastic energy and a - the crack length.  In 
equation (2.3) it is necessary just to determine the plastic energy dissipated in the process 
zone p. By integration of equation for the cyclic plastic strain energy density in the units 
of Joule per cycle per unit volume 10 from zero to the length of the process zone ahead of 
crack tip d* it is possible to determine the plastic energy dissipated in the process zone p. 
After integration relation of the plastic energy dissipated in the process zone becomes 
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where KI is the range of stress intensity factor,  - constant depending on the strain 
hardening exponent n/, In

/  - the non-dimensional parameter depending on n/. 
Fatigue crack growth rate can be obtained by substituting Eq. (2.2) and Eq. (2.4) in Eq. 
(2.3) 
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where Kth is the range of threshold stress intensity factor and is function of stress ratio i.e. 
 

Kth= Kth0(1-R),      (2.6) 
 
Kth0 is the range of threshold stress intensity factor for the stress ratio R = 0 and  is 
coefficient (usually,  = 0.71). Finally number of cycles till failure can be determined by 
integration of relation for fatigue crack growth rate 
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and 

,aSYK I                                                                         (2.8) 

Equation (2.7) enables us to determine crack growth life of different structural component. 
Very important fact is that equation (2.7) is easy for application since low cyclic material 
properties (n/, f

/, f) available in literature are used as parameters. The only important point 
is stress intensity factor which, depending on the geometry complexity and the type of 
loading, could be determined by using analytical and/or numerical approaches. 
 

3. Crack growth analysis using conventional approach 

For crack growth analysis and fatigue life estimations have been used various conventional 
crack growth models. Many of these models achieve correct solutions of crack growth 
analyses for cracked structural elements under cyclic loads of constant amplitude.  
Hovever, for construction under cyclic loads of variable amplitude in form of load spectrum 
such as in aircraft cases it is necessary tu include the effects of shape of load spectra and its 
effects of estimation life of structural elements [9].  

Forman, Newman and others [8] developed the equation, which is an equation often used to 
describe crack growth. This equation describes the crack growth curve in terms of the crack 
length a , the number of cycles N , the stress ratio R , the stress intensity factor range DK, 

and material constants,  C, n, p, q through best fits of the da/dN  - DK data.  
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where: - crack length, N-number of cycles, C, n, p, q – are experimentally derived 

material  parameters , K is the stress intensity factor (SIF), is the threshold stress 

intensity factor, R is the stress ratio, - is the critical stress intensity factor. The Newman 
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and the coefficients are given by:                                       
1
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where:  - is the plane stress/strain constraint factor, (max/0) is the ratio of maximum 
stress to the flow stress. The threshold stress intensity factor range is calculated by the 
following empirical equation: 
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Relation (3.1) represents one general crack growth models based on conventional approach. 
This relation can be transformed to conventional Forman`s crack growth model5. In region 
III rapid and unstable crack growth occurs, so Forman at al. Proposed equation for region 
III as well as for region II [9] 
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where KC is the fracture toughness. Forman`s equation has been developed to model of 
unstable crack growth domain (III). 
 

4. Stress intensity factor solution of cracked lugs 
 

4.1 Damaged attachment lug with initial crack through the thickness 
 

In this section are given relations for stress intensity factor with crack through the thickness 
In general geometry of notched structural components and loading is too complex for the 
stress intensity factor (SIF) to be solved analytically. The SIF calculation is further 
complicated because it is a function of the position along the crack front, crack size and 
shape, type loading and geometry of the structure. In this work analytic and FEM were used 
to perform linear fracture mechanics analysis of the pin-lug assembly. Analytic results are 
obtained using relations derived in this paper. Good agreement between finite element and 
analytic results is obtained. It is very important because we can to use analytic derived 
expresions in crack growth analyses. Lugs are essential components of an aircraft for which 
proof of damage tolerance has to be undertaken. Since the literature does not contain the 
stress intensity solution for lugs which are required for proof of damage tolerance, the 
problem posed in the following investigation are: selection of a suitable method of 
determining othe SIF, determination of SIF as a function of crack length for various form of 
lug and setting up a complete formula for calculation of the SIF for lug, allowing essential 
parameters. The stress intensity factors are the key parameters to estimate the characteristic 
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of the cracked structure. Based on the stress intensity factors, fatigue crack growth and 
structural life predictions have been investigated. The lug dimensions are defined in Fig. 1. 
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FIGURE 4.1.1: Geometry and loading of lugs with crack through the thickness 

 
To obtain stress intensity factor for the lugs it is possible to start with general expression for 
the SIF in the next form 
 aYK SUM                                                                                           (4.1.1)   

where: Y – correction function, a- the crack length. This function is essential in determining 
of the the stress intensity factor. Primary, this  function depends on stress concentration 
factor, kt and geometric ratio a/b. The correction function is defined using experimental and 
numerical investigations.  This function can be defined in the next form [13]:  
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The stress concentration factor kt is very important in calculation of correction function, eq. 
4.2. In this investigation. A contact finite element stress analysis was used to analyze the 
load transfer between the pin and lug. 
 

4.2 Damaged attachment Lug with semi-elliptic surface crack   
 

Here is considered the stress intensity factors for cracked lug with the semi-elliptic surface 
crack as shown in  Fig. 4.2.1. 

Ro

Ri

A t

2b

a

 
FIGURE 4.2.1 Lug with semi-elliptic surface crack   

 
As start point for determination of stress intensity factor of attachment lug with semi-
elliptic surface crack will be used Lukaš`s model [16,17]. Lukaš is considered problem of 
determination of SIF to plate with surface crack within zone of stress concentration.  This 
approached is extended to the attachment lugs with semi-elliptic surface crack. By using 
this approach here are defined analytic expressions for determination of SIF`s at the points 
А and B to lug with semi-elliptic surface crack as shown in Fig. 4.2.1, in the next form: 

 

A A tK F k  a       (4.3.1) 
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Горњи аналитички изрази за ФИН код ушке са елиптичном прскотином се могу 
користити како за прорачун чврстоће ушки са аспекта “статичке” механике лома тако 
и за процену преосталог века коришћењем различитих закона ширења прскотине. 
 
5.  Numerical validation 
 
To illustrate computation procedures in damage tolerance analysis and residual life 
estimations of damged structural components here are numerical examples included.  
 
   5.1 Life estimation of damaged structural elements 
 
Subject of this analyses are cracked aircraft lugs under cyclic load of conctant amplitude 
end spectra. For that purpose conventional Forman crack growth model and crack growth 
model based on strain energy density method are used. Material of lugs is Aluminum alloy 
7075 T7351 with the next material properties: 
            m=432 N/mm2   Tensile strength of material 
             02=334 N/mm2 
             KIC=2225 [N/mm3/2] 
Dynamic material properties (Forman`s constants):      CF=3* 10-7,    nF=2.39.  
Cyclic material properties: f

/=613 МПа,   f
/=0.35 ,      n/=0.121. 
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The stress intensity factors (SIF`s) of cracked lugs are determined for nominal stress levels: 
g = max=98.1  N/mm2 and  min=9.81  N/mm2.  These stresses are determined in net cross-
section of lug. The corresponding forces of lugs are defined as, Fmax= g (w-2R) t = 63716 
N and Fmin= 6371.16 N, that are loaded of lugs. For stress analyses contact pin/lug finite 
element model is used.  For cracked lugs defined in Table 5.1, with initial cracks a0, SIF`s 
are determined using finite elements, Table 5.2. To obtain high-quality results of SIF`s 
cracked lugs are modeled by singular finite elements around crack tip. 
 

16
0

44
.4

R20

R41

83.3

t = 15 mm

a

F = 6371.6 daN

Fig 5.1: Geometry of cracked lug 2 
 

 
 
 

 
 

Fig. 5.2. Finite Element Model of cracked lug with 
stress distribution 

 

 
                                        Table 5.1: Geometric parameters of lugs [13] 

Dimensions [mm] Lug 
No. 2R W H L t 
2 
6 
7 

40 
40 
40 

83.3 
83.3 
83.3 

44.4 
57.1 
33.3 

160 
160 
160 

15 
15 
15 

 
The stress intensity factors of cracked lugs are calculated under stress level: g = max=98.1  
N/mm2, or corresponding axial force, Fmax= g (w-2R) t = 63716 N. In present finite 
element analysis of cracked lug is modeled with special singular quarter-point six-node 
finite elements around crack tip, Fig. 5.2. The load the model, a concentrated force, Fmax, 
was applied at the center of the pin and reacted at the other and of the lug. Spring elements 
were used to connect the pin and lug at each pairs of nodes having identical nodal 
coordinates all around the periphery. The area of contact was determined iteratively by 
assigning a very high stiffness to spring elements which were in compression and very low 
stiffness (essentially zero) to spring elements which were in tension. The stress intensity 
factors of lugs, analytic and finite elements, for through-the-thickness cracks are shown in 
Table 5.2. Analytic results are obtained using relations from previous sections, eq. (4.1.1). 
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Table 5.2: Comparisons analytic with FEM results of SIF 

 

Lug 
No. 

 mma  MKE
IK max  

.
max

ANAL
IK  

2 5.00 68.784 65.621 
6 5.33 68.124 70.246 
7 4.16 94.72 93.64 

 
From above Table 5.2 is evident good agreement between analytic and finite element 
results for determination of stress intensity factors.  Accuracy of SIF`s is very important in  
precise crack growth analyses and life estimation of cracked lugs. That means that proposed 
analytic model for determination of SIF`s is adequate in crack growth analyses.In design 
process is very important to know how any geometric parameters of lug have the effects on 
fracture mechanics parameters. In Fig. 5.4 are shown dependence SIF, Kmax, and height of 
head of lug H. In this analysis geometric properties of lugs are given in Table 5.1. From 
Fig. 5.4 is evident increasing of  SIF`s with increasing crack length and reducing with 
increasing height of  lug`s head.  
In Fig. 5.3 are shown computation and experimental results of cracked lug No. 2 as defined 
in Fig. 5.1 and Table 5.1. In this computation analysis Forman crack growth model is used. 
Good agreement between computation and experimental results is obtained. It is evident 
that computation Forman`s crack growth model is to a small extent conservative for longer 
crack, Fig. 5.3. 
 

 
Fig. 5.3 Comparisons computational with experimental crack growth results for lug 

No. 2 (H=44.4 mm); kt=2.8 

Nf  x 103
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Fig. 5.4.  The effects of head of length (H) in function of crack length to SIF of Lug. 
No: 7 (H=33.3), 2 (H=44.4), 6 (H=57.1) 
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Fig. 5.5  Comparisons crack growth results of cracked lug using two crack growth 

models: (1) Forman`s and (2) Strain Energy Density (GED) 
 
In Fig. 5.5 are shown results of crack growth results for cracked lug using two methods: (1) 
conventional Forman`s method and (2) strain energy density method7 (GED). 

5.2  The effects of shape lug`s surface crack on fatigue life  

Analytic expressions for determination of SIF for lug with semi-elliptic surface crack, are 
given in section 4.2 and can be used for residual life estimation. 
In Fig. 5.2.1 are shown results of crack growth of cracked lugs No. 2 which geometric 
properties are given in Figures 4.1.1 and 4.2.1.  
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Fig. 5.2.1. Comparisons crack growth results of attachment lug with crack through 

the thickness and semi-elliptic surface crack 
 

In Figure 5.2.1 is shown the effect of lug`s shape of surface crack on residual fatigue life.  
As expected reduced life has lug with crack through the thickness (“total”)  then lug with 
semi-elliptic surface crack (“eliptik”).  
 

5. Conclusions 
 
This investigation is focused on developing efficient and reliable computation methods for 
fatigue life estimation of damaged structural components. An special attention has been 
focused on determination of fracture mechanics parameters of structural components such 
as stress intensity factors  of aircraft cracked lugs. The effects of shape of  lug`s surface 
crack on residual fatigue life is investigation too. 
Predictions and experimental investigations for fatigue life of an attachment lug under load 
spectrum were performed. From this investigation followings are concluded: 
 A model for the fatigue crack growth is included which incorporates the low cycle fatigue 
properties of the material. 
Comparisons of the predicted crack growth rate using strain energy method method with 
experimental data and conventional Forman`s model points out the fact that this model 
could be effective used for residual life estimations 
The stress intensity factor of cracked lug is well defined by analytical method since there is 
really minor   difference when compared results obtained by singular finite elements. 
The effects of of shape of attachment lug`s surface crack on residual fatigue life is evident. 
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Abstract. Masonry walls are traditionally used as main vertical structural elements in low 
rise buildings. The masonry walls are also used as infill in high rise frames, but in this case 
their presence usually is neglected in the structural design although they significantly 
modify the structural response especially in the case of seismic loading. Seismic resistance 
of masonry wall depends on wall geometry, vertical loads and on characteristic of brick-
mortar interface connection. The nonlinear response of the connection between unit and 
mortar represents the most important feature of masonry behaviour which has to be 
considered in the modelling of masonry. In this paper some results of a numerical finite 
element study on the monotonic response of masonry panels subjected to lateral loading are 
given. A comparison between numerical results and experimental data points out the ability 
of the proposed model to trace the overall shear performances of masonry walls.  

 

 
 
 

1. Introduction  
 
Beside the stone, masonry is the oldest building material and it still widely present in  
building construction. In many existing buildings masonry walls are main vertical bearing 
elements. In Serbia and surrounding countries the masonry in low rise buildings is 
extensively used with vertical and horizontal belt beams. In high rise reinforced concrete 
frames the masonry infill are treated as a secondary (non-structural) element.  However, 
they significantly influence the response of framed structures, particularly in the case of 
earthquake loading, by increasing the initial stiffness and changing the dynamic properties 
of the whole system by forming the mechanism with large dissipation energy in the case of 
reversed dynamic response.  
 
The full understanding of behavior of masonry walls under lateral load is important from 
the point of view of seismic assessment and retrofitting of existing buildings or the 
construction of new ones.  
 
For the walls subjected to in-plane lateral loading the cracking of mortar joints  starts for 
very low levels of lateral loading. This generate non-linear response from the very 
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beginning of loading far prior to reaching ultimate load levels. The ultimate load level 
depends on geometric and material wall parameters, particularly the properties of joints,  
and the vertical loading. The failure process is accompanied with relatively small global 
deformation, although large discontinuities between units or due to cracking of units may 
occur.  
 
 

                          
        
 

Figure 1. Masonry wall as main bearing element  (left), reinforced concrete frame with masonry infill (right) 

 
Traditionally, laboratory (e.g. [1], [2], [3]) or in-situ [4] tests of masonry walls subjected to 
lateral loads or tests are used for better understanding of the failure mechanism and 
evaluating shear resistance. A good review of various experimental techniques is given in 
[5]. In [1] a discussion of applicability of various strength equations with respect to failure 
mechanisms is presented, while in [7] various standards for the design of shear capacity of 
masonry walls are compared.  
 
 
2. Modelling of masonry 
 
In the last few decades computational methods based on non-linear finite element analysis 
and complex are emerging as a powerful tool in the analysis of masonry structures.   
Generally, depending on the level of complexity and accuracy, the three concepts can be 
used in numerical modeling of masonry. These three concepts can be classified as micro-
modelling, macro-modelling and global modelling. 
 
Micro-modeling - both masonry units and mortar joints are modeled with individual 
elements. The primary aim of such micro-modelling approach is to study the influence of 
various factors of masonry (bricks and mortar properties, arrangement and dimensions of 
units, response at interface), a complete understanding of failure mechanism of masonry 
elements and the minimizing the requirement for experiments on physical models. For this 
type of modelling the properties of individual parts (units and mortar) are obtained from 
laboratory tests. Although such approach allows the analysis  of the complex non-linear 
response, the great computational effort and numerical difficulties restrict the application of 
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this approach to individual structural parts (e.g. walls). Note that in the finite element 
micro-modelling strategy two concepts can be realized. First, both units and mortar joints 
are considered as continuum. The interface is established on the contact between mortar 
elements and unit elements. In the second one, the properties of mortar and properties of 
mortar-unit connection are lumped into thin elements between them [8]. For the interface 
element zero thickness elements with modeling traction-separation (both opening and 
shear) response can be also used [10].  
 
Macro modelling is based on the smearing the properties of joints and units into averaged 
equivalent anisotropic continuum [9]. The different levels of complexity are possible in the 
process of macro-modelling. ([11], [12], [14]). Beside micro-modeling, the macro-
modeling approach is also suitable for the analysis of individual structural elements and 
may be used for the establishing global force-displacement relationship.  
 
Global modeling represents the next step in simplification of the analysis of masonry walls. 
The main concept in this approach is establishing relationships between forces and 
deformations for elements which can be used for direct modeling of large portions of 
structures, e.g. piers and shear walls. The force displacement relationship are obtained from 
experimental tests or micro/macro-modelling procedures. For the modelling of the dynamic 
response these models have to capture stiffness and strength degradation due to reversed 
loading. The model with substituting diagonal strut  [15], [16] for the modeling of masonry 
infill panels in reinforced concrete frame represents represent a good example of global 
approach. It is inspired by limit analysis and assumed stress field in two dimensional panel 
surrounded by reinforced columns and beams. 
 
 
3. Constitutive models  
 
For the correct modeling of masonry walls subjected the understanding of failure 
mechanism is of utmost importance. A lot of experimental and theoretical work has been 
carried out so far for the predication of the shear capacity of walls subjected to shear 
loading.  

 

 
 

Figure 2. Failure surface of masonry wall - Mann and Müller [7] 
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According to Mann and Müller – see [7], the following failure modes can be observed in 
vertically pre-compression shear walls subjected to monotonically  increased shear load. 

 

(1) Failure due to opening of  horizontal joints due to bending 

(2) Tensile and shearing failure of joints due to decohesion and friction  

(3) Tensile failure of units plus tensile and shearing failure of joints 

(4) Compression failure of units  

 

The mode (1) takes place in the case of very low vertical loads. The failure mode (4) is 
characteristic in the case of high vertical compression stresses.  The second and third  mode 
are  usually  accompanied  by stepping failure mode in joints or/and in units. The diagonal 
cracks pass through vertical and horizontal joints, or in the case of higher vertical loads 
through units.  

 

In our research we have been so far focused on the analysis of masonry walls having failure 
modes (1) and (2). The understanding and correct modeling of interface between mortar 
and units represents key moment in correct numerical modelling of masonry. Non linear 
response of joints is the result of fracture process (decohesion) which takes place along 
joints either in mortar or in the mortar-unit interface. We shall consider this as unique 
process of failure in joints. It results in some peak strength followed by a softening, both in 
tension and in shear. In tension when the cohesive strength is lost, the tensile strength drops 
to zero (mode I). In the case of shearing under compressive normal pressure, the 
decohesion (mode II) is followed by the presence of residual strength due to friction.  
 

 

 
 

Figure 3. Shear – slip response – mode II (left), Opening mode I (right) 
 

 
For joints in pure tension (mode I) Rankin type yield criterion can be used to describe 
failure surface which exhibit softening: 

 
0)(  ntn fF                                                                              (1)                                              

 
The n  denotes the contribution of tensile stresses only, while scalar parameter n  
controls softening. If triangular type of cohesive law is adopted (see Fig. 3) we have  
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tnnt ff )1()(    and the following energy release: for 0   we have 0IG ,  after the 

crack initiation cr 0  the released energy due to normal stresses n is: 
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For cr   (complete fracture) C

II GG   where C
IG denotes the fracture energy 

corresponding to mode I. 
 
The similar expression can be written for mode II. However, the presence of confining 
stresses and friction in joints has to be considered. In the case  pure of shear  and monotonic 
increase of slip, the presence of cohesion and friction have to be modelled. The 
experimental results (Van de Pluijm [20]) support the implementation of modified   Mohr-
Coulomb law [19] – see figure 2.  Note also, that the same experimental research [20]  
correlate C

IIG  to confining stress.  However, this issue has not been considered in our work. 
 
The initial, intermediate and final yielding surfaces in pure sliding mode can be written in 
the following form: 
 

  0)1(  csns fF                                                                           (3) 

 
where  n  denotes contribution only from compression stresses, while fc is the cohesion 
strength in shear. The parameter s controls decohesion in mode II. The state 0s  
denotes no damage. In the case of linear softening in the range 0ssscr   we have 

)()( 00 ssss crs   and corresponding energy release:  
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where C

IIG  is the fracture energy for mode II. When critical shear separation is 
reached crss   and 1s , a complete fracture in shear occurs followed by the residual 
resistance due to friction in the case of confining normal stress.  
 
In reality, the response of tensioned joints is governed by the mixed mode, i.e. opening - 
slip mode. In this case the damage initiation is governed by a single criterion: 
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The damage initiation is followed by process of softening which yields to final failure. The 
final failure may be described by mixed mode criterion: 
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where IG  and IIG  are energies released per unit area done by tensile  and shearing  stress 
due corresponding conjugate displacements.  
 
For limitation of compressive stresses in joints, the compression yield surface have to be 
adopted. The issue is not considered in our present work and is not discussed here. Elastic 
response of joints, prior to cracking initiation, i.e. pure elastic response is governed by the 
law: nnnnn k    and snsss k   . The response of masonry walls is not too sensitive to 

elastic properties of joints, as cracking occurs for relatively low level of loading, so even 
crude estimate can be used.  The masonry units are assumed do be linearly elastic, so the 
non-linear response of walls is lumped in joints.  
 
 
4. Numerical simulations 
 
The laboratory tests of masonry walls (scale 1:1) tested at Technical University of 
Cataluna, Barcelona, [18] are used  to validate the numerical model using finite element 
package Abaqus (version 6.9). In numerical simulation a simplified version of the presented 
material model based on average sliding resistance along horizontal joints is used. Such an 
approach enable simulations of low or moderate vertical pre-compressioned walls, i.e. 
failure modes (1) and (2).  
 
The wall dimensions are: height 100cm, length 120cm, thickness 14cm. The following 
parameters are adopted for mortar joints having thickness 1cm: shear and tensile strength 

kPafc 270 , kPaft 300 , fracture energies corresponding to modes I and II 
mNGc

I /20  mNGc
II /30  friction angle =350 , dilatancy angle =0, Em=1GPa 

Gm=0,4Em. In this paper we present the results of numerical simulation of walls are 
subjected to initial vertical compression V=150kN and V=250kN, i.e. 5,4% and 9% of 
vertical compressive strength which was assessed to be 16,4MPa [18]. The units with 
dimensions 250 x 140 x 50mm with normalized compressive strength MPafb 50  are 
assumed to be linearly elastic.  
 
The finite model is presented in the figure 4. For each masonry unit  the   16 x 3 mesh with 
eight node brick elements in the plane of the wall is used. Vertical and horizontal joints are 
modeled with cohesive elements with which have axial stiffness in n direction 
(perpendicular to the joints) and shear stiffness in the plane of the joints. On the top of the 
masonry wall a beam with a large bending stiffness is placed in order to simulate the 
conditions from the experiments: transfer of horizontal and vertical forces uniformly into 
the wall and rigid rotation of the top wall edge. 

 

In the first stage loading process the vertical load is gradually applied. In the second stage, 
after the pre-compression is finalized, the horizontal in plane load is applied at the top of 
the wall by the displacement controlled procedure.  
  

623



 
Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 2011 C-32 

 
 

                            
 
 

Figure 4. Finite element model  
 

In table 1 numerical, experimental [18] and Eurocode 6 [21] shear strength resistances 
(horizontal force Hult and shear stress ult) are compared. The actual shear resistance is 
overestimated by numerical results and particularly by EC6 proposals.  The numerically 
obtained force displacement curves are given on figure 5. The post peak response was not 
traced in our numerical simulations. In oppose to numerically obtained results, the force 
displacement curves from [18] show sharp increase of displacement for values larger then 
approximately H=30kN. 
 
 

V=150kN V=250kN 

Hult (kN) Hult(kN) 
Shear strength 

of walls 

ult (MPa) ult (MPa)

87 130 
Finite element 

0,52 0,77 

80 110 
Exp. ref [18] 

0,48 0,65 

105 145 
EC6[21] 

0,62 0,86 

 
 

Table 1. Shear strength of walls - comparison of different methods 
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The figures 7 and 8 present compressive stress at the base of the wall. The stress 
concentrations at the right bottom corner indicate developing of a compressive diagonal 
strut and stress releasing at the left bottom zone. The high peaks of compression stresses 
indicate possible crushing of masonry. 
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Figure 5. Horizontal force - displacement curves for two cases  
(vertical loads V=150kN and V=250kN)  

 

 
 
 

         
 
 

Figure 6. Experimentally [18] and numerically obtained failure pattern  
(deformation scale 30:1) 
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Figure 7. Contact normal stress (obtained by FE analysis) at bottom surface at failure. Case V=150kN 
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Figure 8. Contact normal stress (obtained by FE analysis) at bottom surface at failure. Case V=250kN 
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In table 2 there is an assessment of global moduli of a masonry wall based on response 
obtained by finite element model. Ew modulus is obtained from the numerical simulation of 
initial loading process with V=250kN. The global shear modulus is extracted from the 
response with  horizontal load H=40kNH=0,35Hult assuming that the total horizontal 
displacement is the result of bending and shear deformation. 
 
 

Global moduli 
of masonry wall 

Finite 
element 

 
Exp. ref. [18 ] 

Ew (GPa) 4,8 4,1 

Gw(GPA) 1,77 1,67 

 
 

Table 2.Young’s and  shear moduli of the masonry wall  extracted from finite element analysis and experiment 

 
 
5. Conclusions 
A micro-modelling of masonry walls subjected to static shear in-plane loading is presented. 
The model has been validated by comparing the results with available  experiments. After a 
number of numerical tests we may say that in our research overall response of masonry wall 
can be well predicted from the point of view of failure loads. During the loading process, a 
compressive diagonal strut was formed from  the top-left to the bottom right corner. The 
cracking and shearing-off was spread in a relatively larger zone and was not localized in a 
„step mode mechanism“. The further work, including developing user defined material 
models in Abaqus finite element code, is necessary in order  to obtain robust and reliable 
various failure modes of masonry walls.  
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Abstract. Dynamic behaviour of a rotor-excavator construction is of crucial importance for 
proper and reliable operation. Numerical and experimental procedure shown that these 
structures failed due to incorrect operational parameters related to the vibration of complete 
supporting structures. Therefore, the base for rehabilitation and reconstruction is a dynamic 
diagnostics of the structure. This analysis involves a computer calculation by the finite 
elements method with the mandatory experimental measurements. This enables 
determination of the actual behaviour of structure, reliable prediction of its response in 
operation, determination of the cause for poor behaviour or failure, assessment of service 
life time of reliable operation and the scope of revitalization. Operational problems 
developed mostly from improper geometry design. Presented methodology is inevitable 
during the engineering analysis of excavator structure. This approach is justified due to low 
costs with a very high level of results.  

 

1. Introduction  

Rotor-excavators are very complex sistems with a great number of functionaly important 
elements. Working life of the rotor excavator depends of the stable of the steel structure. For a 
drive system we have very clear criteriums about replacement or rehabilitation which is not 
case for the steel structure. So, experimental tests and visual analysis have to give validation 
of the numerical model based on the finite element method FEM. FEM and experimental 
messurements are the main tools in the proces of the construction accompaniment [1].  

The basis for structural performance diagnostics is the computer modelling and structural 
analysis calculation software with the application of finite element numerical method 
throughout static, dynamic and thermal calculation of consisting structural elements. 

Program KOMIPS [2] allows modelling and the calculation of complex structures and 
problems, determination of real displacements and stresses and real structural behaviour 
including the consisting elements, it gives a reliable forecast of structural behaviour in 
service and depicts the parameters for decision making (operating regime, repairs, 
reconstructions, revitalizations, optimizations, confirmations of selected solution variants), 
poor performance sample identification or structural deterioration, service life estimation 
and time of reliable operation efficiency. Every improvement of structural performance that 
can be reached by this approach allows service life extension and increase of reliability. 

The developed system KOMIPS includes specific calculus for closer defining structural 
state and behaviour. The equivalent stress, according to the Huber–Hencky–Misses theory, 
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is calculated for all types of finite elements and global nodes. The distribution of load, 
membrane and bend stresses, deformation energy, kinetic and potential energy allows very 
efficient analysis [3] of the state and structural behaviour diagnostics for the designed or 
produced structure.  

Experimental tests in this case are intended for: 
– determining the external and internal loads acting on the structure in service, and 
– measuring the deflection, stress, acceleration at particular locations on the structure. 

These tasks define the relevant input loads for the calculation and verify the results. 
Applying the above mentioned calculation minimizes the extent of tests. Both static and 
dynamic tests are presumed. Stress measurements suggest the application of the 
extensometer method (strain gauges). Acceleration is measured directly, by applying 
sensors. Measurements of the deformation rate are often used in vibration diagnostics. By 
measuring the acceleration on certain locations of the structure and by performing dynamic 
calculations of the structure it is possible to define the cause for poor structural behaviour. 
Problem solving of the cause is further accomplished by numerical analysis. 

 

2. Experimental messuring on rotor excavator SchRs630 

Tests which were done on the rotor excavator SchRs630 (on the waste dump Tamnava 
Zapadno polje, Kolubara) had the purpose to define state and the bahavior of the steel 
construction during the selective work.  

   

1.7 m

0.5 m

0.6 m

0.3 m

0.6 m

0.2 m

1.4 m

 

 

Figure 1. Vertical cross-section of the coil-block and excavator SchRs630  
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All parameters were obtained during work, for rigid highs of cuts: 0.5-0.7 m, 1-1.2 m, 2-2.2 m 
and for 5-7 m. The whole high of the coil-block was 10.5 m.  

The characteristis place for the measuring was on the lug of the slice of the will-excavator.   

Figure 2 presents appropriate measuring place.  

 

Figure 2. Measuring place  

 

Stress was measured using three strain gauges. On the same time, accelerations were 
obtaining. Instalation of the strain gauges was done on the static-loaded construction.  

Measurings were done in next order: 

1. Stress and acceleration for cut-high of h = 5.3 m and for advent of 40 cm and 20 
cm (for left and right direction),  

2. Stress and acceleration for cut-high of h = 2 m and for advent of 70 cm and 35 cm 
(for left and right direction),  

3. Stress and acceleration for cut-high of h = 1 m and for advent of 60 cm and 30 cm 
(for left and right direction),  

4. Stress and acceleration for cut-high of h = 0.7 m and for advent of 80 cm and 40 
cm (for left and right direction).  

Obtained diagrems for stress accession and for acceleration in time and frequent domain are 
presented on figure 3 for the first case of loading.  
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Figure 3. Stress, accelerations in time and frequent domain in the first case 

 

During left cuting, stress accession was between 50-55 N/mm2 at the begining of the 
process and then decreased to 15-25 N/mm2. Acceleration in time domain was to 1G, which 
was satisfied. But, low frequences to 10 Hz was obtained on the steel structure.   

During right cuting, stress accession was as in the previous case 50-55 N/mm2 at the 
begining of the process and later 10-40 N/mm2. Acceleration in time domain was to 0.8G, 
which was satisfied. Diging frequecy of 2.7 Hz wasn’t dominant.  

Figure 4 shows obtained diagrams for the second group of measurings.  
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Figure 4. Accelerations in time and frequent domain in the seccond case 

Left cuting of 70 cm gives stress accession of maximal 60-70 N/mm2 at the begining and 
about 20-40 N/mm2 later. Stress was high but in limited value. Acceleration was to 1G, which 
was satisfied. The amplitude of the characteristic frequences was to 0.04 m/s2.  

Left cuting of 35 cm gives stress accession of maximal 45-50 N/mm2 at the begining and 
about 15-30 N/mm2 later. Acceleration was to 1G, which was satisfied. The amplitude of the 
characteristic frequences was to 0.15 m/s2.  

Figure 5 shows obtained diagrams for the third group of measurings.  
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Right, 60 cm 
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Figure 5. Accelerations in time and frequent domain in the third case of loading 

Right cutting of 60 cm gives next values: 
- Sterss accession of 30-40 N/mm2 the the begining and 10-25 N/mm2 later, 
- Acceleration in time domain 0.75G maximum,  
- Low frequencies to 10 Hz of steel construction, 
- Amplitude of the characteristic frequences to 0.13 m/s2.  

Right cutting of 30 cm gives next values: 
- Sterss accession of 25-30 N/mm2 the the begining and 10-20 N/mm2 later, 
- Acceleration in time domain 1.2G maximum,  
- Amplitude of the characteristic frequences to 0.25 m/s2.  
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Figure 6. Stress and accelerations in time domain in the fourth case 
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Obtained results are presented in next table. 

Table 1. Results in the fourth case of loading 
 Sterss 

accession 
Acceleration Amplitude Frequencies of steel 

structure 
Left, 80 cm 35-45 N/mm2 

10-25 N/mm2 
0.7G 0.03 m/s2 to 10 Hz 

Right, 40 cm 35-45 N/mm2 

10-25 N/mm2 
0.7G 0.085 m/s2 to 10 Hz 

 

3. Numerical model of the rotor-excavator steel structure 

Dynamic behaviour diagnostics of the operating wheel cantilever beam was done using 
program package KOMIPS. Shown below are major oscillation forms of the operating 
wheel for two outermost cantilever positions (A and B). 

 

 
 

Position A:  f01 = 0.8 Hz, f02 = 1.3 Hz Position A:  f03 = 2.3 Hz, f04 = 3.3 Hz 

  

Position B:  f01 = 0.8 Hz, f02 = 1.6 Hz Position B:  f03 = 2.7 Hz, f04 = 3.4 Hz 

Figure 7. Main oscillating forms of operating wheel cantilever in positions A and B 

The main diagnostic element is defined by the unloading range (number of buckets  
operating wheel revolutions). The unloading number must correlate to eigen-value oscil-
lations of the operating wheel cantilever beam. From the cantilever dynamics point of view, 
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the number of unloads should be within (1.6÷2.3 Hz)  60 sec = 96÷138, i.e. for a 23 bucket 
wheel, the revolutions should be 4.17 to 6 min–1.  

4. The conclusion 

Diagnostic of the behaviour of the steel structure of the rotor excavator SchRs630 was 
based on the numerical model and the experimental tests. Obtained results show: 

- load-measurings were done in dynamic-load state of the rotor excavator,  
- higher stress accessions were propper to higher cut-highes and steps,  
- measuring results were satisfied and in limitid values,  
- experimental results validated numerical model. 
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Abstract. The contributions to the dynamic analysis of machine parts or of a group of 
machines as well as the algorithmic concept are given. Particular attention is paid to the 
modal analysis. The FEM is a very efficient method for obtaining a very quick Feed-Back – 
the response of the system if the input parameters of the system are given in advance. But as 
very often the protection of the data (e.g. the engine parameters in motor vehicle industry) is 
at a very high level one will meet just the inverse problem – to determine the load vector 
starting from the known dynamic response. It is well known that the resonant frequency 
field represents the particular importance for the calculations. As the experimental 
measurements are usually very expensive and as the rule, in the case of the dynamic 
analysis, they are performed only once, the relevant mathematical or FEM models are of 
very high importance. On the basis of theoretical knowledge of the problems from one side 
and of the practical experience from the other, the authors propose an algorithm for the 
application of the vibration analysis, where the calculation of one exhaust pipe is given as an 
example. The interaction between experimental measurements and the calculation is shown. 
The MAC-analysis, one of usually applied methods in the structural dynamics for the 
comparison of calculated and measured eigen-vectors, is used for the explanation of that 
interaction. The influence of the MAC-Matrix on the sensitive analysis as well as on the 
calculation of the substructure is explained.  

 
 
 
1. Introduction` 
 
The modal analysis although by its nature expensive one is one of the most important 
methods in the numerical analysis of mechanical systems. Together with the development 
of new hardware having more outstanding performances, from one side, and with trends of 
avoiding expensive experiments, from the other, the modal analysis becomes more and 
more important in the numerical analysis. Although the vibration analysis is performed in 
the finite time domain, a great part of responsibility is transferred from the measurements to 
the calculations. That is quite understandable because it is too expensive to perform a new 
experiment if only some geometrical parameters (e.g. profile thickness) or the material are 
changed. The simultaneous intentions of avoiding expensive experiments and of obtaining 
quick results often yield to some contradictions between the time and the available 
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resources. The efficiency of one FEM program depends on its structure and on the quantity 
of available processors that are needed for its performing. The intention of the paper that 
follows is to prove that when the modal analysis is in question the universal FEM program 
satisfying all requirements does not exist, and to point to some methods for solving the 
problems that are met in practice. Some specific industrial requirements that one FEM 
program can not always and completely satisfy are often faced and that is why some 
additional tools for solving real problems are needed. 
 
2. Basic equations 
 
In the domain of modal analysis the starting point is the system of differential equations 
 

)t(Fq Kq Dq M   ,    (1) 

Where: 
M  – Mass matix, 
D  – Damping matrix, 
K  – Stiffness matrix, 

)t(F  – Load vector, 

)t(qq   - Displacement vector – the dynamic response of the system to given loads. 

 
For one discrete mechanical system, q represents the displacement field in nodal points. It 
is not necessary to know the displacement field in all nodal points as the output but it is 
enough to know only the system response in the points in which the measurements were 
performed. These points, i.e. their coordinates, are taken from the measurements and 
corresponding nodal points are found in the FEM model. These points are suitably chosen 
in the mechanical system in order to obtain significant information about the spectral and 
modal behavior of the system. 
 

 
 

Fig. 1.Generalized mechanical model for the analysis 

 
If there are n points (Fig. 1) then the response at the kth point MPk  will be denoted by qk 
and corresponding components by uk,vk,wk or 
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or, through the corresponding components, by 

 
 nnn222111T

M w.v.u.....I.w.v.u.I.w.v.uq     (4) 

 
From the mathematical point of view, there exists such an equivalent system that gives the 
identical displacement, or there exists a system of differential equations 
 

)t(FqKqDqM eqeqeqeq       (5) 

Where: 

eqM  – Mass matrix, 

eqD  – Damping matrix, 

eqK  – Stiffness matrix, 

)t(Feq  – Load vector, 

for the equivalent system that has to be determined.  
The importance of the formulation of the equivalent model will be noticed later.  
 
3. Modal analysis 
 
The authors present the algorithm in the schematic form in order to show what a modal 
analysis applied to the calculation of one mechanical system is supposed to look like. 
The standard input consists of the geometry of the model, where material data and 
boundary conditions are defined in advance and where also the springs with their axial and 
torsional stiffnsses (Fig.1) are introduced. 
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Fig. 2. The proposed algorithm for the modal analysis 

 
The precalculation is performed before the main calculation in order to ensure high and 
satisfactory accuracy of the solution. For example, the exact distribution of mass that 
corresponds to the physical model is prerequisite for the good result within the main 
calculation. 
Strictly speaking, it is also possible to make a model that does not correspond to the 
physical model from the point of view of mass distribution or from the point of view of 
some other criteria and it is possible that such a model will give good results, but only for 
the previously defined parameters. Any change concerning the geometric or material 
characteristics in the FEM model, as already mentioned, does not follow any more real 
responses of the system caused by the changes in the physical model. That is why the MAC 
analysis, explained later, is of particular importance.  
The responses of the system in each particular measure point, and in each direction, are 
obtained from the measurements as it is shown in Fig. 3 for one measurement. 
 

 
 

Fig. 3. Measurement results at the measure point 1 (MP1) 

 
The same kind of data is obtained for all other measure points.  
The data (6) concerning the engine are included into the input data. 
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The same is valid for the moment as the phase impulse 
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Next problem that is imposed is damping as a natural phenomenon. As the damping matrix 
is not given explicitly, modal coordinates must be introduced. In general case the damping 
matrix is not diagonal and it does not need to be symmetrical. That is caused by the 
complexity of the procedure where the reactions or dissipative forces are acting in such a 
way that the loss of the mechanical energy is appearing. And usually there is no reliable 
information concerning the values of the amplitudes in resonant region.  
As an iterative procedure is in question it has been thought out to introduce a modal 
damping having the value of 1% in the very beginning of the calculations.  
It is understandable that after the first calculation with the first iteration the accuracy of the 
results can be in question. Assuming that the results of the measurements and the FEM 
model are correct, it can happen that the calculated resonant frequencies are not too far 
from the measured ones. In the first approximation the calculated resonant frequencies 
usually differ (they are lower or higher) from those that are measured.  
One possible approach is the direct comparison of the dynamical responses in each measure 
point and the difference measurement-calculation can immediately be noticed on the local 
level as it is shown in Figs. 4.a, b, c. 
Another possibility for realizing the difference consists in the use of diagram for the whole 
mechanical system as shown in Fig. 5. After the iterative procedure the damping function is 
obtained as shown in Fig.5. It is a stepwise one because the damping is modal, and from the 
other side a linear dynamic is in question. 
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Fig. 4,a. Comparative analysis of dynamical response in x-direction 

 

 
 

Fig. 4,b. Comparative analysis of dynamical response in y-direction 

 
 
4. MAC-Matrix (Modal Assurance Criterion) 
 
Anyhow, one of very efficient methods today for the determination of the differences from 
the measured values is so called MAC-Matrix (Modal Assurance Criterion). 
A MAC-matrix element is defined as a normalized scalar product of the measured and 
calculated eigen-vectors. 
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Fig. 4,c. Comparative analysis of dynamical response in z-direction 

 

 
 

Fig. 5. Comparative diagram of the total mechanical system 

 
The MAC element represents the square of the cosine of the angle between these two 
vectors,  
 

)v,v(cos)j,i(MAC j
meas

)i(
calc

2     (11) 

 
It is obvious from (11) that the best matching of two vectors happens if the angle is zero, 
and in the ideal case the element will have the value equal one. It is understandable why the 
MAC matrix is introduced in the form (10) as a measure of coincidence of measurements 
and calculations. 
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The MAC analysis is not only the starting point and the basis that is used for obtaining the 
correct stress field in the model. It is prerequisite for the further analysis and some 
examples will be given. 
1) Let us take an example from the practise where starting only from the dynamical 
response obtained by measuring, it is necessary to find the stress field without defined 
given loads (such an example can particularly be found in automotive industry due to their 
protection of the data). In this case the most appropriate way is to define the equivalemt 
system according to (10), and it leads to the same stationary system response. The shortest 
description of the problem could be in this case to find the loads that lead to the wanted 
stress field. 
2) As another problem the optimization of a structure, particularly the sensitive analysis can 
be cited. The equivalent systems are introduced in this case not from the reasons described 
in 1) but in order to save the calculation time. Here, some simpler elements are used: e.g. 
instead of shell elements, the bar type and spring type elements. In order to achieve the 
behavior of the new system as approximate to the real system as possible, it is necessary to 
check matching of the system. It means that the MAC analysis must be performed. 
 
Conclusions 
 
As it has been mentioned the MAC analysis is a necessary condition or even prerequisite 
for the expansion of any analysis from the point of view of the comparison of the results. 
And, as it has been showed in examples 1) and 2) the MAC is used not only when the 
measurements are in question but also when two calculation models are investigated. That 
is why the MAC method is in the central position in modal analysis when it is necessary to 
compare the results (Fig.2). The problem becomes even more interesting if taking into 
account the fact that the FEM programs do not contain the possibilities for an analytical 
approach to this method, but it is based on the skill of the engineer. 
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Abstract. During the service life, casing steel pipes for oil and gas drilling rigs are subjected 
to a corrosive atmosphere, along with high pressures and elevated temperatures. Hence, they 
are very susceptible to corrosion damages, often preceded by errors in design, 
manufacturing or mounting. The influence of corrosion defects to pipeline integrity is 
investigated by pressure test of a pipe with circular notches, machined in order to simulate 
actual defects. Micromechanical approach is applied to predict the damage development, 
and failure criterion is considered fulfilled when damage parameter reaches its critical value 
in the bottom of a notch. Several analytical expressions and numerical criterion based on 
von Mises stress value are used for estimation of the critical pressure in damaged pipeline, 
and solutions are compared with the predictions of micromechanical complete Gurson 
model. 

 
 
 

1. Introduction 
 
Pipelines are the most economical and safest way for oil and gas exploitation and transport. 
Decrease in strength caused by the corrosion defects is very often encountered in these 
structures; it can endanger the work safety and even lead to catastrophic failures. Casing 
steel pipes used in the oil drilling rigs are subjected to a corrosive atmosphere, with coupled 
effects of high pressures and elevated temperatures during the service life. Hence, they are 
very susceptible to material degradation, often preceded by errors in design, construction, 
manufacturing, mounting and exploitation.  
 
The reliability of the oil and gas drilling rig systems is very important for continuous 
exploitation, as well as for environment protection. Many procedures for estimation of 
remaining strength of the pipes with corroded (local thin) areas have been developed, [1-8]. 
One of the solutions for assessment of corrosion defect influence to the pipe integrity is 
ASME B31G code [1]. Several other procedures are also derived from it, such as [2] (in the 
remainder of the text - modified ASME B31G) or RSTRENG [3]. Det Norske Veritas 
(DNV) published recommended practices [4] for determining corroded pipelines remaining 
strength under internal pressure and axial loading. FITNET procedures [5] also contain a 
module for estimating the remaining strength of pipelines with local corrosion damages. 
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Choi et al. [6] derived limit load solutions based on results of experimental and numerical 
analyses. Adib-Ramezani et al. [7] proposed integrity assessment of the pipes with defects 
under internal pressure based on a modification of SINTAP (Structural integrity assessment 
procedure) [9].  
 
In this paper, a local criterion for maximum pressure in damaged casing pipe for drilling 
rigs, manufactured from API J55 steel, is discussed. Pressure test is conducted on a pipe 
segment capped at both ends. Corrosion defects were simulated by machining the circular 
notches, and the pipe was subjected to hydrostatic pressure to determine the spreading of 
plasticity in damaged areas. Local approach to fracture is applied to assess the failure 
criterion for damaged pipe, and the results are compared with existing solutions from the 
literature and a finite element stress-based criterion. 
 

2. Experimental 
 

2.1 Material  
 
API J55 steel is used for fabricating the examined seam casing pipe; yield strength 380 
MPa, tensile strength 562 Mpa (more data about the material is given in [10]). Tensile 
properties are determined on round tensile (RT) specimens taken from the examined casing 
pipe. Figure 1 shows the strain state on the surface of the specimen obtained by 
stereometric measurement system Gom/Aramis [11] with two cameras and the software for 
data processing. This system enables determination of strain field on the surface of a 
structure, and a comparison with finite element solution is also given in Figure 1 (neck 
formation is marked by circles). Figure 2 shows the dependence of force on elongation; 
elongation is obtained by stereometric measurement.  
 

 
Figure 1. Strain fields for RT specimen obtained by stereometric measurement system and finite element method 

 
Having in mind that damage is modelled in this work using a micromechanical model, 
microstructural observation is conducted on samples cut from the pipe. This examination 
indicated presence of oxides, silicates and complex oxide inclusions. Two micro-
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photographs with larger clusters/groups of inclusions are given in Figure 3. Microstructural 
parameters (Table 1) are determined by quantitative microstructural analysis.  
 

 
Figure 2. Load – elongation curve 

 

   
Figure 3. Micro-photographs of inclusions. 

 
Table 1. Microstructural parameters. 

Material f [%] λ [μm] 
API J55 steel 2.7648 69.39 

 

2.2 Pipe pressure testing  
 
Pressure test is conducted on a part of the casing pipe capped at both ends, with nominal 
dimensions: diameter 139.7 mm, wall thickness 6.98 mm. Corrosion defects are simulated 
by machining circular notches at the outer surface of the pipe (Figures 4 and 5). 
 

      
Figure 4. Pipe prepared for pressure testing with strain gauges attached at the machined defects. 
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Different levels of material degradation (local thin areas) are represented by varying the 
depth of the notches a (Figure 5): 5.25 mm for 75%, 3.5 mm for 50% and 1.75 mm for 
25%. Strain gauges were placed at the bottom of each notch, measuring strains in 
circumferential (hoop) and longitudinal (axial) pipe direction. 
 

 
Figure 5. The pipe with a defect - main dimensions. 

 

3. Numerical analysis 
 
Numerical analysis of the behaviour of the pipe under internal pressure is conducted using 
the finite element (FE) software package Abaqus [12]. FE meshes consist of 20-node 
reduced integration elements, Figures 6 and 7. Gurson yield criterion [13] is used to model 
the material behaviour, which will be discussed in the remainder of the text. Due to the 
symmetry, one quarter of the pipe is modelled, with appropriate symmetry boundary 
conditions defined at the model boundaries. Loading is defined by prescribing the pressure 
at the inner surface and axial loading at one side of the FE model for simulating the effect 
of the dished end. The strains are measured (in the longitudinal and circumferential 
direction) in the middle of each defect, and in numerical analysis these values are 
determined in FE nearest to that location (marked in Figure 7). In addition to the circular 
defects corresponding to machined ones, defects with larger length are also analysed using 
FEM, to establish the relation between this length and load carrying capacity of the pipe.  
 
The details of several meshes with different defect length are shown in Figure 7. Having in 
mind that prediction of ductile fracture initiation using local approach to fracture often 
exhibits mesh dependency, several modifications of the FE mesh are made for each 
geometry. All the changes are made in the defect ligament, because high stress and strain 
values are localized in this area.  
 

 
Figure 6. Finite element meshes. 
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Figure 7. Finite element meshes of the defects 

 
The results of the numerical analysis predict significantly larger strains in circumferential 
direction in comparison with longitudinal direction (up to 10 times), which is also measured 
during the experiment; results for depths 75 and 50% of the pipe wall thickness are shown 
in Figure 8. 
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Figure 8. Comparison of strain values obtained experimentally and numerically, for defects with depth 75% (a) 
and 50% (b) of the pipe wall thickness. 

 

4. Micromechanical modelling 
 
A significant accumulation of stress and plastic strain emerges in the bottom of a defect, 
which leads to development of ductile damage in this area. Gurson yield criterion (with 
damage parameter porosity or void volume fraction) is used for damage quantification in 
this work. The expression for plastic potential [13 - 15] is: 

 2* *2
1 12

3 3
2 cosh 1 0

2 2

ij ij mS S q
q f q f




 

              
   (1) 

where σ denotes the flow stress of the material matrix, m is the mean stress and Sij is the 
stress deviator. Constitutive parameters q1 and q2 were introduced by Tvergaard [14] to 
improve the predictions of the Gurson model and f * is the damage function [15]: 

649



 
Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 2011 C-35 

 
c

c

                      for 
*
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f

f K f f f f


    

  (2) 

where fc is the critical value of f, at the moment when the void coalescence begins. 
 
In the initial stage of ductile fracture of steel, the voids nucleate mostly around non-metallic 
inclusions. Hence the initial porosity f0 is here assumed to be equal to the volume fraction 
of non-metallic inclusions fv, Table 2. During the increase of loading, two processes 
contribute to the increase of void volume fraction; growth of the existing voids and 
nucleation of new ones: 

(1 ) pp
nucleation growth eq iif f f A f           (3) 

where A is the void nucleation rate,  p
eq  is equivalent plastic strain rate and  p

eq  is the 

plastic part of the strain rate tensor.  
 
Zhang et al [16] applied the Thomason’s void coalescence criterion (based on the plastic 
limit load [17]) to the GTN model, obtaining the Complete Gurson Model - CGM. The 
criterion for the beginning of the void coalescence is:  

  2 3
1 2 321 3

1 3
1 1 ,

4 2

f e
r r e

r r

 
    




 

                 
, (4) 

where 1 is maximum principal stress, ε1, ε2, ε3 are principal strains, r is void space ratio, α 
and β are constants fitted by Thomason (α = 0.1 and β = 1.2); Zhang et al [16] use a linear 
dependence of α on hardening exponent n, which is applied in the CGM.  
 
Unlike the GTN model, the critical void volume fraction fc does not have to be an input for 
calculation in CGM, but a variable that is calculated during the analysis. This value, 
corresponding to ductile fracture initiation, is taken as the pipe failure criterion in this work; 
CGM is applied through Abaqus UMAT subroutine created by Zhang, based on [16]. The 
value of f is monitored in the element nearest to the middle of the defect. When it reaches 
the critical value fc, the pipe failure is predicted and the corresponding maximum pressure 
is determined.  
 
Figure 9 shows distribution of damage parameter (porosity f) at the moment when local 
failure criterion is reached, and it can be seen that high values of f are localised in the 
middle of the defect. 
 
In the literature [18 - 20], GTN model has been previously used for analysis of load 
carrying capacity of pipes with crack-like flaws. The present work aims at extending this 
approach to pipes containing blunt surface defects, like those caused by local corrosion. 
Local approach to fracture was previously applied for similar purpose in [21], but the 
procedure included so-called uncoupled modelling - calculating the damage parameter 
during post-processing procedure, without its influence on the yield criterion.  
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Figure 9. Distribution of damage parameter - local failure criterion is reached. 

 

5. Failure criteria comparison 
 
In addition to the micromechanical criterion, several solutions from literature are applied 
for calculation of the maximum pressure of the analysed pipe: ASME B31G code [1], 
modified ASME B31G [2, 3] and the solution of Choi et al. [6] (in the remainder of the 
paper - Choi’s solution/equation). Corresponding expressions are given in Table 2.  
 
Table 2. Expressions used for calculation of maximum pressure 
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In Table 2, a and L are defect depth and length, M is geometry correction factor, while Cj (j 
= 0..2) are coefficients in Choi’s equation. Geometry of the pipe is defined in Figure 5; De 
and Di represent the external and internal diameter of the pipe ( 2i eD D t  ), while mean 

pipe radius is ( ) / 4e iR D D  .  

 
Figure 10 shows the dependence of maximum pressure in a damaged pipeline on defect 
length for damage level 75%, obtained using expressions from Table 2, FE stress-based 
solution and CGM solution. FE stress-based failure criterion is considered to be fulfilled 
when von Mises stress value reaches the reference stress through the entire ligament; 
reference stress is chosen at 85 % of the ultimate tensile strength, as moderately 
conservative solution [22]. Two points for CGM at a damage length represent the limit 
values obtained using different element size (Figure 7) and formulation, as well as different 
load increments.  
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Figure 10. Comparison of the maximum pressure for defects with depth 75% of the pipe wall thickness. 

  
Local approach (model based on the Gurson yield criterion) can predict the trend of 
decrease in maximum pressure with increase of defect length and depth. Having in mind 
that it is strain-based and that it includes damage development in material, it is physically 
suitable for the materials often used for pipe manufacturing. Namely, such materials exhibit 
ductile behaviour in the working conditions (except for those operating at low 
temperatures) and their failure is usually accompanied with plastic deformations. Local 
approach also prevents another problem with standard stress-based criteria, which is 
variable coefficient multiplying the ultimate tensile strength for determination of failure 
criterion [7]. This coefficient, often designated as η, can have values from 0.8 to 1.0, 
depending on the material (its stress-strain curve, etc.) and geometry of the pipe/defect. As 
mentioned previously, in the Figure 10 this value is 0.85.  
 

6. Conclusions 
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The results presented and discussed in this paper concerning the local failure criterion for 
assessment of the remaining strength of damaged pipes manufactured from API J55 steel 
can be summarised as follows:  

 Ductile fracture initiation can be used as the failure criterion for examined 
structures, especially bearing in mind the exploitation conditions and materials 
used for their manufacturing.  

 Unlike other numerical criteria for pipe integrity assessment, mainly stress-
based, micromechanical modelling includes analysis of damage that inevitably 
emerges prior to failure. Also, plastic deformation development, characteristic 
for ductile fracture, is taken into account this way, which is important because it 
influences the damage initiation and development. 

 An advantage of the local approach is lack of a need for estimation of the 
reference stress - in the literature varying between 80 and 100 % of the ultimate 
tensile strength.  

 The influence of FE mesh on the applied micromechanical criterion for pipe 
failure exists, but it is not significant. 
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Abstract. Determining the optimal construction dimensions represents one of the major 
tasks in the process of construction. Their determination importantly influences the 
reduction of construction overall costs. By this fact, the construction solution becomes 
competitive on the market. Numerous authors have dealt with the construction optimization 
using models of different approximation levels. Different types of constructions can be 
subject to optimization. Constraint functions were also different depending on the 
construction’s operation characteristics. The optimization of the lattice column against 
buckling was performed in paper [1]. As one of the further research objectives in the 
previous paper it has been recommended to analyze new models about the optimization of 
lattice constructions for buckling. This paper’s objective is to obtain functions that 
determine realistic optimal parameters of the variable shape lattice-columns. These functions 
should be straightforward for practical implementation. The adopted model should facilitate 
to the constructor to obtain the results allowing him to choose from the profiles available on 
the market. Total mass of the columns has been selected as the objective function. Criterions 
of general buckling of the lattice column, local buckling of the chord and local buckling of 
the bracing diagonal are used as the constraint functions. Numerical examples are performed 
by usage of the obtained theoretical solutions. 

Keywords: optimization, lattice, variable shape, column, buckling. 

 
 
 

1. Introduction  

 

Determining the optimal construction dimensions represents one of the major tasks in the 
process of construction. Their determination importantly influences the reduction of 
construction overall costs. By this fact, the construction solution becomes competitive on 
the market. The analysis of the cost structure of a metal construction, carried out by Farkas 
[5], has shown that the price is primarily influenced by the price of the material (30-73)%, 
while the other costs are lower: manufacture (16-22)%, assembling (5-20)%, transportation 
(3-7)%, design (2-3)%. The selection of optimal shape and optimum parameters of metal 
construction reduce the consumption of the material and its costs [1, 5, 8, 12, 18]. 
Numerous authors have dealt with the construction optimization using models of different 
approximation levels. Different types of constructions can be subject to optimization. 
Constraint functions were also different depending on the construction’s operation 
characteristics. The problem of construction optimization, using different methods, 
objective and constraint functions, was studied by several authors [1...18]. 
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Authors [12] determined optimal parameters of trapezoid cross section of tower crane 
bracing boom. The established model included practical data that the overall dimensions of 
boom cross-section are unvarying along the boom. Based on the analysis that was carried 
out, the recommendations are given regarding the application of trapezoid, triangular and 
rectangular cross-sections of the bracing constructions are given. 

As one of the further research objectives in the paper [12] it has been recommended to 
analyze the influence of buckling on optimal dimensions of bracing constructions. This 
problem was resolved in the paper [13]. Bracing column has been selected as a 
representative construction where the problem of buckling is often present. This paper’s 
objective is to obtain functions that determine realistic optimal parameters of the selected 
construction (height of the parallel chords, cross-sectional areas of the chord and bracing 
and area moments of inertia of the chord and bracing). The model included assumption that 
the overall dimensions of construction cross-section are unvarying along the construction. 

As one of the further research objectives in the paper [13] it has been recommended to 
analyze new models about the optimization of lattice constructions for buckling. This 
paper’s objective is to obtain functions that determine realistic optimal parameters of the 
variable shape lattice-columns. These functions should be straightforward for practical 
implementation. The adopted model should facilitate to the constructor to obtain the results 
allowing him to choose from the profiles available on the market. 

 

 

2. Defining of the optimization task 

 

Bracing constructions have important applications in practice, especially in case of 
constructions with larger overall dimensions, where larger carrying capacity and minimal 
weight are required. 

The cross section of bracing construction (Fig. 1) consists of chords (pos. 1) and bracing 
(pos. 2a, 2b, 3). The chords are usually made of pipes with circular, square or rectangular 
cross-section. Bracing are welded to the chords. 

Bracing are composed of the diagonals (pos. 2) and struts (pos. 3). Struts (pos. 3) 
perpendicular to chords are loaded by axial force that has smaller values than diagonal (pos. 
2) axial force. Optimal struts cross-sectional area could be smaller than the optimal 
diagonal cross-sectional area. The struts’ (pos. 3) task is to decrease the buckling length of 
the chords. Cross-sectional areas of bracing (pos. 2 and 3) are manufactured from profiles 
witch equal cross-sectional area and area moment of inertia in practice. 

In this paper, the area moment of inertia and cross-section areas are analyzed in view of 
correlation for various profiles (cross-sections) usually found in practice. Results of the 
analysis show that the best results can be obtained for the following functional dependence 
[13]: 

 2
222

2
111

2 , AIAIAI yyy  . (1) 

The numerical values of the coefficients 1 and 2 can be found in paper [13]. 
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Fig. 1. Bracing column 
b – height of the parallel chords (b1 – bottom of the construction, b2 – top of the construction); A1 – cross-sectional 

area of one chord; Iy1 – area moment of inertia of one chord; A2 – cross-sectional area of one bracing; Iy2 – area 
moment of inertia of one bracing 

 

In the paper will be define next optimum dimensions of square cross-section in bracing 
column (Fig. 1): b1, b2, A1 and A2. 
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3. Objective function 

 

As it was mentioned before, the price of the material, hence, material consumption has the 
main influence in the overall price of metal construction. Hence, minimization of total mass 
of the construction has been selected as the objective function: 

 VmF  . (2) 

where 
–  – is density of the material, 
– V – volume of the bracing construction. 

Volume of the bracing construction is equal to the sum of chords volume (Vp), volume of 
bracing (Vr) and volume of other elements (Vo): 

 orp VVVV  . (3) 

The volume of the chords is determined by the following expression: 

 



cos

4 1
L

AVp . (4) 

Applying the small-angle approximation 

 1cos  ;  tgsin , (5) 

the volume of the chords (4) can be rewritten in the form: 

 LAVp  14 . (6) 

The volume of the bracing is in the form: 

  


sn

i
irir lbAV

1
)()(124 . (7) 

where 
– lr – length of diagonal (Fig. 1b), 
– ls – length of segments (Fig. 1b), 
– ns – number of segments. 

The angle  may be found by the following expression: 

 
L

bb

L

bb

tg








2

2 21

21

  )5(  
L

bb





2

21 . (8) 

Height of the parallel chords on the bottom of segment n (b1(n) – Fig. 1c) is determined by 
next expression: 

 )(2)(1)(1 nnnb  , (9) 
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where 

 
)

2
(

)(
)(1





tg

l ns
n . (10) 

 
)](

2
[

)(
)(2





tg

l ns
n . (11) 

Applying the small-angle approximation (5) equations (10) and (11) can be rewritten in the 
form 

 )()(1 nsn l , (12) 

 




tg

tg
l nsn 1)()(2 , (13) 

and equation (9) can be rewritten in the form: 

 





tg

tg
lb nsn 1)()(1 . (14) 

By using a previous equation length of segment n (Fig. 1b, 1c) can be written in form of: 

 





tg

tg
bl nns

1
)(1)( . (15) 

Length of diagonal of segment n can be defined by trigonometry too: 

 
)cos(

)(
)( 
 ns

nr

l
l    )15,5(  








tg

tgb
l

n
nr

1

sincos
)(1

)( . (16) 

Height of the parallel chords on the top of segment n is equal to height of the parallel 
chords on the bottom of segment n+1  (b1(n+1) – Fig. 1c). The b1(n+1) is determined by next 
expressions: 

 )
2

1(2 )(1)(1)(1)1(1 


 tg
bbb nnnn , (17) 

 n
n tg

bb )
2

1(1)1(1 


 . (18) 

By application of the expression (18) the expressions (15) and (16) become in their final 
forms: 

 








 

tg

tg

tg
bl n

ns
1

)
2

1( 1
1)( , (19) 
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
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

 
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b
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1

)
2

1(
sincos

11
)( . (20) 

Height of the parallel chords on the top of construction (Fig. 1a) by using of expression (8) 
can be written in form of: 

  Lbb 212 . (21) 

Number of segments (ns) determined by using the geometrical conditions that the height of 
the parallel chords on the top of construction (b2) is equal to the height of the parallel 
chords on the top of the last segment (b1(n+1)) 

 )1(12  nsbb . (22) 

Substitution of (18) and (21) into (22) yields: 

 
)

2
1ln(

)
2

ln(
1

1










tg

b

Lb

ns . (23) 

The volume of the bracing (7) by using of expressions (18) and (20) can be written in its 
final form: 

 







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i
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1

1
12 )

2
1()

1

sincos

1
1(4 . (24) 

The volume of other elements is determined by following expression: 

  rpo VVkV  1 . (25) 

The variation of coefficient value k1 is minimal in observed cases, so they can be assumed 
constant [5, 12, 18]. 

By application of the expressions (6), (24) and (25), the volume of the bracing construction 
(3) obtains its final form: 

              ])
2

1()
1

sincos

1
1([)1(4

1

1
1211 






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






sn

i

i

tgtg

tg
bALAkV . (26) 

 

 

4. Constraint functions 

 

Criterions of buckling are used as the constraint function: 
– general buckling of the bracing column, 
– local buckling of the chord, 
– local buckling of the bracing diagonal. 
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The constraint function of general buckling of the bracing column is given by expression 
[13, 14]: 

 0
4

1

,

1,

1

1

,1
1 





 d

uky

y

j

f
W

M

A

N
. (27) 

Axial force is determined by next expression: 

  cos1 zFN   )5(  zFN 1 . (28) 

Moments of flexion for axes  y  is in given by expression: 

 
2

2Lq
LFM xy


 . (29) 

Moment of inertia and resistance moment on the bottom of the bracing column are in given 
by expressions: 

 2
11, bAI uky  , (30) 

 11, 2 bAW uky  . (31) 

Limiting stress can be determined by follow expression: 

 
m

y
d

f
f


 , (32) 

where 
– fy – yield stress, 
– m – material safety factor. 

The reduction factor  for the buckling curves (A, B, C, D) is in given by expression [13]: 

 
2

,,

,
1

ijiji

ji
vu 

 . (33) 

where 
– i – criteria of buckling (for this case i=1,2,3) 
– j – buckling curves (j=A, B, C, D) 
– 93430613.0Au , 66790141.0Av , 

– 95183782.0Bu , 79943067.0Bv , 

– 96585452.0Cu , 93542113.0Cv , 

– 981721.0Du , 1634394.1Dv . 

The reduction factor 1,j for the general buckling of the bracing column using the equation 
(33) can be rewritten as follows: 
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jj

j
vu

. (34) 

Least radius of gyration is in the form: 

 
1

,
1 4 A

I
i

uky


   )30(  

2
1

1
b

i  . (35) 

Ideal slenderness ratio can be defined by the expression [13]: 

 
2

12
11 8

A

A
Ki  . (36) 

The parameter K is a function of the angle  (Fig. 1b). Values of the parameter K can be 
found in papers [9, 14]. 

Slenderness ratio can be determinate by the equation: 

 
1

1 i

L
 . (37) 

Column effective length factor () depends on the conditions of end support of the column 
and ratio of the moments of inertia on the top and bottom of the bracing column: 

 21  . (38) 

The factor (1) depends on the conditions of end support of the column. A bracing column 
is modeled as cantilever. In this case factor 1 is: 

 21  . (39) 

The factor (2) is a function of ratio of the moments of inertia on the top and bottom of the 
bracing column: 
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f . (40) 

The factor (2) was approximated based on catalogue data [14] by correlation analysis: 

 3)(
1

2
212

w

b

b
ww  , (41) 

where 

– ,11794.0,502242.4,505845.3 321  www  

– 9999.0k  – correlation coefficient. 

Substitution of (39) and (41) into (38) yields column effective length factor: 
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ww  . (42) 

Slenderness ratio can be determined by substitution of (35) and (42) into (37): 
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 . (43) 

The relative slenderness ratio is determined by next expression: 

 
v

i




 1
1 . (44) 

Slenderness ratio with the yield stress is in given by expression: 

 
y

v f

E
 . (45) 

where E denotes the modulus of elasticity. 

The relative slenderness ratio (44) by using of expression (36), (43) can be written in form 
of: 
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By applying expressions (28), (31), (34) and (46) the constraint function of general 
buckling of the bracing column (27) obtains its final form: 
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The constraint function of local buckling of the chord is in given by expression: 
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Axial force, supposed to act on the cross-section center of the chord, is in given by 
expression: 
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The reduction factor 2,j for the local buckling of the chord using the equation (33) can be 
written by the following equation: 
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Least radius of gyration is in the form: 
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1
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The slenderness ratio for a fixed ends beam and effective buckling length of chords 0.9ls 
[15] can be written in form of: 
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The relative slenderness ratio is determined by next expression: 
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By application of the expressions (19) and (53) the reduction factor 2,j (50) finally 
becomes: 
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Substitution of expressions (49) and (54) into Eq. (48) yields: 

 0]
)(

)1(81.0
[

4

2
2

2

11

2
1

2

,1
,1

1
2 















 d

v

j
j

yz
f

tg

tg

A

bv
u

Ab

MbF
. (55) 

The constraint function of local buckling of the bracing diagonal is in given by expression: 
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Axial force supposed to act on the cross-section center of the bracing diagonal is given by 
expression: 
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The reduction factor for the local buckling of the bracing diagonal using the equation (33) 
can be written in the following form: 
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Least radius of gyration is in given by expression: 
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The slenderness ratio for a fixed ends beam and effective buckling length of bracings 0.75lr 
[15] is determined by next expression: 
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The relative slenderness ratio is determined by next expression: 
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Substitution of expressions (60) and (61) into Eq. (58) yields: 
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By application of the expressions (57) and (62) the constraint function of local buckling of 
the bracing diagonal (56) becomes finally: 
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 (63) 

I concluded that analytical solution of minimization of the objective function (26) could not 
be determined for model with previous constraint functions (47), (55) and (63). For this 
reason, the optimal parameters should be numerically determined. 

 

 

5. Numerical Example and Analysis of Results 

 

The verification of theoretical results is carried out on a numerical example for a lattice 
column with the following data: k1=0.05, L=30 m, =45O, fy=235 N/mm2, =1.504 
(circular cross section). 

The graphs of optimum parameters in the function of transverse force (Fx) for the lattice-
columns with the overall dimensions of construction cross-section are unvarying along the 
construction were taken from paper [13]. 

By analyzing graphs (Fig. 2a) it can be concluded that the optimal height of the parallel 
chords on the bottom of construction (b1(II)) for unvarying shape lattice-columns is greater 
than the optimal height of the parallel chords for variable shape (b1(I)). Based on the 
analysis of Fig. 2 it may concluded that the optimal heights of the parallel chords on the 
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bottom and the top of construction have the same values in case of smaller values of the 
transverse force (Fx). 

On the other hand, optimal cross-sectional area of one chord (A1(I)) for variable shape 
lattice-columns is greater than the optimal cross-sectional area of one chord (A1(II)) for 
unvarying shape. 

 

 

Fig. 2. Change of optimum parameters in the function of transverse force (Fx) for variable (I) and unvarying (II) 
shape lattice-columns 

 

6. Conclusion 

 

The optimization of the bracing column against buckling was performed in this paper. The 
analysis was carried out based on buckling criterions: general buckling of the lattice 
column, local buckling of the chord and local buckling of the bracing diagonal. This 
paper’s objective is to determine optimal parameters of the variable shape lattice-columns. 
The optimal parameters were numerically determined. Obtained results are compared with 
the results that published in paper where goal was to determine optimal parameters of the 
unvarying shape lattice-columns. 
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Abstract. Graph of dependence of force upon deformation is a commonly used graph in the 
field of the vehicle safety. The error present in determination of the modeling of preceding 
dependence has a considerable influence on the outcome results of the collision analysis. By 
comparative analysis of literature once can notice that the case of described previous 
dependences with two linear curves is often used (one for compression process and one for 
restitution process). By correlation analysis of experimental curves, we concluded that the 
previous approximation does not describe graph of dependence of force upon deformation 
with satisfactory way. This paper’s objective is mathematical modeling of functions 
dependence of force – deformation in a collision of vehicles. The compression process was 
approximated with piecewise linear functions with one and more than one regions. The 
restitution process may be approximated with linear functions. The quality of the coherence 
between experimental curves and mathematical functions is quantified by residual sum of 
squares. 

Keywords: vehicle, crash, force, deflection, residual sum of squares. 

 
 
 

1. Introduction 

 

Determining the adequate functions dependence of force upon deformation of vehicles must 
to represent one of the major tasks in the analysis of impact of vehicles [1]. Their 
determination influence importantly on reduction of error in the output result of the analysis 
of impact process. 

There are a few approaches in literature for defining the functions dependence of force – 
deformation of collisions vehicles. Usually mechanical-mathematical model presume that 
the curve dependence of force upon deformation can be described with two linear curves 
(one curve for compression process and one curve for restitution process) [2]. In this case 
force can be described in form of multiplication of deformation and appropriate stiffness. 
The difficulty lays in determining the stiffness during the processes of compression and 
restitution of vehicles. The approximate expression for the processes of compression may 
be found in the literature [3, 4], where is used vehicle mass (mv), impact velocity (v0) and its 
maximal deformation (max): 

 
2
max

2
0






vm
c v . (1) 
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To my knowledge the analytical expression for strictly determination of stiffness during the 
restitution processes is not yet available. Usually in practical defining the previous stiffness 
is through usage of coefficient of restitution. What is the problem? Usually mechanical-
mathematical models presume cognition of numeric values of coefficient of restitution. In 
practice, it is common that numerical value of coefficient of restitution is determined on 
basis of experience. The error present in determination of the value of coefficient of 
restitution has a considerable influence on the outcome results of the collision analysis and 
determination of stiffness during the processes of restitution. 

The force deformation curves for the vehicle models can also be approximated as piecewise 
linear with three regions: before buckling has started, after buckling has started and when 
the occupant compartment starts to deform [5]. 

Elmarakbi and Zu [6] presume that the curve dependence of compression force upon 
deformation can be described using piecewise linear functions but with two regions. 

Usually authors presume that the force has zero value at the moment when the appropriate 
deformation has zero value. However, there are other approaches to determining the 
functions dependence of force upon deformation of vehicles. McCoy and Lankarani [7] 
presume that the force have value greater than zero at the initial moment of vehicle's crush 
when the deformation has zero value. 

The experimental data for the crash tests may be found in literature. Most of the tests were 
made at about 60 km/h [8, 9]. It also can be found papers [10, 11, 12] which presented the 
experimental data for the same vehicle at different impact velocity. 

Based on currently published papers may be noticed necessity for defining new functions 
dependence of force upon deformation of vehicles. 

This paper’s objective is to obtain new function that represent realistic behavior of vehicle 
during the impact. This function should be simple enough for practical implementation. We 
presume that the curve dependence of compression force upon deformation can be 
described using piecewise linear functions with three regions. Curves dependences for 
process of restitutions are approximated using linear functions with one and more than one 
regions. The stiffness during the process of restitution is expressed as function dependence 
of maximum vehicle deformation. Purpose of the model is reduction of error in the output 
results of the analysis of vehicle impact process. 

 

2. The function dependence of force upon deformation 

 

The function dependence of force upon deformation is determined by the following 
expression: 

 








0

0



forF

forF
F

r

k . (2) 

 

2.1. The function dependence of compression force upon deformation 
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In this paper the function dependence of compression force upon deformation of vehicles is 
analyzed in view of correlation for piecewise linear functions with one and more than one 
regions (n regions) (Fig. 1). 

 

 

Fig. 1. Dependence of compression force upon deformation 

 

Function of dependence of compression force upon deformation is given by expression: 
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where 
 Fk – compression force, 
  – deformation of vehicle, 
 n – maximum value of deformations during process of compression (experimental 

data), 
 ci – coefficients of proportionality during process of compression (region ''i''). 

Coefficient of proportionality (c1 for n=1) in literature is known as the coefficients of 
stiffness. Therefore, in the following text we will use notion stiffness for ci. 

It is necessary to define following unknown parameters ci and A,i (i=1 ... n-1). 

Experiment is necessary in order to mathematical modeling of functions dependence of 
force upon deformation. In that sense experiment consists of impact of vehicles into an 
absolutely rigid barrier. To gain a better output results experiment must be repeated for 
different values of impact velocity [5, 10, 11, 12]. 

The quality of the coherence between experimental curves and mathematical functions is 
quantified by residual sum of squares. Why was chosen just residual sum of squares? The 
function of dependence of compression force upon deformation done by the minimization 
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of a residual sum of squares also has minimum error using it in determination work during 
compression process. A minimal error in determining the work also results in a minimal 
error in determining coefficient of restitution. 

Residual sum of squares (RSS) measures the deviations of experimental from their 
predicted values: 

  


nk

i
ikik FFRSS

1

2
exp,,, )( , (4) 

where Fk,exp,i is the ith experimental value of the variable to be predicted, and Fk,i is the 
predicted value of Fk,exp,i. 

The determination of unknown parameters was performed by the minimization of a residual 
sum of squares. We concluded that the analytical solution of minimization of the function 
(4) can’t be determined for n1 (3) by application of some optimization methods [13]. 
Therefore, the unknown parameters (ci, A,i) should be numerically determined. 

 

2.2. The function dependence of restitution force upon deformation 

 

 

Fig. 2. Dependence of restitution forces upon deformation (dash line – compression force; solid line – restitution 
forces) 

 

The restitution process is significantly shorter than compression process. 

By the author using more complex functions wouldn’t significantly reduce the error, but on 
the other hand would be more complicated. Therefore, the restitution process was 
approximated with linear curve (Fig. 2). Slopes of restitution lines are a function of 
maximum value of deformation during process of compression (Bm). 

Functions of dependence of restitution force upon deformation are given by expression: 

 )()(, 
mm BmBkmr bFF , (5) 

where 
 Fr,m – restitution force, 
 Bm – maximum value of deformations during process of compression, 
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 bm – stiffness (coefficients of proportionality) during process of restitution for Bm. 

Stiffness (bm) can be determined from the conditions: during restitution process work 
determined by experimental data (Ar,m,exp) is equal to work determines using approximate 
functions (5) (Ar,m,appr): 

 apprmrmr AA ,,exp,,  . (6) 

Numerical value of work Ar,m,exp can be determined by using experimental data for the same 
vehicle characteristics and for different values of impact velocities. The analysis output data 
are two numerical values: Bm and Ar,m,exp. 

Numerical value of work Ar,m,appr is given in following form: 

  




mC

mB

dFA mrapprmr ,,, . (7) 

Deformation of vehicle in the instant of separation (Cm) may be determined from the 
condition: 

 0)(, 
mCmrF . (8) 

The deformation Cm can be determined by substitution of (5) into (8): 
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Finally, stiffness bm can be determined by applying equations (5), (6), (7) and (9): 
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The stiffness bm depends on the deformation Cm (10). The final step of modeling may be 
correlation analysis between bm and Cm. 

 

3. Numerical example and the analysis of results 

 

The analysis of unknown parameters was performed using experimental data given in paper 
[11] where the results obtained through experimental analysis for Ford Escort. The 
experimental data from previous paper was derived using the case of direct central impact 
of vehicles into an absolutely rigid barrier. 

Quality comparison between two piecewise linear functions with subsequent number of 
regions (i.e. n and n+1) may be presented by comparing their RSS relative discrepancy: 

 %,100
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 %1.12221   nnRSS , %7.332   nnRSS , %1.043   nnRSS  (12) 

The relative discrepancies for n4 tend to zero. 

The same calculation was used for comparing two functions with n=1 where stiffness 
obtained using equations (1) and (4): 

 %,100
)1.(

)4.()1.(
)4.1.(1 


 

Eq

EqEq
EqEqn RSS

RSSRSS
RSS , (13) 

 %4.11)4.1.(1   EqEqnRSS . (14) 

The approximate expression for the compression stiffness (1) is often used in practice. By 
analysis of equations (12) and (14) it can be concluded that this expression hasn’t 
satisfactory results. 

Therefore, we propose to use piecewise linear functions dependence of compression force 
upon deformation with three regions. 

 

 

Fig. 3. Dependence of compression force upon deformation for Ford Escort (exp – experimental data, n=1...4 – 
approximations (Eq. 3) 

Functions of dependence of compression force upon deformation (3) with n regions 
(n=1...4) and experimental data are presented in a Figure 3. By visual analysis of Figure 3 it 
can be also concluded that expression (3) for n=1 and n=2 doesn’t have satisfactory results. 

Compression stiffness (ci) and deformation (A,i) for linear functions dependence of 
compression force upon deformation with three regions have following values: 
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The stiffness bm using equation (10) have following values: 
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The stiffness bm were approximated using the previous results (16) by correlation analysis: 

 733.71007837505255440 Bb  . (17) 

 
v0, km/h k kexp 

13 0.149 0.162 

38 0.088 0.085 

52 0.070 0.071 

83 0.012 0.015 

Table 1. 

The purpose of the model presented in this paper is reduction of error in the output results 
of analysis of vehicle impact process. Therefore, coefficient of restitution of impact of 
vehicles into an absolutely rigid barrier is calculated using the model presented in this paper 
(k). The results were presented in the Table 1. The coefficient of restitution calculated using 
appropriate experimental data (kexp) was also presented in Table 1. The absolute error of 
coefficient of restitution has value in the range from 0.001 to 0.013. 

 

4. Conclusions 

 

The error presented in determination of the function dependence of force upon deformation 
has a considerable influence on the outcome results of the collision analysis. In this paper is 
suggested mathematical model of functions dependence of force upon deformation. The 
compression process was approximated with piecewise linear functions with three regions. 
The restitution process may be approximated with linear curve. This model can be used for 
analysis real traffic accident. 

The PC-Crash software is a common commercial tool for reconstructing road accidents 
[14]. It uses a number of important parameters for vehicle model. Most of them are given 
by default, within the software, and the results of the accident reconstruction are very 
sensible to their variations. The coefficient of restitution is one of them, used as the input 
data, and usually taken arbitrary. The model is developed in this paper which provides such 
analysis of impact process in which the coefficient of restitution becomes the result, and not 
input data. 

674



 
Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 2011 C-37 

 
Further investigations may be directed towards establishing an analytical model for analysis 
of three dimensional vehicles collisions with the coefficient of restitution as the end result. 
Such analysis of collision processes would contribute to the analysis of traffic accidents. 
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Abstract. The problem of an elastic plate, originally unmagnetized, in a uniform magnetic 
field is considered in the paper. The magnetic forces are of two kinds: the force of the 
magnetic field on conducting currents in the material, induced by its motion in the static 
field and the force between the magnetic field and the magnetized material (independent of 
the motion).The general equations are linearized by assuming linear constitutive equations 
and that all electromagnetic variables in the deformed body may be divided into two parts: a 
rigid body state and a perturbation state. Maxwell’s stress is calculated and involved in 
differential equation related to bending. Obtained equation is solved in analytical form using 
the integral-transformation technique (Double Fourier finite-sine transformation and Laplace 
transformation). Discussion of the obtained solution is done using Kirchhoff’s hypothesis.  

 

 

1. Introduction  

The theory of electro-magneto-thermoelasticity investigates the interaction between the 
straian and the electromagnetic field in a solid elastic body. A propagation of an elastic 
field in presence of magnetic field was considered by L. Knopoff (1955), J.W. Dunkin i 
A.C. Eringen (1963). F.W. Brown (1966) developed a rigorous phenomenological theory 
for ferromagnetic materials on the basis of the large deformation theory and the clasical 
theory of feromagnetisam. H.F. Tiersten (1964) developed an analogous theory based on a 
microscopic model. Since the general nonlinear theory is complicated, Y.W. Pao and C.S. 
Yeh 1 derived a set of linear equations and boundary conditions for soft feromagnetic 
elastic materials. They applied linear theory to investigate magnetoelastic buckling of an 
isotropic plate. The same problem was treated on the other way by F.C. Moon i Y.H. Pao 
2. Basic general information about the theory of magneto-thermoelasticity was presented 
in monographs by H. Parkus 3. A great contribution of a research in this scientific field 
was given by W. Nowacki, S.A. Ambarcumian 4, M. Krakowski 5. From 1975 on  
Michigan Technological University (N.S. Christopherson, M.O. Peach, J.M. Dalrymple, 
L.G. Viegelahn 6), a set of experiments were done to reconsider theoretical results. 
Because of a disagreement in analytical and experimental results methods of numerical 
analyses were involved in consideration  (K. Miya, T. Takagi, Y. Ando (1980), X. Tian and 
Y. Shen 7). Sharma and Pal investigated the propagation of magnetic-thermoelastic plane 
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wave in homogeneous isotropic conducting plate under uniform static magnetic field [8]. 
The problem with high-frequncy electromagnetic waves was presented in [9] and the 
problem with low-frequency electromagnetic field was descused in [10]. 

2. Basic equations 

Electro-magneto-thermoelastic problem considered in the paper shows one type of 
interaction between electromagnetic and strain field in a solid plate. It is assumed that the 
plate material is elastic and isotropic, possessing a good electric conductivity. Many nickel-
iron alloys used for building the magnetic circuits of motors, generators, inductors, 
transformers are of this type. 

As a result of time changing electromagnetic field conducting currents appear in electric 
conductors. This problem is mathematically described by the system of Maxwell’s 
equations with the relations for slowly moving media and modified Ohm’s low 6: 

t

D
JHrot







,   
t

B
Krot







, 

0Ddiv


,  0Bdiv


,    (1) 

 

 BuKD


 0 ,   DuHB


  , 

 BuKJ


  , 

where the following notation is applied: H – intensity of the magnetic field, K – intensity of 
the electric field, B – magnetic flux density (magnetic induction), D – electric induction, J – 
current density, u – deflection, 0 – permeability of vacuum,  – electric conductivity, 0 – 
dielectric constant of vacuum, t – time. 

In the consideration of the plate vibrations, we shall take the assumption that the 
longitudinal vibrations are independent of transversal vibrations. Transversal vibrations can 
be obtained by using the following differential equation 11: 

     



 
3333333333

3
4
1 212 ii

ix

h
TTw

h
whwD    

    


 




2

2

33

2

2

33,,332

h

h

h

h
iiiiii

i

dxXdxxfXTT
x

h
,          (i=1,2), (2) 

where: D – flexural rigidity of the plate, X – mechanical force,  f – Lorenz force. ij and Tij 
denote mechanical and magnetic stress tensors (ij

+, Tij
+ are stress components on the upper 

and ij
-, Tij

- on the lower side of the plate), where h is the plate thickness and  is the 

four-dimension Laplace operator.   

4
1

Of course, presented systems of equations has to be accomplished with the appropriate set 
of boundary and initial conditions.  
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Presented system of differential equations is complicated to be solved in analytical form.  
So, at first we have to simplify mathematical model of the discusted problem. In this paper 
only the problem of the plate subjected to homogenius magnetic field will be presented.  

In this case, electromagnetic energy which is converting in thermal energy is very small, so 
Joules heat can be neglected. Mahwell’s equations (1) can be linearysed, too. Deformation 
field is coupled with the magnetic field. 

3. Thin metallic plate in a stationary homogenius magnetic field 

Let the thin simply supported plate made of homogenius, isotropic linear magnetic material 
is subjected transversal to an external uniform homogenius magnetic field induction 

000 HB


  in air. The magnetic permeability of the plate material is =0r and at the 

beginning the plate is quite non-magnetized (Figure 1). 

 

x1 

x2

x3 

a 

b 

h
 

Figure1. Coordinate system and plate dimensions  

In that case we have two kinds of forces: 

1. forces of interaction between magnetic field and magnetized material, independent of 
vibrations - motion and 

2. forces of the magnetic field and the conducting currents in the plate material, induced 
by the plate vibrations in the stationary magnetic field. 

Electromagnetic field forming in the plate appeares on the action of magnetized material 
and macroscopic conducting current, as can be presented in next way 

21
0 pppp hhHH


 ,     (3) 

where 1
ph


 and 2
ph


 are small fluctuations of the magnetic field generated on the presented 

actions. In the mathematical model their influence on each other can be neglected.  

If the thin metallic plate is placed in strong homogeneous magnetic field H0=const. 
appropriate of the law of the line refraction, in the plate is forming magnetic field intensity 
Hp0. In the moment t=0 plate is losing stability place, apropos the plate has initial 
deformation conditions. It can be presented in the next form  
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   21021 ,0,, xxxxw  , 
   211

0

21 ,
,,

xx
t

txxw

t








 .   (4) 

On the coupling between the electromagnetic field and the deformation field there are small 

fluctuations of the electric field e


and the magnetic field in the plate 2
ph


, defined as 

   txxxhHtxxxH ppop ,,,,,, 321
2

321


 ,   (5) 

   txetxK ,,


 . 

As the change of the magnetic field under a deformation is small, for ferromagnetic 
materials can be accepted that the magnetic permeability is nearly constant const.. 
Neglecting of the productions between the values hpi

2, ei , vi  and the productions of their 
derivatives, relations (1) have the next form 6 

 0pHveD


  ,  2
0 pp hHB


  , 

 0pHveJ


  ,    (6) 

and the Maxwell’s equations are  

   00
2

ppp HveHvehrot


  ,  2
pherot


 , 

  00  pHvdivediv


 ,  02 phdiv


.  (7) 

Lorient’s force has a form  

0
2

pp HDhrotBJf







   .    (8) 

By eliminating value we can form differential equation for the magnetic field 6 as e


   00
2222

1 ppppp HvrotHvrothhh


  .  (9) 

In the case of the quazistationry electromagnetic field we have 0D


, 0



t

D


, or 0, so 

presented equations have simplified form  

0
2

pp Hhrotf


  ,     (10) 

   0
22

1 ppt Huroth


  .    (11) 

The whole equation system of this coupled magnetoelastic bending problem is consisted of 
the equations (11) and (2) together with the appropriate boundary and initial conditions and 
relation (10). 

Let us discus one special case when the magnetic field is transversal to the middle surface 
of the thin plate. The plate is rectangular with the material density   (Figure 1.). Using the 
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condition of the equality of the perpendicularity components on the magnetic induction on 
the boundary surfaces, the field forming in the plate is  

0
0

0 HH p 


 ,   00 ,0,0 pp HH 


.   (12) 

If the plate material has high electric conductivity we can say that  

       kHwxjHwiHwHuroth ppppp


03

2
102,01,0

2  ,  (13) 

 

    jHxwiHxwf pp


2

032,
2
1

2
031,

2
1   .     (14) 

 

Appropriate deferential equation of the transversal vibrations, using (2), is  

    


 
2

2

33

2

2

332,21,13333
2
1

3
4
1 12

h

h

h

h

dxXdxxffTTw
h

whwD   .  (15) 

As induced tangential components of the field are small compared to the normal 
component, appropriate stresses on the upper and the lower side of the plate are formed 
under the influence of the normal components intensities 

 wxHH pp
2
130 1  ,  wxHH v

2
1300 1  .    (16) 

Using Maxwell’s formula for the stress on the splitted surface of the two magnetics, and the 
fact that the stress is directing to the medium of the smaller magnetic permeability, we can 
take next relation 

  whHTT 2
1

2
0

0
03333  




 .    (17) 

Equation (15) has the form 

  ghw
h

whwhHw
h

HD 















  2

1

3
2
1

2
0

0
0

4
1

3
2
0

2
0

1212
. (18) 

Boundary conditions for the simply supported plate are  

0w ,01 ax , 0
,0

2
1

2

1





 ax
x

w
,    (19) 

0,02
 bxw ,  0

,0

2
2

2

2





 bx
x

w
. 
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System of the equations (18) and (19) with the initial conditions (4) can be solved using 
integral transform technique – double sine Fourier transformation and the Laplace 
transformation. Obtained solution has next form  

   





...5,3,1,
2121 sinsin

4
,,

nm
mnmn xxtw

ab
txxw  , 

 
 

2
22

310

cos1

12

4sin
cos

nm

nm

mnmn
nm

nm
nmnmnmmn

t

h
h

ght
ttw























 , 

     

 22
3

222
0

0
0

222
3

2
0

2
0

2

12

12

mn

mnmn

nm
h

h

hH
h

HD

























 , 

a

n
n

  ,  
b

m
m

  ,   (20) 

  
a b

mnkknm dxdxxxxx
0 0

212121 sinsin,    (k=0,1). 

 

4. The conclusion 

The analysis of the obtained results can be done using relation for nm. In the cases of the 
paramagnetics and ferromagnetics we have (-0)>0 and the magnetic field is acting in the 
same direction of the elastic field. It means that the magnetic field is in corelation with the 
elasic field and they together gravity to return the plate in the equilibrium position. For 
diamagnetic materials we have (-0)<0 and the magnetic field is acting in opposite 
direction of the direction of the elastic field. 

Using relation (17) and Kirchoff hypothesis, on the base of a sign of , we have to 

conclude that in the case of the plate clamped on only one side we have opposite situation.   

w2
1
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Figure 2. Stress factor as a function of magnetic intensity 

 

On the base on the relation (17) stress factor, defined as 

w

TT
S f 2

1

3333







,     (21) 

is presented on diagram from figure 2. As can be noticed, considered problem is interesting 
only for ferromagnetic plates and very strong magnetic fields. 

In the reference 7 the hypothesis of the magnetoelasticity for real conductors were formed 
and the appropriate theory was developed. On that theory, for the case of the plate placed 
transversal to magnetic field we have the opposite conclusions. As that theory is not in 
agreement with Kirchoff hypothesis in the paper 12 modified hypothesis were defined. 
Than, the correct result can be involved and for a real conductors.  

Presented theoretical analysis has the assumption that the plate is subjected to hardly 
uniform and hardly transversal magnetic field. Obtained theoretical results are valid only 
for very thin plates. In the case of thick plate we have the boundary effect, and we have to 
involve in consideration finite element method.  
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Abstract. The boundary element method (BEM) and the f nite element method (FEM) are
very popular in many computational applications in engineering. These methods very often
require the numerical evaluation of one dimensional or multiple integrals with singular or
near singular integrands. Such problems appear in many subjects of mechanics (fracture
mechanics, damage mechanics, etc.), as well as in other technical f elds. In this paper we
give some improvements of quadrature rules for FEM and BEM. Beside of general notions on
Gaussian quadratures, we give a construction of weighted Gaussian quadratures for integrals
with logarithmic and/or algebraic singularities. Also, we consider generalized quadratures of
high degree of precision for Müntz systems. Numerical examples are included.

1. Introduction

The boundary element method (BEM) and the f nite element method (FEM) are very popular
in many computational applications in engineering, for example, in fracture mechanics,
damage mechanics, electromagnetic diffraction, etc. Very often in such applications we
need accurate numerical evaluation of one dimensional or multiple integrals with singular
kernels and/or singular basis functions. Two kinds of singularities are typical: algebraic
and logarithmic. Müntz and Müntz-logarithmic polynomials are typical functions with such
properties. Also, an accurate evaluation of nearly singular one and multidimensional integrals
is very important. For some additional details see, for example, [1], [9], [7], [8], [10], [11],
[17], [18].

In this paper we propose a method for constructing the weighted Gaussian quadrature
rules for integrals with algebraic and/or logarithmic singularities. This method gives Gaussian
quadratures with a maximal algebraic degree of precision. Also, we mention another
approach which enables us to obtain Gaussian quadratures for Müntz systems (for details
see Milovanović [13] and Milovanović and Cvetković [15]).

Beside of general notions on quadratures of high algebraic degree of precision, we
consider a stable and eff cient construction of the weighted Gaussian quadratures for integrals
of functions with end-point singularities. Such a construction is based on an application of
the Mathematicapackage OrthogonalPolynomials, recently developed by Cvetković and
Milovanović [2]. Numerical examples are included.
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2. Quadrature Formulas for Integrals With Logarithmic Weight Functions

In numerical implementation of the BEM (see [9, Chapters 4 & 5]), quadrature formulas
play a very important role, especially for higher order elements. For calculating integrals of
the corresponding inf uence coeff cients (for off-diagonal elements and diagonal elements),
quadratures of Gaussian type are very appropriate. For suff ciently smooth functions on a
f nite interval [a,b] a linear transformation to the standard interval [−1,1] can be used and
then an application of Gauss-Legendre quadrature formula provides numerical integration
with a satisfactory accuracy. However, for integrals with a logaritmic singularity and/or some
kind of algebraic singularities the convergence of the corresponding quadrature process is
very slow, so that certain weighted quadratures are recommended. In such cases, the weight
functions of the corresponding weighted Gaussian quadratures include these “diff cult parts
(with singularities)” of the integrand. In this section, we consider a few cases of such
quadratures on the standard interval [0,1]. However, we f rst give some general notions on
Gaussian quadratures.

2.1. General notions of Gaussian quadratures

Let Pm be a set of all algebraic polynomials of degree at most m. We consider the n-point
weighted quadrature formula

∫ b

a
f (x)w(x)dx=

n

∑
k=1

Ak f (xk)+Rn( f ), (1)

where the weight function w(x) is such one that all its moments µk =
∫ b

a xkw(x)dx < +∞,
k = 0,1, . . ., and µ0 > 0. Quadrature rule (1) is known as interpolatoryif it is exact for all
polynomials of degree at least n−1, i.e., if the remainder term Rn( f ) = 0 for each f ∈Pn−1.

However, if the nodes xk and the weights Ak in (1) are selected so that Rn( f ) = 0 for
each f ∈ P2n−1, the rule (1) is the Gaussianquadrature formula. In that case, the nodes
xk are zeros of the monic orthogonal polynomial πn(w;x) and the corresponding weights Ak

(Christoffel numbers) can be expressed by the so-called Christoffel function λn(w;x) (cf.
[12, Chapters 2 & 5]) in the form Ak = λn(w;xk) > 0, k = 1, . . . ,n. Positivity of Christoffel
numbers is very important for the convergence of the quadrature formulas. In the special
case w(x) = 1 on [−1,1], the nodes xk are zeros of the Legendre polynomial Pn(x). It was
originally discovered by Gauss in 1814, of course, without theory of orthogonality.

As we know [12, Chapters 2], the (monic) polynomials πn(w;x) orthogonal with respect
to the weight function w(x) on [a,b] satisfy the three-term recurrence equation

πk+1(t) = (t −αk)πk(t)−βkπk−1(t), k = 0,1,2, . . . , (2)

π0(t) = 0, π−1(t) = 0,

where (αk) = (αk(w)) and (βk) = (βk(w)) are sequences of recursion coeff cients. The
coeff cient β0 which is multiplied by π−1(x) = 0 in the recurrence relation (2) may be
arbitrary, but it is convenient to def ne it by β0 = µ0 =

∫ b
a w(x)dx.

For generating Gaussian quadrature rules there are numerical methods, which are
computationally much better than a computation of nodes by using Newton’s method and then
a direct application of the classical Christoffel’s expressions for the weights (see e.g. Davis
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and Rabinowitz [3]). The characterization of the Gaussian quadratures via an eigenvalue
problem for the Jacobi matrix

Jn(w) =

















α0
√

β1 O
√

β1 α1
√

β2
√

β2 α2
. . .

. . . . . .
√

βn−1
O

√

βn−1 αn−1

















(3)

has become the basis of current methods for generating these quadratures. The most popular
of them is one due to Golub and Welsch [6]. Their method is based on determining the
eigenvalues and the f rst components of the eigenvectors of a symmetric tridiagonal Jacobi
matrix (3), where αν and βν , ν = 0,1, . . . ,n− 1, are the coeff cients in the three-term
recurrence relation (2) for the monic orthogonal polynomials πν(w; ·). Namely, the nodes xk
in the Gaussian quadrature rule(1), with respect to the weight function w(x) on [a,b], are
the eigenvalues of the n-th order Jacobi matrix(3). The weights Ak are given by

Ak = β0v2
k,1, k = 1, . . . ,n,

whereβ0 = µ0 =
∫ b

a w(x)dx and vk,1 is the first component of the normalized eigenvectorvk

corresponding to the eigenvalue xk,

Jn(w)vk = xkvk, vT
k vk = 1, k = 1, . . . ,n.

Simplifying QR algorithm so that only the f rst components of the eigenvectors are
computed, Golub and Welsch [6] gave an eff cient procedure for constructing the Gaussian
quadrature rules. This procedure was implemented in several programming packages
including our package OrthogonalPolynomials realized in Mathematica [2].

Thus, we need the recursion coeff cients αk and βk, k≤N−1, for the monic polynomials
πν(w; ·), in order to construct the n-point Gauss-Christofell quadrature formula, with respect
to the weighte w(x), for each n ≤ N. These coeff cients are known explicitly for the
classical orthogonal polynomials (see [12, Chapters 2]). In other cases we need an additional
numerical construction of recursion coeff cients, using the method of moments or the so-
called discretized Stieltjes procedure (see [12, § 2.4.8]).

2.2. Gaussian formulas for the weight w(x) = (1−x)αxβ log(1/x)

We consider the n-point quadrature formula
∫ 1

0
f (x)(1−x)αxβ log

1
x

dx=
n

∑
k=1

Ak f (xk)+Rn( f ), (4)

with parameters α,β > −1 in the weight function w(x) = (1− x)α xβ log(1/x). Piessens
and Branders [19] considered cases when α = 0 and β = 0,±1/2,±1/3,−1/4,−1/5 (see
also Gautschi [4] and [5]). Quadrature parameters for n ≤ 8 was given in Katsikadelis [9,
pp. 297–298] in the case α = β = 0.

Using symbolic integration we f nd the moments µk = µk(α,β ) in terms of the gamma
function and harmonic numbers,

µk(α,β ) =

∫ 1

0
xkw(x)dx=

∫ 1

0
(1−x)αxk+β log

1
x

dx
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=
Γ(α + 1)Γ(β +k+ 1)

Γ(α + β +k+ 2)
[H(α + β +k+ 1)−H(β +k)] . (5)

For example, for α = β = 0 it reduces to µk(0,0) = 1/(k+ 1)2, k≥ 0.
The standard meaning of the k-th harmonic number Hk is the sum of the reciprocals of

the f rst k natural numbers, i.e.,

Hk = H(k) =
k

∑
ν=1

1
ν

,

and its representation is given by Euler in the form

H(k) =

∫ 1

0

1− tk

1− t
dt =

k

∑
ν=1

(−1)ν−1 1
ν

( k
ν

)

.

Taking a fractional argument x between 0 and 1, the harmonic number H(x) is def ned
by the previous integral, where k is simply replaced by x. Then it can be generated by
H(x) = H(x−1)+x−1 or

H(1−x)−H(x) = π cot(πx)− 1
x

+
1

1−x
.

More generally, for every x > 0 (integer or not), the harmonic number is determined by

H(x) = x
+∞

∑
k=1

1
k(x+k)

= ψ(x+ 1)+ γ,

where ψ(x) = Γ′(x)/Γ(x) is the so-called digammafunction, i.e., the logarithmic derivative of
the gamma function Γ(x) and γ = 0.577215664901532 . . . is the Euler-Mascheroni constant.

Using the Mathematica package OrthogonalPolynomials [2] and the f rst 2N
moments µk, k = 0,1, . . . ,2N− 1, given by (5), we get the f rst N coeff cients αk and βk,
k= 0,1, . . . ,N−1, in the recurrence relation (2). It enables us to obtain quadrature parameters
in (4) for any n≤ N.

Remark. In order to overcome the severe ill-conditioning in obtaining the recursion
coeff cients with a satisfactory accuracy, a multi-precision arithmetic can be used. For
example, in the simplest case α = β = 0, taking 55-decimal-digit arithmetic we get the f rst
N = 50 recursion coeff cients to about 20 decimal digits.

The following code in the Mathematica package OrthogonalPolynomials [2]
generates recursion coeff cients for k ≤ 2N− 1 = 99 and quadrature parameters (nodes and
weights) to 20 decimal digits for n = 10(10)50:

In[1]:= << orthogonalPolynomials`

In[2]:= w@t_, a_, b_ D := H1 - tL ^a t^b Log@ 1 � tD

In[3]:= mom= Integrate @t ^k w @t, 0, 0D, 8t, 0, 1<D; moments = Table@ mom, 8k, 0, 99<D;

In[4]:= 8alpha, beta< = aChebyshevAlgorithm @moments, WorkingPrecision ® 55D;

In[5]:= param = Table@aGaussianNodesWeights @n, alpha, beta,
Precision ® 20, WorkingPrecision ® 20D, 8n, 10, 50, 10<D;

For example, the obtained nodes and weights for n = 10 are given in the following list:
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In[6]:= param@@1DD

Out[6]= 880.0090426309621996506369, 0.053971266222500629504,
0.13531182463925077487, 0.24705241628715982422, 0.38021253960933233397,
0.52379231797184320116, 0.66577520551642459722, 0.79419041601196621736,
0.89816109121900353817, 0.96884798871863353939<,
80.12095513195457051499, 0.18636354256407187033, 0.19566087327775998271,
0.17357714218290692084, 0.13569567299548420167, 0.093646758538110525987,
0.055787727351415874076, 0.027159810899233331146,
0.0095151826028485149993, 0.0016381576335982632549<<

Example 1.Consider

I =
∫ 1

0

(1−x)−1/2x−1/2 log(1/x)√
1 +x

dx, (6)

which value is known (cf. [5])

I =

√
2π
8

Γ
(1

4

)2
= 4.118718374926872014366740 . . .

By the linear transformation 2x−1 = t, this integral reduces to

I =
∫ 1

−1

√

2
3 + t

log
2

1 + t
dt√

1− t2
.

An application of the standard Gauss-Legendre quadrature gives a very slow convergence.
Realtive errors rn(GL) for n = 10(10)100 are presented in Table 1. Numbers in parentheses
denote decimal exponents. Slightly better results can be obtained by using Gauss-Chebyshev
quadratures with respect to the weight function w(t) = (1 − t2)−1/2. The corresponding
relative errors rn(GC) are also displayed in the same table.

However, we can directly apply the quadrature formula (4) to integral (6). Let

Q(α ,β )
n =

n

∑
k=1

Ak f (xk) and r(α ,β )
n = |(Q(α ,β )

n − I)/I |.

Taking the quadrature formula with the logarithmic weight w(x) = log(1/x), the
corresponding function in (6) is f (x) = 1/

√

x(1−x2). The convergence of this rule is again
very slow. Relative errors r(0,0)

n are given in Table 1.
But, if we include also algebraic singularities in the weight, i.e., if we take w(x) =

(1− x)−1/2x−1/2 log(1/x) (α = β = −1/2), the convergence becomes very fast. Gaussian
approximations Q(−1/2,−1/2)

n and relative errors are given in the second part of Table 1 for
small values of n ≤ 10. Incorrect decimal digits are underlined. As we can see, 17 exact
decimal digits are obtained using Gaussian rule with only n = 10 digits.

The same method enables us to include also a logarithmic singularity at x= 0. Thus, we
can consider the weight function

w(x) = w(α ,β )(x) = (1−x)αxβ log
1

x(1−x)
, α,β > −1.

In Fig. 1 we present this weight function for α = 0 and three selected values of the
parameter β .
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Table 1. Relative errors of quadrature sums for n = 10(10)100 and Gaussian approximations
with respect to logarithmic weight and the corresponding relative errors for n = 1(1)10

n rn(GL) rn(GC) r(0,0)
n n Q(−1/2,−1/2)

n r(−1/2,−1/2)
n

10 1.84(−1) 5.29(−2) 1.42(−1) 1 4.0801983843688532 9.35(−3)
20 1.08(−1) 2.64(−2) 8.69(−2) 2 4.1179039770237825 1.98(−4)
30 7.80(−2) 1.76(−2) 6.41(−2) 3 4.1186986430715864 4.79(−6)
40 6.17(−2) 1.32(−2) 5.14(−2) 4 4.1187178694526636 1.23(−7)
50 6.17(−2) 1.06(−2) 4.31(−2) 5 4.1187183615750484 3.24(−9)
60 5.14(−2) 8.81(−3) 3.73(−2) 6 4.1187183745672496 8.73(−11)
70 4.41(−2) 7.55(−3) 3.30(−2) 7 4.1187183749170540 2.38(−12)
80 3.88(−2) 6.61(−3) 2.96(−2) 8 4.1187183749266013 6.57(−14)
90 3.47(−2) 5.87(−3) 2.69(−2) 9 4.1187183749268644 1.83(−15)

100 2.87(−2) 5.29(−3) 2.47(−2) 10 4.1187183749268718 5.10(−17)

0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

Figure 1. Graphs of the weight functions w(x) for α = 0 and β = −1/2 (solid line), β = 0
(dashed line) and β = 1/2 (dotted line).

Similarly as before we f nd the corresponding moments

µk(α,β ) =

∫ 1

0
(1−x)αxk+β log

1
x(1−x)

dx

=
Γ(α + 1)Γ(β +k+ 1)

Γ(α + β +k+ 2)
[2H(α + β +k+ 1)−H(β +k)−H(α)].

Example 2.For α = −1/4 and β = −1/2 compute

Ik =

∫ 1

−1
fk(x)w

(α ,β )(x)dx≈ Q(α ,β )
n ( fk), k = 1,2,

where f1(t) = sin(10πx) and f2(t) = sin(20πx2).
As before, by using the Mathematica package OrthogonalPolynomials [2] we

obtain recursion coeff cients and parameters of the Gaussian rules with respect to the weight
w(−1/4,−1/2)(x), and then we apply them to given integrals.

In the f rst case we get results presented in Table 2, including the corresponding relative
errors. Incorrect decimal digits are underlined.
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Table 2. Gaussian quadrature sums Q(−1/4,−1/2)
n ( fk), with corresponding relative errors

rn( fk), k = 1,2

n Q(−1/4,−1/2)
n ( f1) rn( f1) Q(−1/4,−1/2)

n ( f2) rn( f2)
10 0.5022466846173798 5.53(−2)
20 0.5316431444014815 3.32(−13)
30 0.5316431444016578 2.88(−29) 0.44665240303668106222 6.99(−5)
40 0.44662120169680683776 3.43(−11)
50 0.44662120168147791272 1.14(−19)
60 0.44662120168147791267 2.06(−29)

Grapfs of the second function f2(x) and the integrand F2(x) = f2(x)w(−1/4,−1/2)(x) are
displayed in Fig. 2. Because of oscillatory integrand we need more nodes in integration and
therefore we start with n = 30 points. Results are given in the same table.

-1.0

-0.5

0.5

1.0

-10

-5

5

Figure 2. Graphs of functions f2(x) = sin(20πx2) (left) and F2(x) = f2(x)w(−1/4,−1/2)(x)
(right).

3. Some Remarks on Gaussian Quadrature Rules for Müntz Systems

Gaussian integration can be extended in a natural way to non-polynomial functions, taking a
system of linearly independent functions

{P0(x),P1(x),P2(x), . . .} (x∈ [a,b]), (7)

usually chosen to be complete in some suitable space of functions. If w(x) is a given
nonnegative weight on [a,b] and the quadrature rule

∫ b

a
f (x)w(x)dx=

n

∑
k=1

Ak f (xk)+Rn( f ) (8)

is such that it integrates exactly the f rst 2n functions in (7), we call the rule (8) as Gaussian
with respect to the system(7). The existence and uniqueness of a Gaussian quadrature rule
(8) with respect to the system (7), or shorter a generalized Gaussian formula, is always
guaranteed if the f rst 2n functions of this system constitute a Chebyshev system on [a,b].
Then, all the weights A1, . . . ,An in (8) are positive.
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The generalized Gaussian quadratures for Müntz systems goes back to Stieltjes [20] in
1884. Taking Pk(x) = xλk on [a,b] = [0,1], where 0 ≤ λ0 < λ1 < · · · , Stieltjes showed the
existence of Gaussian formulae.

A numerical algorithm for constructing the generalized Gaussian quadratures was
investigated by Ma, Rokhlin and Wandzura [11], but their algorithm is ill conditioned (see
[11, Remark 6.2]). In [15], Milovanović and Cvetković presented an alternatively numerical
method for constructing the generalized Gaussian quadrature (8) for Müntz polynomials,
which is exact for each f ∈ M2n−1(Λ) = span

{

xλ0 ,xλ1 , . . . ,xλ2n−1
}

. The method is rather
stable and simpler than the previous one, since it is based on construction and stable
computation of orthogonal Müntz systems, previously developed in [13]. The method
performs calculations in double precision arithmetics in order to get double precision results.
For details see [15]. An application in numerical inversion of the Laplace transform was
given in [16].

Some transformation methods for integrals with Müntz polynomials can be found in
[14] and [10].

4. Conclusion

In this paper we propose a method for construction weighted Gaussian quadrature rules for
integrals with algebraic and/or logarithmic singularities, which appear in many applications
of BEM and FEM in computational problems in engineering. Also we give some remarks on
generalized Gaussian formulas for Müntz systems.

Acknowledgement.The authors were supported in part by the Serbian Ministry of Education
and Science.
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Engineering, Niš.

[18] Oliveira S P, Madureira A L, and Valentin F (2009) Weighted quadrature rules for f nite element methods,
Journal of Computational and Applied Mathematics,227, pp. 93–101.

[19] Piessens R and Branders M (1975) Tables of Gaussian Quadrature Formulas, University of Leuven, Leuven.
[20] Stieltjes T J (1884) Sur une généralisation de la théorie des quadratures mécaniques, Comptes Rendus

Mathématique, Académie des Sciences, Paris, 99, pp. 850–851.

692



 
Third Serbian (28th Yu) Congress on Theoretical and Applied Mechanics 
Vlasina lake, Serbia, 5-8 July 2011 C-41 

 
 
CRITERIA OF ELASTIC STABILITY FOR PLATE WITH 
GEOMETRIC DISCONTINUITY 
 

Snežana N. Mitić  
 
Faculty of Mechanical Engineering, 
The University of Niš, Aleksandra Medvedeva 14, 18000 Niš 
e-mail: snemitic@gmail.com 

 
Abstract. This paper presents stability criteria for rectangular plates subjected to loads along 
constructive discontinuity and along the two edges. In its mid-plane, the plate is loaded with 
uniformly distributed forces along two opposing plate edges and along constructive 
discontinuity. The constructive discontinuity divides the plate into subplates of different 
thickness. The subplates are isotropic and have a common elastic surface area. The Morris-
Levy method has been used to solve the stability problem. Each subplate buckling problem 
is separately solved and the solutions are brought together by matching the continuity 
equations. The plate has two opposite edges simply supported while the other two edges can 
take any combination of free, simply supported and clamped conditions. For different 
boundary conditions, the buckling solutions comprise of different combinations. For each 
boundary condition, the correct solution combination depends on the discontinuity load to 
the edges load ratio. The analysis of stability has been performed according to the basic 
postulates of the elastic stability theory. Fourth-order type ordinary linear differential 
equations with constant coefficients are derived from partial differential equations of the 
elastic surface areas of the buckled subplates. The buckling factor, which depends on the 
plate geometry, its mechanical properties and loads, is obtained from the derived system of 
equations. 

 
 
 

1. Introduction  
 
The elastic buckling problem of rectangular plates under uniaxial loads acting at opposite 
edges is the most basic plate buckling problem and its solution is documented in all 
standard texts on plate buckling [1]. A theoretical analysis of the stability of plates with 
fields of non-uniform thickness is employed in practical engineering designs. Researchers 
have investigated various forms of thickness variations of the plate that include: a linear 
function along one direction [2]; a non-linear function along one direction [3] or in both 
directions [4]. Piecewise constant step functions in one direction are considered in 
references [5, 6], and in both directions in references [7]. The paper [8] considered stability 
criteria for rectangular plates subjected to intermediate and end in-plane loads. The 
subplates are of uniform thickness. Unlike [8], this paper will focus on subplates with 
different thickness. Subplates are isotropic and have a common elastic surface area. The 
resultant buckling problem can then be solved in the exact manner to yield the stability 
criteria that are functions of the position of the discontinuity and the relative ratio of the 
loads along discontinuity and edges. The Morris-Levy method has been used to solve the 
stability problem. 
Plates with constructive discontinuity and fields of non-uniform thickness are extensively 
used in modern structures. By using such plates, it is possible to obtain material saving, 
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weight reduction, stiffness enhancing, designated strengthening, fundamental vibration 
frequency increasing, etc. 
 

2. Problem definition 
 
Consider an isotropic, elastic, rectangular thin plate of length a, width b, different thickness 
h1 and h2, modulus of elasticity E, Poisson’s ratio . The origin of the coordinate system is 
set at the upper left-hand side corner of the plate, as shown in Fig. 1. The plate is subjected 
to an end compressive load 

1xN at the edge x=0, and a geometric discontinuity compressive 

load 
2xN  at a location x ax= , , from the y-axis. The plate is simply supported 

along two opposite edges that are parallel to the x axis. The other two edges can be free, 
simply supported, or clamped. The problem at hand is to determine the critical buckling 
loads.  

0 x£ £1

 

 
 

Figure 1. Geometry and coordinate systems for a rectangular plate subjected to loads 

 
The plate can be decomposed into two subplates along the line at x ax= . The geometric 

discontinuity divides the plate into subplates of different thickness h1 and h2. The subplates 
are isotropic and have a common elastic surface area. Based on the classical thin plate 
theory, the governing differential equation for the ith subplates is given by [1] 

 
4 4 4

4 2 2 4
2i i i i

i

w w w N

D

2

2
iw

x x y y x

¶ ¶ ¶ ¶
+ + =-

¶ ¶ ¶ ¶ ¶
, (1) 

 , (2) 1

1 2

, 1

, 2

x

i
x x

N i
N

N N i

ì =ïïï=íï + =ïïî

in which the subscript i =1,2 refers to the ith subplate; wi(x,y) is transverse displacement; x 
and y are Cartesian coordinates;  is plane compressive load associated with the ith 

subplate; Di is flexural rigidity of the subplate 1 and 2 given by: . 
iN
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( )

3
1

1 212 1

Eh
D

n
=

-
, (3) 

 
( )

3
2

2 212 1

Eh
D

n
=

-
. (4) 

 

 
a) b) 

 
Figure 2. . Geometry and coordinate systems for a rectangular plate subjected to loads.  

(a) subplate 1; and (b) subplate 2. 

 

3. Analytical modeling for subplate 1 
 
Based on the classical thin plate theory, the governing differential equation for the subplate 
1 is given by Eq. (1) for i=1 and can be rewritten as 

 1

4 4 4
1 1 1

4 2 2 4
11 1 1 1

2
xNw w w

D

2
1

2
1

w

x x y y x

¶ ¶ ¶ ¶+ + =-
¶ ¶ ¶ ¶ ¶

. (5) 

Using the following transformations: 

 1 1 1
1 1 1, , ,

w x y a
w x y

b a b
q

x
= = =

b
= , (6) 

the differential Eq. (5) of the deflection surface can be written in the following form: 

 
4 4 4 2

2 2 4 4 2 2 21 1 1
14 2 2 4 2

1 1 1 1 1

2 0
w w w w

K
x x y y x

x q x q p x q¶ ¶ ¶ ¶+ + +
¶ ¶ ¶ ¶ ¶

1 = , (7) 

where K1 is the buckling factor for subplate and which, for certain materials and load, 
depends on the dimensions of the plate. 

 1

2

1 2
1

xN b
K

D p
= . (8) 

By using the Levy approach, solution of differential equations for the subplate 1 can be 
expressed as: 
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 ( ) ( )1 1 1 1 1 1, sin ,n nw x y f x y nb b= p=  (9) 

where n (=1, 2, ...) is the number of half waves of the buckling mode in the y direction and 
( )1 1f x  is an unknown function to be determined. Eq. (9) satisfies the boundary conditions 

for two simply supported edges. 
The essential and natural boundary conditions for the two simply supported edges at 

1 0y =  and 1 1,y =  associated with the subplate 1 are given by 

 ( )
1

1 1 1 0,1
,

y
w x y

=
= 0  (10) 

 
( ) ( )

1

2 2
1 1 1 1 1 1

2 2 2 2
1 1 0,1

, ,
0

y

w x y w x y

y x

n
x q

=

é ù¶ ¶ê +ê ¶ ¶ê úë û
ú =ú  (11) 

 
The transverse displacement given in Eq. (9) satisfies the boundary conditions of the two 
parallel simply supported edges [Eq. (10) and (11)]. In view of Eq. (9), the partial 
differential equations may be reduced to fourth-order ordinary differential equations as 

 ( ) ( ) ( ) ( ) ( )4 2 2 2 4 4 4 2 2 2
1 1 1 1 1 1 1 1 12 0n nf x f x f x K f xx q b x q b p x q¢¢ ¢¢- + + .=  (12) 

The buckling of subplate 1 in the direction of the x axis is determined by the functions 

( )1 1f x  which is represented in the form  

   1
111

xeAxf   (13) 

Based on Eq. (13), Eq. (12), the characteristics equation for subplate 1 is derived 

  (14) ( )4 2 2 2 2 2 2 2 4 4 4
1 2 n nKl p x q x q b l x q b+ - + 0.=

q

0.

Introduce a label , equation (14) becomes: 2 2 2
1 1Kg p x=

  (15) ( )4 2 2 2 2 4 4 4
1 2 n nl g x q b l x q b+ - + =

Depending on the roots of the characteristics equations of the differential equations, there 
are five general solutions to the above fourth-order differential equations as given below. 
 

3.1. Solution A for the case 1<0 
 
The general solution of the differential equation (7) has the form 

                   ( )1 1 1 1 2 1 1 3 1 1 4 1 1 1sinh cosh sinh cosh sin nw C x C x C x C x ya a b b= + + + b . (16) 

where  and  are the roots of the characteristics equation (15) for condition 1<0: 1a 1b

 ( )2 2 2 2 2 2 21 1
1,2 1 1 1 12 22 4n nl g x q b g x q b g a= - - - - = , (17) 
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 ( )2 2 2 2 2 2 21 1
3,4 1 1 1 12 22 4n nl g x q b g x q b g= - - + - =b . (18) 

3.2. Solution B for the case 1=0 
 
For  the roots of the characteristics Eq. (15) are: 1 0g =

 . (19) 1 1 na b xqb= =

General solution of the differential equation for those roots of characteristics equations is: 

             ( )1 1 1 1 2 1 1 1 3 1 1 4 1 1 1 1sinh sinh cosh cosh sin nw C x C x x C x C x x ya a a a= + + + b . (20) 

 

3.3. Solution C for the case   2 2 2
10 4 ng x q b< <

 
The roots of the characteristics equation (15) are 

 12 2 2 1
1,2 4 2n i

ggl x q b= - + ,  (21) 

 12 2 2 1
3,4 4 2n i

ggl x q b= - - , (22) 

where 

 12 2 2 1
1 1;

4 2n

gga x q b b= - =   (23) 

The general solution of the differential equation (7) has the form: 

 
(

)
1 1 1 1 1 1 2 1 1 1 1

3 1 1 1 1 4 1 1 1 1

sinh cos cosh cos

sinh sin cosh sin sin n

w C x x C x x

C x x C x x

a b a b

a b a b b

= +

+ + 1y

+
. (24) 

 

3.4. Solution D for the case  2 2 2
1 4 ng x q b=

 
The roots of the characteristics equation (15), for this case are: 

  (25) 1 1 na b xqb= =

The general solution of the differential equation (7) has the form 

                ( )1 1 1 1 2 1 1 1 3 1 1 4 1 1 1 1cos cos sin sin sin nw C x C x x C x C x x ya a a a= + + + b . (26) 
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3.5. Solution E  for the case  2 2 2

1 4 ng x q b>
 

The roots of the characteristics equation (15), for this case are:  

 ( )2 2 2 2 2 2 21 1
1,2 1 1 1 12 22 4n ni il g x q b g x q b g a= - - - = , (27) 

 ( )2 2 2 2 2 2 21 1
3,4 1 1 1 12 22 4n ni il g x q b g x q b g= - + - = b . (28) 

The general solution of the differential equation (7) is 

                    ( )1 1 1 1 2 1 1 3 1 1 4 1 1 1cos sin cos sin sin nw C x C x C x C x ya a b b= + + + b . (29) 

The constants C1, C2, C3 and C4 in Eq. (16), (20), (24), (26) and (29) are determined from 
the boundary conditions along the edges and the continuity conditions along the geometric 
discontinuity. 
 

4. Analytical modeling for subplate 2 
 
Based on the classical thin plate theory, the governing differential equation for subplate 2 is 
given by [1]: 

 1 2

4 4 4
2 2 2

4 2 2 4
22 2 2 2

2
x xN Nw w w

D

2
2

2
2

w

x x y y x

+¶ ¶ ¶ ¶+ + =-
¶ ¶ ¶ ¶ ¶

, (30) 

where  is the transverse displacement for subplate 2. 2 2 2,w x y 
Using the following transformations: 

 
( )

2 2 2
2 2 2, , ,

1

w x y a
w x y

b a b
q

x
= = =

- b
= , (31) 

the differential Eq. (30) of the deflection surface can be written in the following form: 

          ( ) ( ) ( )( )
4 4 4

2 4 22 4 2 22 2 2
14 2 2 4

2 2 2 2

2 1 1 1 1 0
w w w

K
x x y y

x q x q p e x q¶ ¶ ¶+ - + - + Y + - =
¶ ¶ ¶ ¶ ¶

2
2

2
2

w

x

¶ , (32) 

where K2 is the buckling factor for subplate 2:  

 
( )

1 2

2

2 2
2

x xN N b
K

D p

+
= , (33) 

and 

 

3

1 1

2 2

D h

D h

æ ö÷ç ÷Y = =ç ÷ç ÷çè ø
;     2

1

x

x

N

N
e= . (34) 
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By using the Levy approach, solution for differential equation for the subplate 2 can be 
expressed as: 

 ( ) ( )2 2 2 2 2 2, sin ,n nw x y f x y nb b= p= . (35) 

where n (=1, 2, ...) is the number of half waves of the buckling mode in the y direction and 

( )2 2f x  is an unknown function to be determined. Eq. (35) satisfies the boundary conditions 

for two simply supported edges. 
The essential and natural boundary conditions for the two simply supported edges at 

1 0y =  and 1 1,y =  associated with the subplate 2 are given by 

 ( )
2

2 2 2 0,1
,

y
w x y

=
= 0 , (36) 

 
( )

( )
( )

2

2 2
2 2 2 2 2 2

2 2 22
2 2

0,1

, ,
0

1
y

w x y w x y

y x

n
x q

=

é ù¶ ¶ê +ê ¶ ¶ê ú-ë û

ú =ú . (37) 

The transverse displacement given in Eq. (35) satisfies the boundary conditions of the two 
parallel simply supported edges [Eq. (36) and (37)]. In view of Eq. (35), the partial 
differential equations in Eq. (32) may be reduced to fourth-order ordinary differential 
equations as 

          ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 44 2 2 4 4 2 2 2
2 2 2 2 2 2 1 2 22 1 1 1 0.n nf x f x f x K f xx q b x q b p k x q¢¢ ¢¢- - + - + Y + =  (38) 

The buckling of subplate 2 in the direction of the x axis is determined by the functions 
 22 xf  which is represented in the form 

   2
'

222
xeAxf   (39) 

The characteristics equation for subplate 2 is derived 

          ( )  (40) ( )( ) ( ) ( ) ( )4 22 2 42 2 2 2 4 4
1 1 1 2 1 1nKl p x q x q b l x q bé ù¢ ¢+ Y +Y - - - + - =ê úë û

0.n

2
1

Introduce a label 

 ( )( )22
2 1 1 Kg p e x q= Y + -  (41) 

equation (40) becomes 

  (42) ( ) ( ) ( ) ( )4 22 42 2 4 4
2 2 1 1 0.nl g x q b l x q bé ù¢ ¢+ - - + - =ê úë û n

Depending on the roots of the characteristics equations of the differential equations, there 
are five general solutions to the above fourth-order differential equations as given below. 
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4.1. Solution A for the case  <0 
 
The general solution of the differential equation (32) has the form 

          ( )2 5 2 2 6 2 2 7 2 2 8 2 2sinh cosh sinh cosh sin nw C x C x C x C x ya a b b= + + + 2b  (43) 

where  and  are the roots of the characteristics equation (42) for the condition 1<0: 1a 1b

          ( )( ) ( )2 22 2 2 2 21 1
1,2 2 2 2 22 22 1 4 1n nl g x q b g x q b g a¢ = - - - - - - = , (44) 

          ( )( ) ( )2 22 2 2 2 21 1
3,4 2 2 2 22 22 1 4 1nl g x q b g x q b g b¢ = - - - + - - =n . (45) 

 

4.2. Solution B  for the case  2=0 
 
For  the roots of the characteristics Eq. (42) are: 2 0g =

  1 1 1 n       . (46) 

The general solution of the differential equation (32) is 

          ( )2 5 2 2 6 2 2 2 7 2 2 8 2 2 2 2sinh sinh cosh cos sin nw C x C x x C x C x x ya a a a= + + + b

b

. (47) 

 

4.3. Solution C for the case  ( )2 2 2
20 4 1 ng x q< < -

 
The roots of the characteristics Eq. (42) are: 

  2 22 2 2
1,2 1

4 2n i


         , (48) 

  2 22 2 2
3,4 1

4 2n i


         , (49) 

where 

  2 22 2
2 1 ;

4 2n 2


       . (50) 

The general solution of the differential equation (32) for subplate 2 has the form 

 
(

)
2 5 2 2 2 2 6 2 2 2 2

7 2 2 2 2 8 2 2 2 2 2

sinh cos cosh cos

sinh sin cosh sin sin n

w C x x C x x

C x x C x x

a b a b

a b a b b

= +

+ + y

+
. (51) 
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b4.4. Solution D  for the case  ( )2 2 2

2 4 1 ng x q= -
 
The general solution of the differential equation (32) for subplate 2 is: 

           2 5 2 2 6 2 2 2 7 2 2 8 2 2 2 2cos cos sin sin sin nw C x C x x C x C x x y       

b

, (52) 

where 

 . (53) ( )2 2 1 nb a x qb= = -

 

4.5. Solution E for the case  ( )2 2 2
2 4 1 ng x q> -

 
The roots of the characteristics Eq. (42) are: 

                       2 2' 2 2 2 2
1,2 2 2 2 2

1 1
2 1 4 1

2 2ni i2
n                      (54) 

                       2 2' 2 2 2 2
3,4 2 2 2 2

1 1
2 1 4 1

2 2ni i2
n                      (55) 

The general solution of the differential equation (32) has the form: 

  2 5 2 2 6 2 2 7 2 2 8 2 2cos sin cos sinw C x C x C x C x       . (56) 

The constants C5, C6, C7 and C8 in Eq. (43), (47), (51), (52) and (56) are determined from 
the boundary conditions along the edges and the continuity conditions along the geometric 
discontinuity. 
The essential and natural boundary conditions of the plate at the edge 1 0x =  for simply 

supported edge are defined as follows:  

 
1

1

2 2
1 1

1 0 2 2 2 2
1 1 0

1
0, 0x

x

w w
w

x y
n

x q=
=

é ù¶ ¶ê= +ê ¶ ¶ë û
ú =ú . (57) 

For a clamped edge natural boundary conditions are defined as follows:  

 
1

1
1 0

1

0, 0x

w
w

x=
¶=
¶
= . (58) 

For a free edge boundary conditions are defined:  

     
1 1

2 2 3 3
1 1 1 1 1 1

2 2 2 2 3 3 3 2 3 3
11 1 1 1 10 0

1 1 2
0, 0

x x

w w w w w

xx y x x y

gnn
xqx q x q x q

= =

é ù é¶ ¶ ¶ ¶ ¶-ê ú ê+ = + +ê ú ê ¶¶ ¶ ¶ ¶ ¶ë û ë

ù
ú =ú
û

. (59) 

The essential and natural boundary conditions of the plate at the edge 1 0x =  for simply 

supported edge are defined as follows:  
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 2

2

2 2
2 2

2 1 2 2 22
2 2

1

1
0, 0

1
x

x

w w
w

x y


 




   
   

  . (60) 

For a clamped edge natural boundary conditions are defined as follows:  

 
2

2

2
2 1

2 1

0, 0x

x

w
w

x=
=

é ù¶ê ú= ê ú¶ë û
= . (61) 

For a free edge boundary conditions are defined: 

 
( )

( ) ( ) ( )

2

2

2 2
2 2

2 2 22
2 2

1

3 3
2 2 2 2

3 3 2 2 33 2 3
2 2 2 2

1

1
0,

1

1 2
0

1 1 1

x

x

w w

x y

w w w

x x y x

n
x q

gn
x q x q x q

=

=

é ù¶ ¶ê ú+ =ê ú¶ ¶ê ú-ë û
é ù¶ ¶ ¶-ê ú+ +ê ú¶ ¶ ¶ ¶ê ú- - -ë û

=

 (62) 

To ensure displacement continuities and equilibrium conditions at the interface of the two 
subplates, the following essential and natural conditions must be satisfied: 

 
1 2

1 21x
w w

=
=

0x =
 (63) 

 
( )

1 2

1

1 21 0

1 1

1
x x

w

x xxq x q
= =

¶ =
¶ - ¶

2w¶
 (64) 

 
( )

1
2

2 2 2 2
1 1 2 2

1 1 2 22 2 2 2 2 2 22
1 1 2 21 0

1 1

1x x

w w w w
D D

x y x y
n n

x q x q= =

é ùé ù¶ ¶ ¶ ¶ê úê ú+ = +ê úê ú¶ ¶ ¶ ¶ê ú-ë û ë û
 (65) 

 

( ) ( ) ( )

1

2

3 3
1 1 1 1

1 3 3 3 2 3 3
11 1 1 1

3 3
2 2 2 2 2

2 3 3 2 33 3
22 2 2

0

1 2

21

11 1

x

x

w w w
D

xx x y

w w
D

xx x y

gn
xqx q x q

n g
x qx q x q

=

=

é ù¶ ¶ ¶-ê ú+ + =ê ú¶¶ ¶ ¶ë û
é ù¶ - ¶ ¶ê ú+ +ê ú- ¶¶ ¶ ¶ê ú- -ë û

w
 (66) 

When assembling the subplates to form the whole plate via the implementation of the 
boundary conditions of the plate along the two edges parallel to the y-axis [Eq. (57)–(62)] 
and the interface conditions between two subplates [Eq. (63)–(66)], a system of 
homogenous equations is obtained. For a nontrivial solution, the determinant of system 
must vanish. Each solution combination for the determinant of system is examined. The 
valid solution combinations should satisfy the following requirements: the buckling loads 
satisfy the limits of validity for the solution combinations which they belong to; the 
buckling load factor is the lowest value among possible solutions; the stability curves are 
continuous. 
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5. Numerical results 
 
Exact stability criteria are presented graphically in Figs. 3 to 6 for simply supported (SS), 
and free (FF) plates, respectively. 
 

5.1. SSSS plate 
 
A simply supported rectangular plate (or simply referred to as an SSSS plate) subjected to 
geometric discontinuity and end inplane loads is first considered. Fig. 3 presents the typical 
stability criterion curves for SSSS plates. Fig. 3. shows the buckling factor K1 in the 
function of the position  of the geometric discontinuity for different loads ratio  
(

2xN =const) and h2/h1=1.5, =1.  

With the increase of coordinate , the value of K1 decreases. For constant position  of the 
geometric discontinuity, the value of K1 decreases with the increase of loads ratio 
(

2xN =const, 
1x

N  decreases). 
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K
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h
2
 / h

1
 =1.5

4.00

 
Figure 3. The buckling factor K1 in the function of the position   

of the geometric discontinuity for different loads ratio  for SSSS plate 
 

In Fig. 4. the buckling factor K2 in the function of loads ratio  (
2xN =const) for different 

position  of the geometric discontinuity and h2/h1=1 is represented. The factor K2 increases 
with the increase of loads ratio . With the moving of the position of the discontinuity 
toward higher values, the value of the buckling factor K2 increases for constant loads ratio 
. 
 
 
The stability region is bellow the boundary curves. 
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Figure 4. The buckling factor K2 in the function of loads ratio the 
for different position  of the geometric discontinuity for SSSS plate 

5.2. FSFS plate 

Rectangular plate with the two edges parallel to the x-axis simply supported while the two 
edges parallel to the y-axis are free (this plate is referred to as a FSFS plate) is consider. 
The typical stability criterion curve for a FSFS plate. is shown in Fig. 5. Also, Fig. 5. 
depicts the buckling factor K1 in the function of the position  of the geometric 
discontinuity for different loads ratio  . The geometric properties plates are h2/h1=1.2 and 
=1. With the moving of the position of the discontinuity toward higher values, the value of 
the buckling factor K1 decreases. 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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2.049

 e = 0.7

K
1

x  
Figure 5. The buckling factor K1 in the function of the position   

of the geometric discontinuity for different loads ratio  for FSFS plate 
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The buckling factor K2 in the function of loads ratio the for different position  of the 
geometric discontinuity is presented in Fig. 6. Stability region is bellow boundary curves. 
The value of the buckling factor K2 increases with the moving of the position of the 
discontinuity toward higher values. 
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Figure 6. The buckling factor K2 in the function of loads ratio the 
for different position  of the geometric discontinuity for FSFS plate 

 

6. Conclusion 
 
This paper is concerned with the elastic buckling of rectangular plates subjected to both 
geometric discontinuity and end uniaxial loads. The stability of a rectangular plate with 
geometric discontinuities has been discussed in the field of elastic stability. The rectangular 
plates have two simply supported opposite edges, while the other two plate edges can have 
free, simply supported, or clamped edges. The aforementioned buckling problem is solved 
by decomposing the plate into two subplates at the location where the geometric 
discontinuity uniaxial load acts. By applying the Levy method of the boundary conditions 
and the conditions along the geometric discontinuity, a system of equations has been 
derived. Based on the obtained solution, numerical analysis has been performed. Stability 
criteria (the buckling factor) in the function of plate thickness ratio, loads ratio and the 
position of the geometric discontinuity are obtained. The method gives exact stability 
criteria; samples of which are presented in a graphical form for plates with various 
boundary conditions. Some sample buckling results are served as benchmark solutions for 
researchers who are developing software for plate buckling analysis. 
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Abstract. Vibrations of machine systems are important indicator of the system quality and 
of dynamic process which going on inside of the system. In reverse approach for design 
necessity, vibration indicators can be used as design limits (constraints) in order to choose 
and harmonized design parameters which can provide high level of technical system quality.  
As the case study, the robust design approach in the stage of the Embodiment design of 
power transmission components – gear systems is presented. For this purpose the specific 
model of gear vibrations is developed which is suitable for applying as the design 
constraint. The model is based on a great volume of experimental data about gear units 
vibrations and modal analysis, etc. Theoretical knowledge and models are insufficient yet to 
provide the necessary data. The article contains presentation of testing methods and data 
processing oriented to provide data necessary for the application in the suggested approach 
to power transmission components design. Additionally the article includes analysis of 
disturbance energy (power) absorption through the mechanical (elastic) structure, 
attenuation and emission in surroundings. The methodology of vibration and noise reduction 
is based on design parameters variation with objective to reduce disturbance energy and 
increase or kip at the same level of reliability and other service quality indicators.    
 
Keywords: vibrations, gears, robust design 

 
 
1. Introduction 

Design for Vibration and Noise is one of separate approaches Design for X – DfX which in 
the design stage of Embodiment design provides environment for optimal design 
parameters definition in the first attempt. Robust design is a specific approach aimed to 
design parameters definition which can provide design solution insensitive at functional 
requirements variation [1-3]. This design advantages are provided by design constraints 
which are result of DfX methodology as well as reliability as design constraint, vibration as 
design constraint, noise as design constraint, cost as design constraint etc. This research 
presents by itself completing and spreadsheet of design methodology by incorporating the 
knowledge from various areas of techniques. In order to incorporate vibration and use as 
design constraint, it is necessary to identify the process of vibration generation in the 
certain technical system and then use this mechanism in reverse direction as design 
constraint. As the case study for this opportunity is chosen design parameters definition of 
the gear drive units. The gear systems present very specific assembly of mechanical 
components in the sense of vibration and noise generation. This is combination of discrete 
and continual dynamic system and interaction of design parameters have significant effect 
at vibration and noise indicators.        
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2. Vibration and Noise as Design Constraints 
 
Vibration and noise of machine systems, i.e. power transmission components is the result of 
interaction between disturbances caused by components in motion and design parameters of 
components. This interaction in gear teeth meshes and bearings are in the form of machine 
parts collision, sliding, rolling etc [3-6]. In gear pair meshes between the meshed teeth all 
of these processes exist. A few kinds of teeth impacts arise in the mesh. More important is 
the addendum impact which is the result of gear pitch difference caused by elastic 
deformations.     
 
2.1 Gear system restorable free vibrations  

 
Teeth deformations are proportional to teeth load and teeth stiffness. Deformations replace 
the first point of contact from the right position A, to position A’ which is ahead of point A. 
The contact of teeth pair starts with intensive addendum impact (Fig.1a). Collision speed vc 
is proportional to teeth deformation, speed of rotation n and gear design parameters. By 
analyzing teeth geometry, deformations and speeds, collision speed at the first point of teeth 
contact is defined and presented in [7 and 8]. Every individual teeth impact produces 
natural free vibration of the gears (Fig 1b) with natural frequency fn . By strong inside 
damping these vibrations attenuate in a short time. The next teeth pair entering the mesh 
collides again and again. Vibrations become restorable after every teeth impact. For 
relatively slow gear rotation the measured time function of restorable free vibrations is 
presented in Fig. 2a. The teeth mesh frequency f corresponds to gear revolutions and to gear 
teeth number. If the speed of the gear rotation is slow enough, the time between the two 
teeth impacts 1/f is higher than the time necessary for the free vibration attenuation.  
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1.  Gear teeth addendum collision (a) and  
free vibration caused by teeth impact (b) 

 
As the speed of rotation increases the time between the two impacts gets lesser and lesser 
with the same natural frequency fn. In the full resonance these two frequencies get equal 
f=fn. For the case of gear vibration measurement (Fig 2b) (gear teeth number z=32) the 
resonant speed of gear rotation is 9860 rpm, and resonant teeth mesh frequency is 5258 Hz. 
Before the main resonance a few sub-resonances arise. This is the result of equality of 
additional disturbances and natural frequencies. After (behind) the main resonance arises, 
numerous super-critical resonances arise and total vibration level slightly increase. This is 
an interesting phenomenon, especially in the gear meshing process. In super-critical mesh 
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frequency range the absorbed disturbance energy by teeth impact relishes natural free 
vibrations. Higher speed of rotation produces higher level of absorbed disturbance energy 
and relished vibration energy has to be of higher level. Also, in super-critical mesh 
frequency range the modal structure of gear system fluctuates. In some parts of this range 
energy attenuation is lesser and relished energy by natural vibration is higher. By extensive 
measurement of gear vibrations with speed of rotation variation [7-8] and with frequency 
spectrum analysis these processes are identified. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Restorable free vibration of gear pair:  
a) the time function, b) result of vibration measurement and modeling  

 
The results of those gear vibration measurement are presented in the form of calculation 
model [7-8]. The objective of modeling was to prove the hypothesis that gear vibration is a 
restorable natural one and then to present the vibrations in the form suitable for use as 
constraints in design parameters definition in gear drive design process. The total level of 
gear vibration  is divided into two parts, continual  and transient  (Fig. 2b).  x ax bx

     sin1sin1 0
T

e
Taba f

m

xc
Axxxx                (1) 

The gear pair is modeled as a single mass oscillator, where me is equivalent mass reduced in 
collision direction (Fig.1a), c is the mean gear teeth stiffness, x0 is teeth deformation 
amplitude in the moment of teeth collision, T is transfer function between force transferred 
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to the gear masses and collision force Fc with phase angle is coefficient of energy 
absorption inside the vibration system, and f is the gear teeth mesh frequency. The model 
presented by equation (1) and by the diagram in Fig.2b is developed using the theory of 
singular systems. According to this theory, the singular process consists of the two 
processes, continual and transient. Vibration energy emission is presented as the continual 
process (a) and transient (b) which contains resonances (the main, sub-critical and super-
critical). Analytical model for continual part is established based on equilibrium between 
disturbance energy caused by teeth impacts and kinetic energy of restorable free vibrations. 
A significant part of disturbance energy is attenuated by numerous damping. The ratio 
between these energies is presented in the form of constant value which is calculated for 
measured vibrations level. The model for additional (transient) vibration values (b) is 
developed using analytical relations for resonance responses. These formulas include the 
difference between the teeth mesh (impact) frequency f and natural frequency fn, 
dimensionless damping coefficient and phase angle. By variation of damping coefficient 
the response is calculated to be equal measured vibrations. In Fig.2b the calculated line 
which approximates the measured one is presented. This line contains the main resonance 
only. The program for these values calculation can also include sub-critical and super-
critical resonances. The developed analytical model gives possibility to present disturbance 
energy transformation, and to explain the inside processes of gear teeth mesh. Besides, the 
model gives possibility for design parameters harmonization in order to avoid resonances 
and reduce gear vibration level, i.e. use gear vibration as design constraints. 
 
2.2 The noise generation caused by gear system vibration 
 
The part of disturbance energy absorbed by teeth repeatable collisions is relished in the 
form of kinetic energy of the gear system vibrations. The part of this kinetic energy is 
transformed, via free surfaces, into the noise energy inside the gear system housing. 
Another part of energy is transmitted through the supports (bearings) to the housing walls. 
This energy can be emitted from the wall surface in the surroundings in the form of noise 
waves. Also, the housing inside noise can penetrate through the housing walls into the 
surroundings. Much more important effect of the gear system vibration is disturbance of 
gear housing natural vibrations. This vibration can significantly intensify the noise that 
housing surfaces emit into the surroundings. From this point of view, the housing walls 
have a triple role: transmitter of vibration energy in surrounding, insulator of inside noise 
and generator of additional noise by own natural vibrations. Detailed analysis of the gear 
system housing behavior and its effects are presented in the articles [9-10]. Disturbing of a 
certain modal shape of elastic deformation with a certain natural frequency fni is the result 
of a few conditions, equality of natural and disturbing frequency, the same direction and 
type of elastic deformation of disturbance elastic waves and modal elastic deformations, 
low level of dimensionless damping coefficient of those modal elastic deformations (elastic 
waves).  In Fig. 3a and b, numerical anaysis of natural frequencies by FEM, and by modal 
testing of chosen gearbox housing, is presented. Fig.3c shows response caused by modal 
hammer impact which contains the great collection of natural frequencies which are 
disturbed. Four of them fn1… fn4 have dominant effect. If inside the housing the running 
gear system with mesh (teeth impact) frequencies f1, f2 and f3 increase with speed of 
rotation, those frequencies proportionally increase. Equality of disturbance fi and natural fni 
frequencies produces natural vibrations of housing walls and noise with this frequency.  
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 b) a)  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Relation between frequencies of gear system vibration  

d) c)  

and gear housing natural frequencies  

 
The relation between disturbance and natural frequencies presented in Fig. 3d is a principle 
one and presents Campell’s diagram for this purpose. A real gear system which is settled in 
the gearbox housing generates vibrations with a much more complex frequency spectrum. 
Except the presented teeth mesh frequencies f1, f2 and f3 (Fig.3d) natural frequencies of the 
gear system dominate in those spectrums. Furthermore, gear system vibrations disturb 
natural vibrations of housing walls. However, all natural vibrations are independent of 
service conditions (speed of rotation) and are in close relation with design parameters. This 
is the reason why some of the gear system natural frequencies can permanently disturb 
some of the housing natural frequencies and produce permanent high level of noise with a 
certain frequency. It can be changed by some kind of design parameters variation.  
 
2.3  Disturbance power transmission 
 
Disturbance power transmits through the gear unit assembly and can be indicated by 
outside motion of discrete masses and by inside motion of elastic waves in machine parts 
[11]. Motion of discrete masses can indicate disturbance power transmission in the form of 
the next relations as follows.  

f
xK
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c 2
 ;       f
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  ;       
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W
 ;       
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s
s W

W
           (2) 

 
The teeth collision power Wc is proportional to constant K proportional to teeth collision 
force (gear design parameters and collision speed) and fluctuation of teeth displacement xc 
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and teeth mesh frequency f. The gear vibration power Wv is proportional to the rotating 
equivalent mass me, the vibration speed  (obtained via equat.1) and the teeth mesh 
frequency f. Disturbance power transfer function from collision power to vibration power is 
marked by v and transfer function from vibration power to the sound power is marked by 
s. All of them are experimental values which are in this way very simply presented.  

x

  
The part of absorbed disturbance energy is transmitted through elastic structure of machine 
part in the form of elastic waves. By reflections from bound surfaces of machine part, the 
dominant value of that energy attenuates. In the course of attenuation process elastic waves 
reflect from bound surfaces. Via contact surfaces the part of wave energy is transmitted to 
the other machine part in the assembly. In Fig.4 the assemblies of the gear, shaft, bearing 
and support in housing wall are presented. The part of disturbance power absorbed in gear 
mesh Wg is transmitted to the shaft Wsh with the transmission factor   gshshgT WW . 

The part of disturbance energy via other gear bound surfaces is transmitted into inside 
space of transmission unit in the form of inside sound power Win with the transmission 
factor   gininT WW . The rest of disturbance power Wg attenuates inside of the gear 

elastic structure i.e. attenuated power is Wga=Wg-Wsh-Win . Disturbance power transmitted 
to the shaft Wsh is partly transmitted via the bearings to the transmission unit housing Who 
and also partly to the inside of the housing in the form of inside noise W’in. The rest also 
attenuates inside of the shaft elastic structure. The factor of disturbance power transmission 
from the shaft to the housing via the bearings is   shhobT WW . Disturbance energy 

transmitted to the housing Who can produce a few effects. The first one is further 
transmission to the outside and inside air in the form of outside noise Won and in the form of 
inside noise W”in. The second effect of the housing contains the possibility of the great 
attenuation of energy Who or possibility of disturbed natural vibrations and significant 
increase of Who and emitted noise Won and W”in. Also, disturbing natural (modal) vibrations 
of the housing modulate frequencies of emitted noise compared to frequencies of machine 
part vibrations (gears, bearings, shafts, etc). The third effect of housing is the inside noise 
isolation. Machine parts emit inside noise which is trying to pass through the housing walls 
into the surroundings. The noise transition ratio of the housing walls is   inonnT WW  . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Disturbance energy transmission from the source to the surrounding 

W’on Wo

W”in Win Who 

Wsh 

Wsh

W’in Wg
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3. Design parameters definition constraint by vibration and noise 
 
According to the main axiom of axiomatic approach in design, i.e. the axiom of 
independency, design parameters definition using reliability, vibration and noise as design 
constraints are independent. Usage of vibration and noise as design constraints provides the 
possibility to reduce vibration and noise level by variation of gear design parameters (gear 
teeth number z, gear module m, teeth offset factor x, teeth helical angle  etc without 
variation of d and b which are fixed by reliability as design constraint). The reduction of 
vibration and noise level with the aim to satisfy limited levels is the main task of vibration 
and noise design constraint. This constraint can be satisfied with a set of design actions and 
solutions [12-14]. It is not a general design solution which can provide this result. One 
group of these partial activities has the purpose to harmonize gear parameters in order to 
avoid equivalence between teeth mesh frequencies with natural frequencies of the gear pear 
and the housing. The second group of design actions is the gears parameters variation and 
the shape and dimensions variation of housing with the aim to reduce disturbance power, 
vibration power and noise power including the corresponding transfer functions (equat.2). 
The main of these activities oriented to satisfying the limited level of vibration and noise 
are as follows.  
 By variation of gear teeth design parameters z, m, x,  (without variation of gear 

dimensions) the teeth stiffness and gear pair natural frequencies fni vary. Also, these 
variations effectuate the variation of gear teeth mesh frequency f. This is the way to 
avoid the equilibrium between disturbance and natural frequencies presented in Fig. 3d.  

 By variation of gear teeth parameters z, m, x, (without variation of gear dimensions) 
and by flank correction possibility is provided for the reduction of disturbances, 
especially teeth impacts in the gear pair mesh i.e. collision power Wc . It is the direct 
way to reduce vibration power Wv and sound power Ws  (equ. and 2) and satisfy 
vibration and noise constraint.  

 By variation of design parameters of gear system housing (shape, thickness of walls, 
distribution of ribs, material characteristics, etc.) gives possibility for harmonization of 
natural (modal) behavior of housing with natural frequencies and teeth mesh frequencies 
of gear system. This is the way to reduce the value of transfer function s (equat.1 and 
2) as one step more in the noise reduction and satisfying of vibration and noise 
constraint.   

 Isolation is a passive approach to satisfying the constraints by limited level of vibration 
and noise. The two groups of isolation principles are available. The first is oriented to 
interrupting the disturbance transmission through the system, i.e. from one to another 
machine part. For example, to interrupt disturbance transmission from the gear system 
to the housing via bearings (reduction of transmission factor s (equat.1 and 2). The 
second group is the coating of housing surfaces or the application of layered housing 
walls in order to increase the isolation properties and reduce emission activity of the 
housing walls, also with the aim to reduce s and additionally reduce the emitted noise 
and satisfy the noise constraint.  

 Active approach to the noise reduction is also available and possible to apply when the 
passive solutions are insufficient. This approach implies the electronic control system 
which measures vibration or noise and produces the same vibrations or noise with the 
phase displacement which, in the sum, provides full elimination of vibration or noise. 
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4.  Conclusions 
 
The article offers an innovated design process of PT components, especially in the stage of 
embodiment design using vibration and noise as design constreints. The proposed design 
process based on robust and axiomatic approach is more effective and provides good 
solution in the first attempt insensitive to service conditions variation. Vibrations and noise 
of power transmission components are presented by specific and new models suitable to be 
the design constraints. Limited level of vibrations and noise have to be satisfied by variation 
of gear design parameters, bearing parameters and especially gearbox housing design 
parameters, without dimension variation which is already constrained by reliability. The 
analysis of vibration and noise generation is the wide area of experimental research, which 
provides a great support to robust design of PT components.  
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Abstract. The article is about conducting a numerical simulation of a welding process on 
butt-weld of two pipes. There were two models considered: model A in which thermal and 
mechanical properties of materials  were temperature dependent and model B in which 
thermal and mechanical properties were taken at room temperature except yield strength. A 
parallel numerical simulation of welding process was cunducted, using the software 
packages Abaqus and Ansys. The obtained results of residual stresses for models A and B 
agree very good. 

 

 
 
 

1. Introduction  
 
Welded joints are inevitable, but at the same time a very reliable technique of joining 
materials in almost all areas of technology. The parts of structures near the welding zone 
are exposed to high localized heating and subsequent rapid cooling. It causes plastic 
deformations and a manifestation of residual stress in the weld. These manifestations are 
harmful, but inevitable, so that a reliable calculation of residual stress and deformations is 
very important for achieving the safety design. 
 
With the development of information technology and the application of the finite element 
method the numerous numerical simulations of the welding process have been performed 
and a lot of knowledge has also been established 1-9]. It has also been established that the 
amount of the residual stress is primarily affected by a  heat input, material properies, 
thermal and mechanical boundary conditions, a number of weld pass and  structural 
dimensions. 
 
For a detailed numerical simulation of a welding process it is a necessity to know thermal 
and mechanical properties depending on temperature. However, for many materials the 
thermal and mechanical properties are non-existent or hardly available on high 
temperatures. 
 
Using the structure of two welded plates made of aluminium alloy 5052-H32, Zhu 1] 
carried out a detailed research of the impact of individual thermal and mechanical 
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properties on residual stress. Thus he established  that along with little mistakes all thermal 
and mechanical properties can be taken at room temperature except the  yield strength 
which should be temperature dependent. 
 
In this work a parallel numerical simulation of welding process of two steel tubes was 
conducted using Abaqus code 10] and Ansys code 11] for two models: model A in which 
thermal and mechanical properties of materials were used, and model B in which 
mechanical and thermal properties were used at room temperature except yield strength, 
which is taken depending on temperature. 
 

2. Computional Approach 
 
The simulations performed in this work use sequential thermal-stress solution procedure in 
which the transient heat transfer analysis is followed by the thermal stress analysis. 
Temperatures predicted by the heat transfer analysis are used as the loading for thermal 
stress analysis. 
  

 2.1. Thermal model 
 
Differential equation of heat conduction in solid bodies can be expressed by a formula: 
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where xk , ,yk zk  are thermal conductivity in the x , y  and z  respectively, T  is the 

current temperature, Q  is the heat generation,   is the density, C  is the specific heat 

capacity and t  is the time. The general solution is obtained by applying the following 
initial and boundary conditions: 
 
Initial condition: 
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Boundary conditions: 
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where xN , yN , zN  are the direction cosine normal to the boundary, ch , rh  are the 

convection and radiation heat transfer coefficients respectively, sq  is the boundary heat 

flux and rT  is the temperature of radiation heat source and T  are the surrounding 
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temperature. Radiation heat losses are dominant near the weld, so they can be expressed by 
a formula: 
 

))(( r
2

r
2

r TTTTFh                                                                                                    (4) 

 

where 81067.5   J/(m2K4) is the Steffan-Boltzman constant,   is the effective 
emissivity and F is the configuration factor. Starting from the welding zone a share of 
radiation heat losses decreases and a share of convection heat loses ch  rises. A total heat 

input is expressed by: 
  

HV

UI
q


                                                                                                                                (5) 

 
Where   is the arc efficiency, I  is current, U  is voltage a HV  is the weld volume. 

 

2.2. Mechanical model 
 
Equilibrium equations are expressed by formulas: 
 

0,  ijij b                                                                                                                    (6) 

 

jiij                                                                                                                                  (7) 

 
In equations (6) i (7)  ij  is the stress tensor,   is the material density a ib  is the body 

force. Following thermal-plastic constitutive equations are used in numerical simulations: 
 

      dTCdDd thep                                                                                               (8) 

 

      dTCdDd thep                                                                                               (9) 

 

where  eD  is the elastic stiffness matrix,  pD  is the plastic stiffnes matrix, thC  is the 

thermal stiffness matrix,  d  is the strain increment and dT  is the temperature increment. 
 
 

3. Welding conditions, boundary conditions and material properies 
 
Figure 1 shows computational model of butt weld of two pipes made of SAE 1020 steel. 
The diameter of each pipe is 324 mm, wall thickness is 3.96 mm and length of each pipe is 
200 mm. Constant weld width is presumed to be 3.84 mm along the whole wall thickness. 
Mechanical and thermal properties are given in Table 1. The material is modelled as an 
elastic – ideally plastic. Welding parameters chosen for this analysis are as follows: 
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tungsten inert gas welding, welding current I=110 A, welding voltage U=20 V and welding 
speed v=5 mm/s. The following values are assumed: the convective heat transfer hc=15 
W/m2K, the arc efficiency   =70%  and the emissivity ε= 0.8. Welding of pipes is 

modelled in single pass. Heat flux applied by welding is 1010076.2 q  J/m3s. Three-

dimensional mesh consisted of 14400 elements. The same mesh is used both for thermal 
and mechanical analysis. Two numerical simulations of welding process were carried out; 
model A using thermal and mechanical properties, which are temperature dependent, and 
model B using thermal and mechanical properties at room temperature; except yield 
strength, which is taken depending on temperature. 
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                                                Figure 1. Geometry of butt-welded pipes  
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Table 1: Thermal and mechanical properties of steel SAE 1020 2] 

 
Temperature 
(°C) 

Specific 
heat 
(J/Kg°C) 

Conductivity 
(W/m°C) 

Density 
(kg/m3) 

Yield 
stress 
(MPa) 

Thermal 
expansion 
coefficient 
(°C-1) 

Young's 
modulus 
(GPa) 

Poisson's 
ratio 

0.00 360.0 59.0 7800 105.0 1.100E-5 210.00 0.280 
200 650.0 52.5 7792 101.0 1.250E-5 165.00 0.295 
400 900.0 43.0 7784 101.0 1.400E-5 115.00 0.300 
500 1050.0 37.5 7780 99.0 1.500E-5 85.00 0.305 
600 1150.0 35.0 7776 20.0 1.550E-5 45.00 0.310 
700 1250.0 32.0 7772 20.0 1.600E-5 20.00 0.310 
800 1300.0 31.0 7768 20.0 1.620E-5 20.00 0.310 
1000 1300.0 31.0 7760 20.0 1.620E-5 20.00 0.310 
1200 1300.0 31.0 7752 20.0 1.620E-5 20.00 0.310 
1400 1300.0 31.0 7744 20.0 1.620E-5 20.00 0.310 
1600 1300.0 31.0 7736 20.0 1.620E-5 20.00 0.310 

 
 

4. Results 
 
In Figures 2 and 3 are shown temperature profiles at time100 seconds after start of welding 
with a central angle  =180°, for models A i B. 

Figures 4 and 5 show residual stress fields zσ  in z direction, along the pipe axis on the 

outer surface of the tube. 
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Figure 2. Temperature profiles t = 100 s  and   =180°, Abaqus 
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Figure 3. Temperature profiles t = 100 s  and   =180°, Ansys 
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Figure 4. Residual stresses zσ  in  z direction along inner surface 

for  =180°, model A and model B, Abaqus 
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Figure 5. Residual stresses zσ  in  z direction along inner surface 
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for  =180°, model A and model B, Ansys 
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Figure 6. Residual stresses zσ  in  z along outer surface for  

 =180°, Model A and Model B, Abaqus 
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Figure 7. Residual stresses zσ  in  z along outer surface for za 

 =180°, Model A and Model B, Ansys 

 
 
5.    Conclusion and discussion 
 
 
Based on carried out numerical simulations of  welding process for models with 
temperature dependent thermal properties, model A,  and and for models with independent 
thermal and mechanical properties, model B, except yield strength, which is taken 
depending on temperature, we can conclude the following: 
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Temperature fields for the case of numerical simulation of welding process of two steel 
tubes SAE 1020 in the welding zone, for models A and B, show significant discrepancies 
(Figures 2 and 3), which was confirmed with the parallel analysis in Abaqus and Ansys. 
 
Residual stresses zσ  in direction of pipe axis, calculated along inner surface, are well 

matched at models A and B, (Figures 4 and 5). Considerable difference among residual 
stresses zσ  appear along outer surface (Figures 6 and 7), which was confirmed with the 

parallel analysis in Abaqus and Ansys as well. 
 
According to the obtained values of residual stresses, we can conclude that the numerical 
simulation of the welding process is, using thermal and mechanical properties of steel 
materials at room temperature, except for yield strength which must be taken depending on 
the temperature, acceptable for a wide range of industries where less accuracy in the results 
of residual stresses and strain are required. In order to achieve more accurate residual 
stresses and strain, it is needed to know the thermal properties of materials at high 
temperatures. 
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