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Abstract. The conditions under which the three forms of Hamilon's principle were
derived for nonholonomic systems with linear constraints by Hölder, Voronets and
Suslov are analysed in the general case of nonlinear constraints. It is proved, that these
three forms are equivalent and transformable to each other.
The analogous questions are analysed for the case of nonlinear quasi-coordinates and
quasi-velocities. In addition the forms of Hölder, Voronets and Suslov are excibited in
the case of Legendre transformation reducing the motion's equations to canonical form
in quasi-coordinates. Also the conditions under which Hamilton's principle for
nonholonomic systems has the characterictics of the principle of stationary action are
derived.

The conditions under which the three forms of Hamilon's principle were derived for
nonholonomic systems with linear constraints by Hölder [1], Voronets [2] and Suslov [3]
are analysed in the general case of nonlinear constraints. It is proved, that these three
forms are equivalent and transformable to each other.

The analogous questions are analysed for the case of nonlinear quasi-coordinates and
quasi-velocities. In addition the forms of Hölder, Voronets and Suslov are exhibited in the
case of Legendre transformation reducing the motion's equations to canonical form in
quasi-coordinates. Also the conditions under which Hamilton's principle for nonholonomic
systems has the characterictics of the principle of stationary action are derived.

It was also shown, that the same conditions are the necessary and sufficient ones for
applying generalized Hamilton – Jacobi method for integration of motion's equations for
nonholonomic systems.
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1. THE TRANSITIVITY EQUATIONS

1.1. Lagrangian coordinates and velocities

Let us consider a nonholonomic system with k degrees of freedom, whose Lagrangian
coordinates and velocities are qi, iq! (i = 1,...,n). The system is subjected to forces, defined
by the force function U(qi,t), and constrained by ideal nonintegrable relationships

0),,( =tqqf iil ! , nrl <= ,...,1 , r
q
f

rank
i

l =
∂
∂  (1.1)

which are generally nonlinear with respect to 
dt
dqq i

i ≡! , where t denotes time.

Equations (1.1) can be solved to some r dependent velocities and represented in the
form

lkiil qtqqf += !! ),,( , 0),,...,,( 1 =ϕ− tqqq kl !! , (1.2)

where the velocities sq! (s = 1,...,k, k = n − r) are assumed independent.
The basic principle of mechanics is the variational principle of d'Alembert-Lagrange
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where UTtqqL +=),,( !  is the Lagrange function, ),,( tqqT !  is kinetic energy, δqi are
virtual displacements that satisfy Chetaev's conditions
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Throughout the paper we assume the summation condition over repeated indexes.
For constraints in the form (1.2) the conditions (1.4) are

s
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, rl ,...,1=  (1.5)

The Hamilton's principle can be obtained by integrating the equation (1.3) within
some constant limits t0 and t1
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on the assumption that the function δqi ∈  C 2 satisfy the conditions: δqi = 0 for t = t0,
t1(i = 1,...,n).

This equation is reduced to one
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in which the time derivatives dδqi /dt appear. Two equivalent points of view exist in
analytic mechanics on the relation of these derivatives with variation of generalized
velocities [4].

1) According to Hölder [1] the commutation relationships

,,...,1     , niqq
dt
d

ii =δ=δ !  (1.7)

are valid for all coordinates.
With this definition of iq!δ  the variation of function (1.1) over virtual displacements,

with (1.4) taken into account, are of the form
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If Eqs. (1.1) are integrable, expressions (1.8) are identically zero, and if they are not
integrable, then although not identically zero, they may become zero in the case of their
nonlinearity on the strength of the motion equations [5]. Note, that the identities δfl ≡ 0
(l = 1,...,r) and conditions (1.7) are compatible in the case of holonomic systems.

For relationships (1.2) formulas (1.8) assume the form

s
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+! , rl ,...,1=  (1.9)
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2) According to Appel and Suslov [3] the identities δfl ≡ 0 (l = 1,...,r) are valid and
this implies that formulas (1.7) are correct only for the independent velocities

,ss qq
dt
d

!δ=δ  ks ,...,1=  (1.11)

Expressions for the variations of dependent velocities ),...,1( rlq lk =+! , defined by
Eqs. (1.2), are obtained from conditions δfl = 0 in the form

,s
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slklk qAqq
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d

δ=δ−δ +
++ !  rl ,...,1=  (1.12)

where the symbol δ  denotes the variation in the Appel - Suslov sense.
Note that in the case of linear relationships (1.2) when

),,(),(),,( tqaqtqatqq lslsl +=ϕ !!  ,,...,1 rl =  ks ,...,1=  (1.13)

the coefficients in (1.10) are of the form [2]

,










∂
∂+

∂
∂−

∂
∂−

∂
∂−=

++

+

jk

l
i

jk

li
js

s

l
i

s

lilslk
s q

aq
q
aa

q
aq

q
a

dt
daA !!  rlj ,...,1, =

and the right-hand of equality (1.12) can be represented in the form [3]

llssslss
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s aaqqaqA δ−δ−δ=δ+ !! .
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1.2. Quasi-coordinates and quasi-velocities

Hamel [6] has determined quasi-velocities for a holonomic system by equalities

),,,( tqqfii !≡η  ,0det ≠
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where in general case ),,( tqqfi !  are nonlinear arbitrary functions. When the Eqs. (1.14)
are solved

),,( tqFq ii η=!  (1.15)

and (1.15) are inserted to (1.14), they satisfy them identically. Obviously
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Quasi-coordinates πi are determined by conditional notations ii η=π!  and moreover
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The virtual displacements in Lagrangian coordinates and quasi-coordinates satisfy the
relationships

,sisi Fq δπ=δ  isis qf δ=δπ . (1.18)

Using the equalities (1.18) it is easy to transform the tratsitivity equations (1.7) to the
forms
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d δπ−=δη−δπ  nrji ,...,1,, =  (1.19)

Comparing the equations, we see that are valid equalities
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where we use the notations [5]
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In the case of nonholonomic system with constraints (1.1) we pose last r of quasi-
velocities (1.14) equal to left-hand side of (1.1): nα = 0 (α = k + 1,...,n) at the same time
the first k of (1.14) ns (s = 1,...,k) are arbitrary.

The first k of both groups Eqs. (1.19) retain their form for nonholonomic system on
condition that one has δπα = 0 (α = k + 1,...,n) in their right-hand sides according to (1.4)
while the remaining equations assume the form

r
i

rirr TfW δπ=δπ−=δη α
α

α  (1.22)
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For the special form (1.2) we pose

,0),,...,,( 1 =ϕ−≡η αα tqqqq kl !!!  ss q!=η  (1.23)

In this case the Eqs. (1.22) turn into Eqs. (1.9), moreover αα = ss WA , and the another
Eqs. (1.19) become identities.

2. THE FORMS OF HAMILTON'S PRINCIPLE IN GENERALIZED COORDINATES AND VELOCITIES

Let the relationships (1.7) be satisfied for all coordinates. Substituting (1.7) into (1.6)
we obtain the Hölder form [1] of Hamilton's principle

∫ =δ
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,0
t

t
Ldt  0=δ iq  at 10,ttt =  (2.1)

The position of the system on real trajectory qi(t) is compared in (2.1) with
simultaneous position obtained by moving from real motions position by virtual
displacements δqi which define a momentarily configuration. The sequence of displaced
positions qi(t) + δqi may be considered an roundabout path which generally does not
satisfy the Eqs. (1.1). Indeed, if the roundabout path satisfies Eqs. (1.1), the equalities
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are correct; these equalities give δfl = 0, that are accurate to smalls of the first order. But
these conditions are not satisfied for nonholonomic system, hence Hamilton's principle
(2.1) does not generally represent the principle of stationary action [7]
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0
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t
Ldt , 0=δ iq  at 10,ttt =  (2.2)

as in the case of holonomic systems.
The equations of motion for nonholonomic system are derived from (2.1), for

example, in the form of Lagrange equations with factors µl
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which together with Eqs. (1.1) form a closed system of n + r equations with the same
number of unknowns. The generalized solution of these equations depends on 2n − r
arbitrary constants.

If ),,...,,( 1 tqqq k!!Θ  denotes the kinetic energy ),,( tqqT !  from which the dependent
velocities q!  are eliminated by means of formulas (1.2), there valid the relation [8]
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Substituting the right-hand side of (2.4) for δT into (2.1) we obtain the Voronets form
of Hamilton's principle

,0 )]()([
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 0=δ iq  at 10,ttt =  (2.5)

established by P. Voronets [2] in the case of linear constraints. The form (2.5) was neither
substantiated nor named in [2].

The Voronets equations of motion for nonholonomic system are derived from (2.5)
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The general solution of Eqs. (2.6), (1.2), as well as of Eqs. (2.3), (1.1) depends on
2n − r arbitrary constants.

Now we substitute expressions (1.12) into (1.6) and obtain Hamilton's principle in
Suslov's form [3]
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t
ss!

 0=δ iq  at 10,ttt =  (2.7)

which was originally got by Suslov for the case of linear constraints (1.13) and called the
modification of d'Alembert principle by him.

It is necessary to stress that the variations of Lagrange functions in (2.1) and (2.7) are
calculated differently: allowance in (2.1) is made for equalities (1.7), but in (2.7) – for
equalities (1.11) and (1.12). Note also that since in the last case the conditions δfl = 0 are
satisfied, the roundabout paths qi(t) + δqi in (2.7) the conditions (1.2) satisfy in the first
approximation. But (2.7), as well as (2.1), does not represent generally the principle of
stationary action.

We point out that in conformity with Suslov's method of variation the formula (2.4)
turns into ,Θδ=δT  the equality (2.7) assumes the form
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 0=δ iq  at 10,ttt =  (2.8)

which with equalities (1.9) taken into account evidently represents the Voronets form (2.5).
Thus it has been shown that formulas (2.1), (2.5), (2.7) are equivalent and convert to

each other by means of the considered transformations [8].

3. THE FORMS OF HAMILTON'S PRINCIPLE IN QUASI-COORDINATES AND QUASI-VELOCITIES.

Motion's equations in nonlinear quasi-coordinates were first deduced by Hamel [6]
from the central Lagrange equation using the transitivity equations, which were also
derived by Hamel. Novoselov [5] has deduced such equations from Hamilton's principle
(2.1) also using transitivity equations. Without last equations the motion's equations were
derived by Rumyantsev [10] from Maggi's equations
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Indeed, replacing the velocities iq!  in ),,( tqqL !  by expressions (1.15) we obtain
generalized Lagrange function L*(q,η,t).

Since
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we receive from (3.1) the motion's equations for nonholonomic system in nonlinear
quasi-coordinates and quasi-velocities in the notations (1.21)
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The Eqs. (3.2) and (3.3) are identical with Hamel's equations (I) and (II) [6].
Novoselov [5] has named these equations of Voronets-Hamel and Chaplygin type,

respectively (with the factor ri
r

fL
η∂

∂ ∗
 in (3.3) replaced by 

iq
L
!∂

∂ ).

Note that one can set ηα = 0 in Eqs. (3.2), (3.3) only after expressing them in explicit

form, since they generally involve all derivatives 
r

L
η∂
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, .,...,1 nr =

The Eqs. (3.2) or (3.3) enable one to deduce the Hölder form of Hamilton's principle
in quasi-coordinates. Indeed, multiply the Eqs. (3.2) or (3.3) by δπs, sum over all
s = 1,...,k, integrate the result with respect to t, then using the Eqs. (1.19) and set δπs = 0
at t = t0, t1 we obtain

∫ =δ ∗
1

0

,0
t

t
dtL  0=δπs  at 10,ttt = . (3.4)

Of course the (3.4) is equivalent to (2.1).
Using the generalized Legendre transformation [9]
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η∂

∂=
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 ),,(),,( tqLytyqH ss η−η= ∗∗  (3.5)

we are able [11] to bring the Eqs. (3.2) or (3.3) to the canonical form of equations in
quasi-coordinates
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or ,0=
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The coefficients r
sW , r

sT  in these equations must be expressed in terms yr.
The Eqs. (3.6) or (3.7) enable one to deduce the second Hölder form of Hamilton's

principle

∫ =−ηδ ∗
1

0

,0)(
t

t
ss dtHy  0=δπs  at 10,ttt =  (3.8)

In turn the Eqs. (3.6) or (3.7) may be derived from the principle (3.8).
It should be noted that the principle (3.8) is significant in it's own right, considering

the assumption that variations δys are arbitrary and independent of the δπs in the interior
of the interval (t0,t1) [9].

We now proceed to derive Voronets equations in quasi-coordinates. To do this, we
replace the kinetic energy T*(q,η,t) of a holonomic system, which figures in L*(q,η,t) in
Eqs, (3.2), (3.3), by the kinetic energy Θ*(q,η1,...,ηk,t) of nonholonomic system with
constraints ηα = 0. Since the relations
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hold when ηα = 0, where 
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equations (3.2) or (3.3) may be transformed to the Voronets equations in quasi-
coordinates [8]
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The Eqs. (3.10) or (3.11) imply the Voronets form of Hamilton's principle in quasi-

coordinates
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The Eqs. (3.10), (3.11), in turn, may be deduced from (3.12), (3.13) respectively [12].
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Using the Legendre transformation
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form in quasi-coordinates
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The Eqs. (3.15) or (3.16) enable one to obtain the second Voronets form in quasi-
coordinates
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Using the relations (3.9) it is not hard to verify the truth of the equalities
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0

,

which prove the equivalence of the Voronets forms to Hölder's form of Hamilton's
principle in quasi-coordinates.

In conclusion we consider a special case (1.2) the nonholonomic constraints (1.1) and
we pose

,0),,...,,( 1 =ϕ−≡η αα tqqqq kl !!!  ,ss q!=η  ,,...,1 ks =  .lk +=α

In this case the Voronets form of Hamilton's principle has the form (2.5), and the
Voronets motion's equations – the form (2.6). 1

Using the Legendre transformation

,
s

s q
p

!∂
Θ∂=  ),(),,(),,( tqUtqqqptpqH sss −Θ−= !!  (3.19)

we reduce the Eqs. (2.6) to the canonical form

                                                          
1 Note that in [12] formula (5.1) which is equivalent to (2.5), and Section 6 were incorrectly referred to as
Suslov's principle; the latter has the form (2.7).
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where (ψ)*denotes an expression of  ψ in terms of ps.
The Eqs. (3.20) lead to second Voronets form of Hamilton's principle in quasi-

coordinates and momenta
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4. A COMPARISON WITH THE LAGRANGE PROBLEM

Let us compare the Hamilton's principle (2.1) with the Lagrange problem of
stationary value of the action integral (2.2) in the class of curves that satisfy Eqs. (1.1).
The introduction of indeterminate multiplies χl(t) reduces that problem of conditional
extremum to the Lagrange problem of variations
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The Euler's equations for the problem (4.1) are
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Obviously the motion's equations (2.3), (1.1) are not equivalent to Eqs. (4.1), (1.1).
However the nonequivalence of these two systems of equations does not exclude a
possibility some of their solutions being the same. Let the general or some particular
solution qi(t) of Eqs. (2.3), (1.1) be also a solution of Eqs. (4.2), (1.1) for the same initial
conditions.

Evidently the equalities







∂
∂−

∂
∂χ=

∂
∂χ+µ

i

l

i

l
l

i

l
ll q

f
dt
d

q
f

q
f

!!
! )(  (4.3)

are now valid. Taking into account (1.4) we multiply Eqs. (4.3) by δqi and summing over
all i's , we obtain the condition

0=δ





∂
∂−

∂
∂χ i

i

l

i

l
l q

q
f

dt
d

q
f

!
, (4.4)

which is necessary if two systems have the same solution qi(t).
This condition is also sufficient. For proving this, let us assume that some solution of

Eqs. (4.2), (1.1) satisfies (4.4) for any δqi compatible with (1.4). Multiplying Eqs. (4.2)
by δqi and Eqs. (1.4) by µl and summing over all i's and l's with allowance for (4.4) and
(1.4) we obtain the relationship
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,0=δ





∂
∂µ−

∂
∂−

∂
∂

i
i

l
l

ii
q

q
f

q
L

q
L

dt
d

!!

which shows that the considered solution qi(t) also satisfies Eqs. (2.3), (1.1).
Thus condition (4.4) is necessary and sufficient for solution qi(t) of Eqs. (2.3), (1.1) to

be among solutions of Eqs (4.2), (1.1) [8].
Thus when condition (4.4) is satisfied, the equations of motion (2.3) of nonholonomic

system have the form of Euler's equations (4.2). Owing to this we say that Hamilton's
principle (2.1) for the motion of a nonholonomic system defined by such solution has the
characteristics of the principle of stationary action (2.2).

For relationship of the form (1.2) equality (4.4) reduces to conditions

,0=χ +lk
sl A  ,,...,1 ks =  .,...,1 rl =  (4.5)

Note that Suslov's form (2.7) has also the characteristics of the principle of stationary
action then and only then when the condition

0
1

0

=δ
∂
∂

∫ α

α
dtqA

q
Tt

t
ss!

, lk +=α

is satisfied. Since δqs are arbitrary and independent, this condition is satisfied only when
[13]

,0=
∂
∂ α

α
sA

q
T
!

 .,...,1 ks =  (4.6)

We stress that conditons (4.4)–(4.6) are seldom satisfied in the case of nonholonomic
systems.

Two examples are given below. In the first one these conditions are satisfied for the
general solution, in the second one only for some particular solutions of motion's
equations of the nonholonomic system

Example 4.1. For Appel's example [4] from equations of the form (2.3) and (1.1)

,
2
2

2
1 qq

qaqm s
s

!!

!
!!

+
µ−=  µ+−= mgqm 3!!

we have

,0
2
2

2
1

=














+ qq

q
dt
d s

!!

!  2,1=s

which show that the conditions (4.4)–(4.6) are satisfied for all motions of the material
point.

Example 4.2. For a disk the Lagrange function is

θ−θϕ+ϕ+θϕ+θ+

+ϕϕθ+θϕθ++ϕϕθ+θϕθ−=

cos])sin()cos([
2
1

})]sinsincos(cos[)]cossinsin(cos{[
2

2222

22

mgrCA

ryrxmL

!!!!

!!!!!!
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The conditions (4.6) assume the form

,0cos23
2

3
=θϕθ−=

∂
∂ +

+

!!
!

mrA
q
T l

l
 0cos23

3
3

=θψθ=
∂
∂ +

+

!!
!

mrA
q
T l

l

which are satisfied either when 0=θ! , or .0=ψ=ϕ !!

Hence in the case of motion of the disk whose plane form a constant angle θ to the
vertical, as well as some highly special motions for which ,0=ψ=ϕ !!  Hamilton's principle
has the characteristic of the principle of stationary action, while for another motions this
is not so.

5. CONDITIONS OF APPLICABILITY OF THE GENERALIZED HAMILTON – JACOBI METHOD
OF INTEGRATION

Preceding results are closely related to the problem of extending to nonholonomic
systems the generalized Hamilton – Jacobi method of integration for canonical equations
of motion

,
i

i

p
H

dt
dq

∂
∂=  ,

i

l
l

i

i

q
f

q
H

dt
dp

!∂
∂µ+

∂
∂−=  ,,...,1 ni = ,,...,1 nkl +=  (5.1)

that are equivalent to Eqs. (2.3), (1.1). Here

,
i

i q
Lp
!∂

∂=  ),,,(),,( tqqLqptpqH ii !! −=  .,...1 ni =  (5.2)

In essence the Hamilton – Jacobi method consists in the following [14,15,8].
The variables

,
i

l
lii q

fp
!∂

∂λ+=π  ni ,...,1=  (5.3)

are introduced and used for reducing (5.2) to the form

,1HqL ii −π= !  (5.4)
where function

i
i

l
l q

q
ftpqHtqH !
!∂

∂λ+=π ),,(),,(1  (5.5)

is obtained by substitution into its right-hand side of functions pi (q,π,t) and λ l (q,π,t)
derived from Eqs. (1.1) and (5.3) and of the first group of Eqs. (5.1).

It is advisable to construct function (5.5) as follows. Using (1.2) we represent the
Lagrange function in the form UtqqqqL kn +Θ=∗ ),,...,,,...,( 11 !!  and introduce the generalized
momenta and the Hamiltonian

,
s

l
lks

s
s q

pp
q
LP

!! ∂
ϕ∂+=

∂
∂= +

∗
 ,),,( ∗∗ −= LqPtPqH ss !  ,,...,1 ks = .,...,1 rl =  (5.6)

The function H*(q,P,t) is connected with H(q,p,t) by the formula
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,),,(),,( 





ϕ−

∂
ϕ∂+= +

∗
ls

s

l
lk q

q
ptpqHtPqH !

!
 .,...,1 rl =  (5.7)

Since Eqs. (5.3) imply for relationships (1.2) the equalities

,lklkl p ++ −π=λ  
s

l
lkss q

P
!∂
ϕ∂π+π= +

the function (5.5) with allowance for (5.7) assumes the form







∂
ϕ∂−ϕπ+=π + s

s

l
lkl q

q
tPqHtqH !

!1
* ),,(),,(

The generalized Hamilton – Jacobi equation

0,,1 =





∂
∂+

∂
∂ t

q
SqH

t
S

i
i  (5.8)

has characteristic equations of the canonical form

,1

i

i H
dt
dq

π∂
∂=  ,1

i

i

q
H

dt
d

∂
∂−=π  .,...,1 ni =  (5.9)

According to Jacobi's theorem the relationships

i
iq

S
π=

∂
∂ , ,i

i

S
β=

α∂
∂   ,,...,1 ni =

represent 2n integrals of Eqs. (5.9), if S(qi,αi,t) is a complete integral of Eq. (5.8) with
arbitrary constants αi  and βi.

It was shown in [16] that the solution of Eqs. (5.9) is also the solution of motion's
equations (5.1) if and only if it satisfies the condition

,0=δ





∂
∂−

∂
∂λ i

i

l

i

l
l q

q
f

dt
d

q
f

!
 ,,...,1 ni =   .,...,1 rl =  (5.10)

Hence (5.10) is a necessary and sufficient condition for the considered generalized
Hamilton – Jacobi method to be applicable to nonholonomic systems.

The condition (5.10), with (1.4) taken into account, follows from equations [16]

,
i

l
l

i

l

i

l
l

i

i

q
f

q
f

dt
d

q
f

q
H

dt
dp

!
!

! ∂
∂λ−





∂
∂−

∂
∂λ=

∂
∂+  ,,...,1 ni =   .,...,1 rl =  (5.11)

obtained by differentiating the expressions (5.3) with respect to t on the basis of (5.9).
When λl = χ l (l = 1,...,r) Eqs. (5.11) evidently match to Euler's equations (4.2) of the
variational problem (4.1).

Hence the generalized Hamilton – Jacobi method of integrating Eqs. (5.1) of
nonholonomic systems is applicable if and only if Hamilton's principle has the
characteristics of the principle of stationary action
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,0 )(
1

0

1 =−πδ∫ dtHq
t

t
ii !  0=δ iq  at 10,ttt = ,

which with allowance for (5.4) is equivalent to the principle (2.2).

Example 5.1. The equations of motion in Appel's example and the equations of
motion of the disk in case 0=θ!  were integrated in [14] and [17] accordingly by the
generalized Hamilton – Jacobi method.
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OBLICI HAMILTONOVOG PRINCIPA
ZA NEHOLONOMNE SISTEME
Valentin Vitalievich Rumyantsev

Analiziraju se uslovi pod kojima su izvedena tri oblika Hamiltonovog principa za neholonomne
sisteme sa linearnim ograničenjima po Hölder-u, Voronets-u i Suslov-u u opštem slučaju
nelinearnih ograničenja. Dokazano je da su ova tri oblika međusobno ekvivalentna i da se mogu
transformisati jedan u drugi.

Analizirana su i analogna pitanja za slučaj nelineranih kvazi-koordinata i kvazi brzina. Sem
toga oblici Hölder-a, Voronets-a i Suslov-a su prikazani u slučaju Legendre-ove transformacije re-
dukovanjem jednačina kretanja na kanonički oblik u kvazi-koordinatama. Takođe su izvedeni i
uslovi pod kojima Hamiltonov princip za za neholonomne sisteme ima karakteristike principa
stacionarne akcije.


